

HOMESTEAD ROAD SAFE ROUTES TO SCHOOL STUDY

Final Report

May 2019

K

Sunnyvale

Table of Contents

Introduction	2
Project Objectives	2
Study Area	3
Study Limits	3
Schools	5
Previous and Ongoing Planning Efforts	6
Walk Audit	6
Homestead Road/Homestead High School Improvements	7
Caltrans SCL/85 & ALA/80 Project	7
Sunnyvale Speed Limit Adjacent to Schools Resolution	7
Plan Development	9
Project Process	9
Stakeholder and Public Involvement	9
Existing Conditions	10
Transportation Facilities	10
Collision Analysis	14
Existing Traffic Operations Analysis	
Analysis Methodology	17
Existing Level of Service (LOS) Results	23
Opportunities and Constraints	25
Development of Preferred Alternative	27
Project Alternatives	27
Review of Project Alternatives	31
Preferred Alternative	32
Preferred Alternative Traffic Operations Analysis	32
Preferred Alternative Level of Service (LOS) Results	32
Funding & Next Steps	35
Funding Sources	35
Next Steps	
Appendix	

INTRODUCTION

Homestead Road (the "Corridor") is a major east-west corridor that spans from Santa Clara University to Foothill Expressway, traversing four jurisdictions including the cities of Santa Clara, Cupertino, Sunnyvale, and Los Altos. Within the Homestead Road Safe Routes to School Study ("Study") limits, between N. Stelling Road/Hollenbeck Avenue and Grant Road, Homestead Road serves as both a major regional east-west connection and a local connection for three public schools, including West Valley Elementary School, Cupertino Middle School, and Homestead High School. Through this Study, the County of Santa Clara, in partnership with the Cities of Los Altos, Sunnyvale, and Cupertino, Santa Clara Valley Transportation Authority (VTA), and Caltrans ("Partner Agencies"), is seeking to identify and develop near-term improvements within the Study limits to ensure safe access to schools along the Corridor. Near-term improvements will primarily include infrastructure that promotes multimodal access for all ages and abilities, developed through a transparent public process focused on feasible and implementable solutions.

The Final Report summarizes the following:

- Description of the Study Area including Study limits and existing access conditions for each of the three schools within the Study Area
- Summary of primary Project objectives based on Project Team, Stakeholder and Community input
- Summary of previous and on-going planning efforts that impact the study limits
- Description of the Study development including public and stakeholder process and schedule
- Existing Conditions within the Study area including traffic operations, collision analysis, and opportunities and constraints to address in proposed near-term recommendations
- Development of the Preferred Alternative within the Study area including traffic operations and recommendations to achieve the project goals
- Funding opportunities and next steps for the project

PROJECT OBJECTIVES

The purpose of this study is to identify and develop near-term bicycle and pedestrian infrastructure improvements along Homestead Road between Grant Road and N. Stelling Road. Improvements will be developed to satisfy the following Project objectives:

- Develop infrastructure recommendations that are feasible and implementable in the near-term
- Recommend bicycle and pedestrian improvements that serve all ages and abilities
- Connect students along the Homestead Road corridor to West Valley Elementary School, Cupertino Middle School, and Homestead High School
- Address the safety and security of users
- Identify various grant funding opportunities for the proposed improvements

STUDY AREA

Study Limits

The Study limits are Grant Road to the west and N. Stelling Road to the east along Homestead Road, inclusive of approximately 800 feet of S. Bernardo Avenue north of Homestead Road. There are ten intersections along Homestead Road that will be analyzed for the study including:

- 1. Foothill Expressway/Homestead Road
- 2. Grant Road/Homestead Road
- 3. Fallen Leaf Lane/Homestead Road
- 4. Belleville Way/Homestead Road
- 5. Maxine Avenue-SR-85 SB Off-Ramp/Homestead Road
- 6. S. Bernardo Avenue-SR-85 NB On-Ramp/Homestead Road
- 7. Wright Avenue/Homestead Road
- 8. S. Mary Avenue/Homestead Road
- 9. Kennewick Drive/Homestead Road
- 10. Hollenbeck Avenue-N. Stelling Road/Homestead Road

Figure 1 shows the Study limits and intersections.

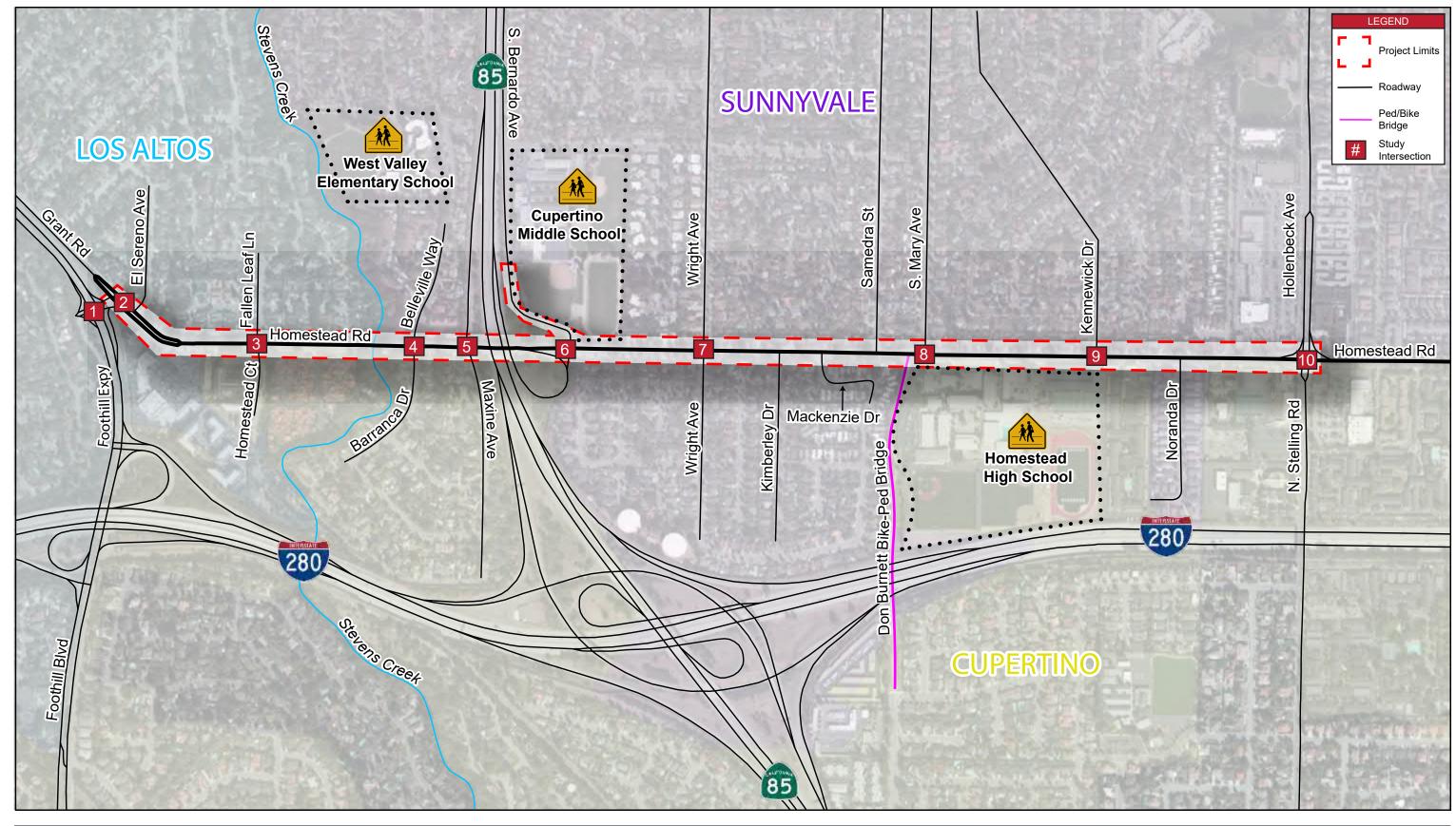


FIGURE 1 - PROJECT LOCATION MAP

Schools

West Valley Elementary School

West Valley Elementary School (West Valley) serves students from Kindergarten to fifth grade. Classes begin at 8:00AM with a staggered release time between 2:05PM and 2:35PM, except on Tuesdays when all students are released at 1:30PM. West Valley is located on Belleville Way north of Homestead Road, northwest of the I-280 and SR-85 interchange. The school is bounded by multifamily residential to the south and single family residential to the north, east, and west. There is a one-way southbound drop-off/pick-up area along Belleville Way and an informal dropoff/pick-up along Bedford Avenue. There are sidewalks along both Belleville Way and Bedford Avenue, with school crosswalks at the ingress access to the drop-off/pick up area along Belleville Way, on the north and west side of the intersection. A shared-use path that crosses Stevens Creek to connect the school fields, on the backside of the school, with Fallen Leaf Lane provides an alternative pedestrian and bicycle access for students. The shared-use path can be accessed via local streets, including Fallen Leaf Lane, El Sereno Lane, and Crist Drive. These three local streets are stop-controlled at Homestead Road and do not have sidewalks or marked bicycle facilities.

According to West Valley Elementary School's suggested routes to school, students are encouraged to use Crist Drive, El Sereno Avenue, or Fallen Leaf Lane to access the shared-use path that crosses Stevens Creek to the west of West Valley Elementary School. Students are not encouraged to use Homestead Road.

Cupertino Middle School

Cupertino Middle School serves students from sixth grade to eighth grade. Classes begin at 8:10AM, except for Wednesdays when classes start at 9:35AM, with a release at 2:54PM. Cupertino Middle School is located along South Bernardo Avenue bounded by Homestead Road to the south and Helena Drive to the north, northeast of the I-280 and SR-85 interchange. There are two one-way northbound drop-off/pick-up areas along South Bernardo Avenue and Homestead Road intersection serves as the SR-85 northbound on-ramp, with a two-stage pedestrian crossing on the south leg and marked school crosswalks on the north, east, and west legs. South Bernardo Avenue has continuous sidewalks on the Cupertino Middle School frontage and sidewalks on the west side up to the south drop-off/pick-up area where a school crosswalk is installed to provide continuous pedestrian facilities. South Bernardo Avenue does not have marked bicycle facilities. Cupertino Middle School can also be accessed via Wright Avenue and Helena Drive. The Wright Avenue/Homestead Road intersection has school crosswalks at all intersection approaches and bicycle detection on the southbound approach. Wright Avenue and Helena Drive have continuous sidewalks leading to Cupertino Middle School.

Cupertino Middle School does not have a published safe routes to school plan, but through field observations, students were observed to use the shared-use path and sidewalk along the north side of Homestead Road. Once across the SR-85 bridge, students utilized the shared-use path behind the gas station at Bernardo Avenue to access the school. From the east, students use Homestead Road to the sidewalk along the east side of Bernardo Avenue.

Homestead High School

Homestead High School serves students from ninth grade to twelfth grade, with a total enrollment of approximately 2,400 students. Classes begin at 8:00AM on Monday, Tuesday, and Thursday and at 9:00AM Wednesday and Friday, with a release at 3:25PM every weekday. Homestead High School is located along Homestead Road between South Mary Avenue and Kennewick Drive, and bounded by the Mary Avenue Bridge Trail to the west, I-280 to the south, multi-family residential to the east, and Homestead Road to the north. There are relatively wide sidewalks on the Homestead Road frontage, approximately ten feet wide. The school is served by VTA Local

Route 53, with an eastbound stop located at the pick-up/drop-off loop on Homestead Road and a westbound stop located nearside at the Mary Avenue/Homestead Road intersection. The pick-up/drop-off loop, the Horseshoe, is located about 100 feet east of the Mary Avenue/Homestead Road intersection. Based on field observations, vehicles queue into the buffered bike lane during peak times.

According to Homestead High School's suggest routes to school, students travelling from the west are encouraged to use the shared-use path between Grant Road and Fallen Leaf Lane, then cross the existing bike lane at Fallen Leaf Lane. Students from the east are encouraged to use Homestead Road to access the school. Field observations confirmed that high school students utilize the suggested routes.

PREVIOUS AND ONGOING PLANNING EFFORTS

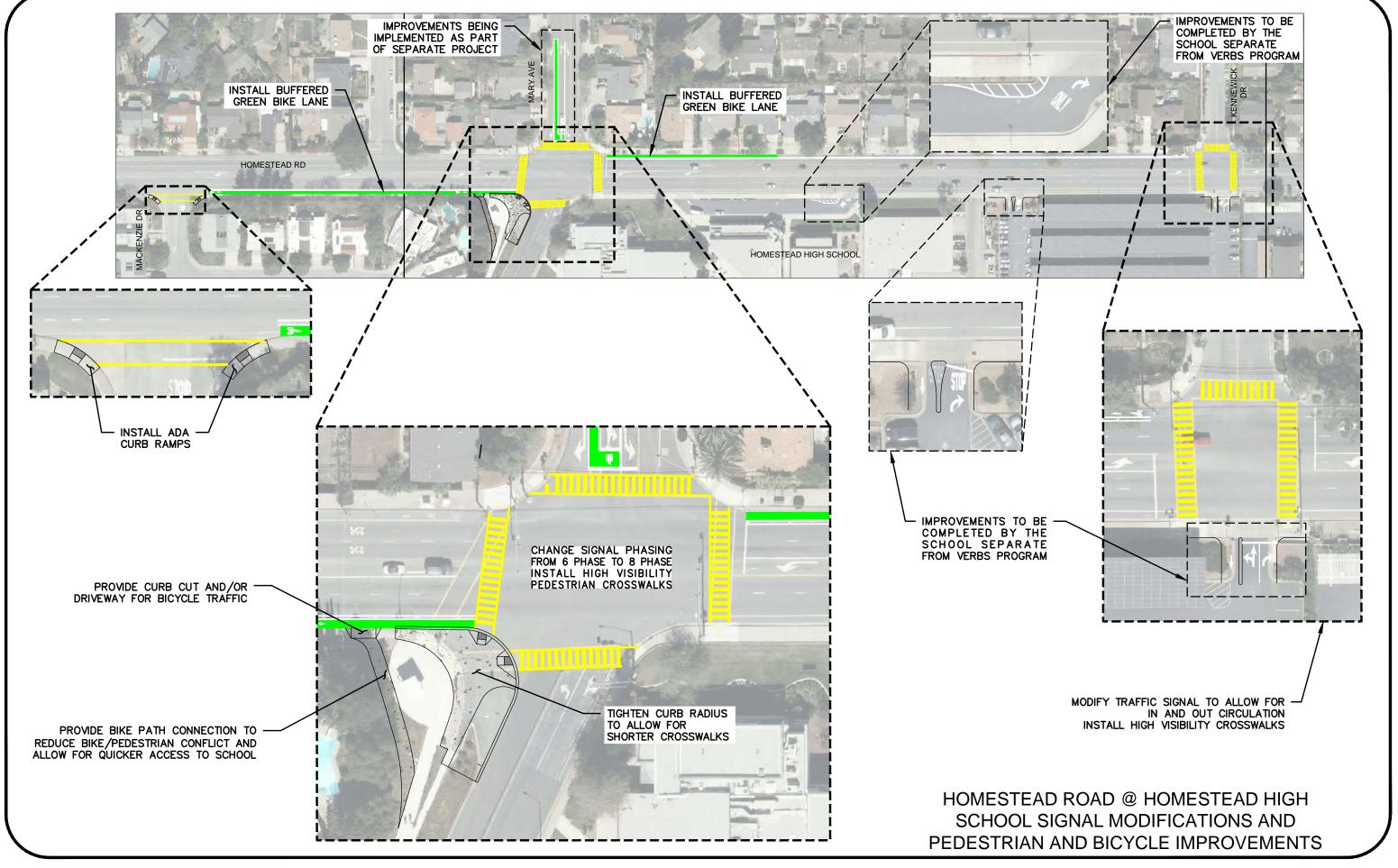
There have been multiple previous and ongoing planning efforts within the study area that informed the background conditions of the Study. The efforts are summarized below.

Walk Audit

A walk audit was conducted on May 17, 2018 to inventory existing conditions as a baseline to identify multimodal improvements. The project area spanned between Grant Road and the frontage of Homestead High School. A summary of the walk audit was developed which provides general background information and identifies nine primary issues observed within the project area. The nine primary issues identified include:

- A. **Grant Road & Foothill Expressway.** Left turns from Grant Road onto Foothill Expressway difficult for bicyclists.
- B. Fallen Leaf Lane & Homestead Road: Vehicles don't consistently yield to pedestrians and bicyclists in crosswalk. Sightlines blocked by vegetation. Bicyclists ride through crosswalk.
- C. Homestead Road east of Stevens Creek: Sidewalk gap on south side of Homestead Road.
- D. Homestead Road from Stevens Creek to Bernardo Avenue: Path on north side of Homestead Road ends prior to the creek. Eastbound student bicyclists ride opposite traffic (i.e. westbound vehicle traffic) in bike lane.
- E. **Belleville Way & Homestead Road:** Heavy school traffic. Corner waiting areas not big enough to accommodate bicyclists & pedestrians. Motorists run red light to make turn.
- F. **SB SR-85 Off-Ramp & Homestead Road:** Southbound motorists making a right turn on red and looking east for vehicles do not anticipate or yield to bicyclists traveling eastbound on sidewalk.
- G. **Path Access to Cupertino Middle School:** No signage indicating path between Homestead Road and S Bernardo Avenue that provides access to Cupertino Middle School. No curb ramps for bicyclists to get to path.
- H. NB SR-85 On-Ramp & Homestead Road: Student bicyclists must contend with weaving traffic entering high-speed slip ramp.
- Bernardo Avenue & Homestead Road: Pedestrian area on northeast corner of intersection is too small to accommodate the large volume of student bicyclists and pedestrians. Westbound motorists making right turn onto Bernardo Avenue conflict with pedestrians and commuter bicyclists traveling straight on Homestead Road. Limited sightlines. Very wide radius. On northeast corner, wide turning radii encourages higher speed turns.

Homestead Road/Homestead High School Improvements


The City Sunnyvale is implementing pedestrian and bicycle improvements along Homestead Road near Homestead High School, funded through One Bay Area Grants (OBAG) 2 Vehicle Emission Reductions Based at Schools (VERBS) grant funding. The proposed improvements include a traffic signal modification at the Homestead Road/Mary Avenue and Homestead Road/Kennewick Drive intersections, installation of high visibility crosswalks, shortening crossing distance for pedestrians, installation of green buffered bike lanes along Homestead Road eastbound between MacKenzie Drive and Mary Avenue and the westbound approach at the Homestead Road/Mary Avenue intersection, and improvements of the existing path for bicycles to the high school from eastbound Homestead Road to the Mary Avenue Bridge Trail. **Figure 2** includes the improvements funded through the VERBS grant.

Caltrans SCL/85 & ALA/80 Project

The Caltrans project on SCL/85 and ALA/80 will upgrade curb ramps and sidewalks to ADA standards at specific locations, including the 85 on-ramp and off-ramp at Homestead Road. The project is currently at the 95% design phase. The estimated construction start date is winter or spring of 2020. Caltrans has been actively engaged throughout the project process.

Sunnyvale Speed Limit Adjacent to Schools Resolution

On October 30, 2018, the City of Sunnyvale City Council approved a resolution to lower the speed limit near schools to 15 mph. Cupertino Middle School was included on the list of 35 schools throughout the City. The limits of the new speed limit are 500 feet north of the school property line and Homestead Road on Bernardo Avenue. The installation timeframe is currently unknown.

PLAN DEVELOPMENT

Project Process

The initial efforts of the Study involved gathering and analyzing data provided by local agencies or collected by the Consultant team, in addition to performing field observations of the Corridor. Field observations were performed by the Project Team with the Partner Agencies on October 18, 2018.

The existing conditions report, and input from Community Meeting #1 on November 26, 2018, was used to identify potential improvements along the corridor. The improvements identified are near-term improvements that serve all ages and abilities and connect users to the three schools along the corridor.

Concept plans of the improvements were developed in coordination with the Partner Agencies. These improvements were presented to the public to receive feedback at Community Meeting #2 on February 25, 2019. The input received from the second community meeting was used to refine the concept plans of the potential improvements, and identify a preferred alternative for the Corridor.

The outcome of the Study is a community-supported preferred alternative that achieves the project goals. An opinion of probable cost was developed for the preferred alternative. Funding opportunities and next steps have been identified for the project.

Stakeholder and Public Involvement

Community Meeting #1

The County of Santa Clara hosted Community Meeting #1 on November 26, 2018, from 6:00-8:00PM to discuss and present a recently underway study to improve mobility to three schools that exist along the Homestead Road corridor between Grant Road and N. Stelling Road/Hollenbeck Avenue. The three schools that are within the study are West Valley Elementary School, Cupertino Middle School, and Homestead High School. The meeting was held at the Homestead High School Auditorium.

Approximately sixty-two (62) community members attended the meeting. The County of Santa Clara was represented by Santa Clara County District 5 Supervisor Joe Simitian, Kristine Zanardi, Ananth Prasad, and Thien Pham. Representatives from all Partner Agencies were present.

The Project Team was represented by Ananth Prasad (County of Santa Clara), Thien Pham (County of Santa Clara), Adam Dankberg (Kimley-Horn), Brian Sowers (Kimley-Horn), Dennis Kearney (Kimley-Horn), Tyler Wacker (Kimley-Horn), and Anthony Nuti (Kimley-Horn).

This was the first community outreach meeting with members of the public for the Homestead Road Safe Routes to School Study. The purpose of the meeting was to introduce the scope of the study and provide a study schedule and process; present existing conditions observed through data collection and field observations; and received community feedback on existing issues and priorities for the corridor.

The meeting started just past 6:00 PM and included an introduction by Santa Clara District 5 Supervisor Joe Simitian. Adam Dankberg, the Kimley-Horn project manager, then explained the purpose and objectives of the Study and used a PowerPoint presentation to explain existing conditions. In addition, the Project Manager covered the schedule for the Study and opportunities for additional input from the public including future meetings and a project email. The meeting included a 'Question and Answer' portion where there was an opportunity for many questions from the public to be answered by the Project Team.

The second half of the meeting was an open house format and attendees were asked to go to two stations to give input on where they live, how they use the Homestead Road corridor, what modes of transportation they primarily use on the corridor, what school they are affiliated with, and to mark on a map where hot spots and problematic conditions exist. Attendees were free to leave the meeting whenever they chose during the open house session. The meeting ended at 8:00 PM and the meeting summary is included in the **Appendix**.

Community Meeting #2

The County of Santa Clara hosted Community Meeting #2 on February 25, 2019, from 6:00-8:00PM to discuss and present conceptual designs of potential improvements to the Homestead Road corridor to better connect West Valley Elementary School, Cupertino Middle School, and Homestead High School. The meeting was held at the Homestead High School Auditorium.

Approximately sixty (60) community members attended the meeting. The County of Santa Clara was represented by Kristine Zanardi, Ananth Prasad, and Thien Pham. Representatives from all Partner Agencies were present.

The Project Team was represented by Ananth Prasad (County of Santa Clara), Thien Pham (County of Santa Clara), Adam Dankberg (Kimley-Horn), Brian Sowers (Kimley-Horn), Tyler Wacker (Kimley-Horn), and Anthony Nuti (Kimley-Horn).

This was the second community outreach meeting with members of the public for the Homestead Road Safe Routes to School Study. The purpose of the meeting was to provide an update to the community on the study status, present proposed concepts, receive community feedback on the proposed concepts that have been developed, and review next steps.

The meeting started just past 6:00 PM and included an introduction by Kristine Zanardi. Adam Dankberg, the Kimley-Horn project manager, then provided an update of which stage the Study is in and used a PowerPoint presentation to explain select proposed improvements. In addition, the Project Manager covered the schedule for the Study and opportunities for additional input from the public including comment cards and the project email. The meeting included a 'Question and Answer' portion where there was an opportunity for many questions from the public to be answered by the Project Team.

The second half of the meeting was an open house format and attendees were asked to go to a station to give input on the proposed improvements. Attendees used colored dots to express support (green), uncertainty/need more info (yellow), or do not support (red). Sticky notes were also provided to write down comments and place them on the proposed improvement posters. Attendees were free to leave the meeting whenever they chose during the open house session. The meeting ended at 8:00 PM and the meeting summary is included in the **Appendix**.

EXISTING CONDITIONS

Transportation Facilities

Pedestrian Facilities

There are sidewalks along the entire study segment on both the north and south side of Homestead Road, except for a sidewalk gap of approximately 100 feet on the south side of Homestead Road at Stevens Creek. Sidewalks in the study area range in widths between four and ten feet.

Bicycle Facilities

There are Class II bike lanes along the entire segment of Homestead Road with several locations that have green paint and bike lane buffers.

Transit Facilities

VTA Local Route 53 operates along Homestead Road between Hollenbeck Avenue and Mary Avenue, providing service between the Sunnyvale Transit Center and West Valley College. There are three westbound stops and two eastbound stops along Homestead Road, primarily serving Homestead High School. Local Route 54 operates along Hollenbeck Avenue, with northbound and southbound stops at the Homestead Road intersection. Route 54 serves destinations between De Anza College and the Lockheed Martin Transit Center.

Auto Facilities

The Corridor is a two-lane facility with a two-way center turn lane west of Belleville Way, a threelane facility (two westbound lanes and one eastbound lane) with a two-way center turn lane between Belleville Way and Wright Avenue, and a four-lane facility with a two-way center turn lane east of Wright Avenue. There are nine signalized intersections and eight side-street stopcontrolled intersections within the Study limits.

Figure 3 illustrates existing transportation facilities in the Study Area.

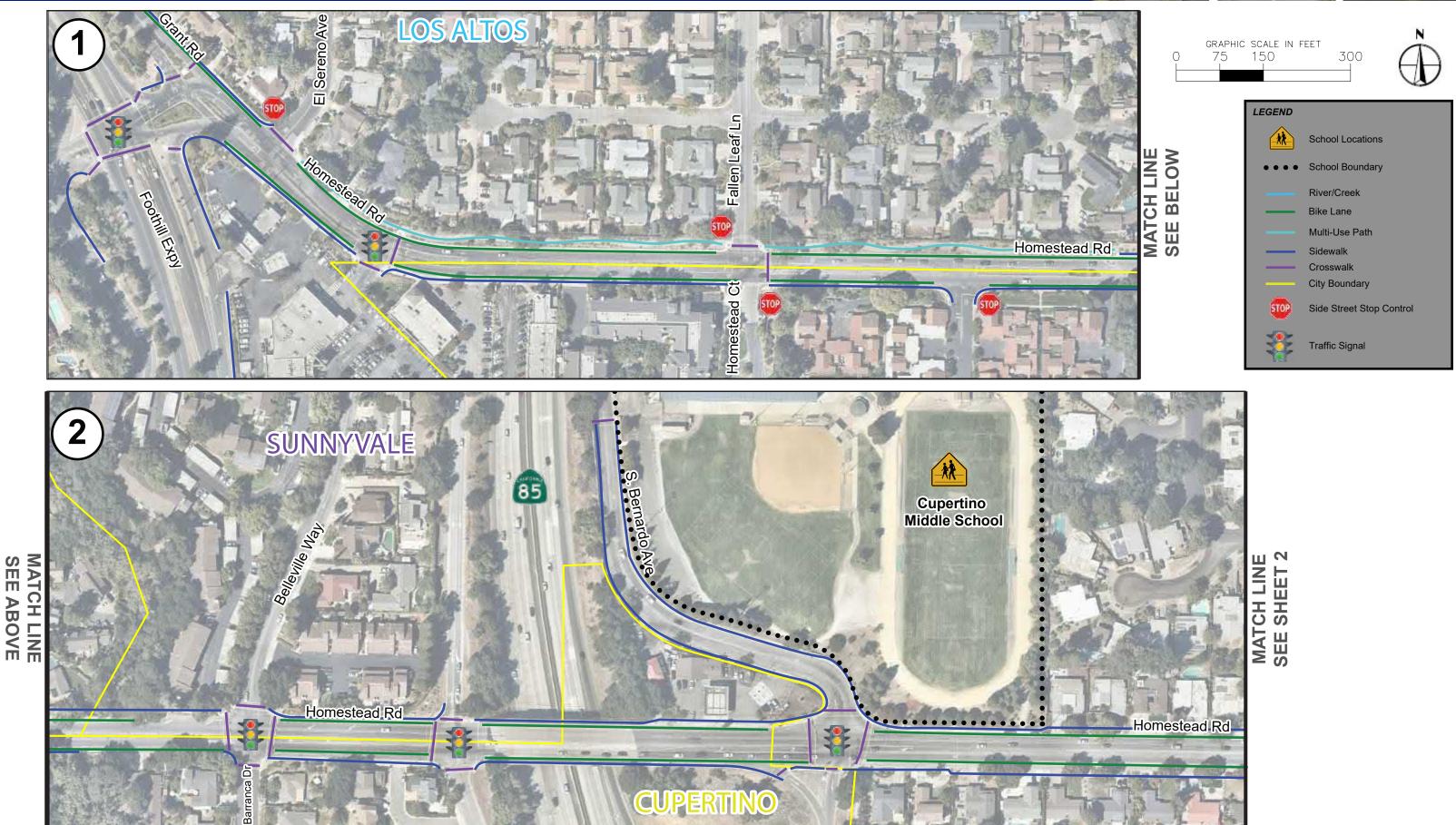


FIGURE 3 - EXISTING CONDITIONS (SHEET 1 OF 2)



FIGURE 3 - EXISTING CONDITIONS (SHEET 2 OF 2)

Collision Analysis

Reported collision history for each study intersection was reviewed to identify potential intersection safety issues. Reported collision data were obtained from the Statewide Integrated Traffic Records System (SWITRS) for the most recent five-year period. **Figure 4** displays the location and quantity of collisions by study intersection. As shown, there are a total of 22 pedestrian/bicycle-related collisions within the study limits, of which eight are located at the N. Stelling Rd-Hollenbeck Ave/Homestead Rd intersection. The remaining 14 pedestrian/bicycle-related collisions are spread amongst the rest of the corridor and not concentrated at any one study intersection.

Table 1 summarizes the pedestrian/bicycle collisions at the N. Stelling Rd-Hollenbeck Ave/Homestead Rd Intersection by collision type and direction. Based on the review of pedestrian/bicycle collisions at this intersection, the eight reported collisions do not have a clear pattern.

Date	Mode	Collision Type	Direction	Lighting	Cause
Mar-13	Bicycle	Sideswipe	East	Day	Westbound right-turning vehicle sideswipes westbound bicycle
Feb-13	Pedestrian	Auto/Ped	North	Day	Southbound vehicle in pedestrian right-of-way
Jul-14	Bicycle	Other	NA	Dusk	Bicycle in the vehicle right-of-way
Oct-14	Pedestrian	Broadside	South	Dusk	Unknown
Jan-15	Pedestrian	Auto/Ped	South	Dark	Northbound vehicle in pedestrian right-of-way
Dec-15	Pedestrian	Auto/Ped	South	Day	Northbound vehicle in pedestrian right-of-way
Sep-17	Pedestrian	Auto/Ped	East	Day	Westbound vehicle in pedestrian right-of-way
Mar-18	Bicycle	Sideswipe	South	Day	Northbound right-turning vehicle sideswipes northbound bicycle

Table 1: Collision Summary at N. Stelling Rd-Hollenbeck Ave/Homestead Rd Intersection

FIGURE 4 - Collision History (2013-2018) (SHEET 1 OF 2)

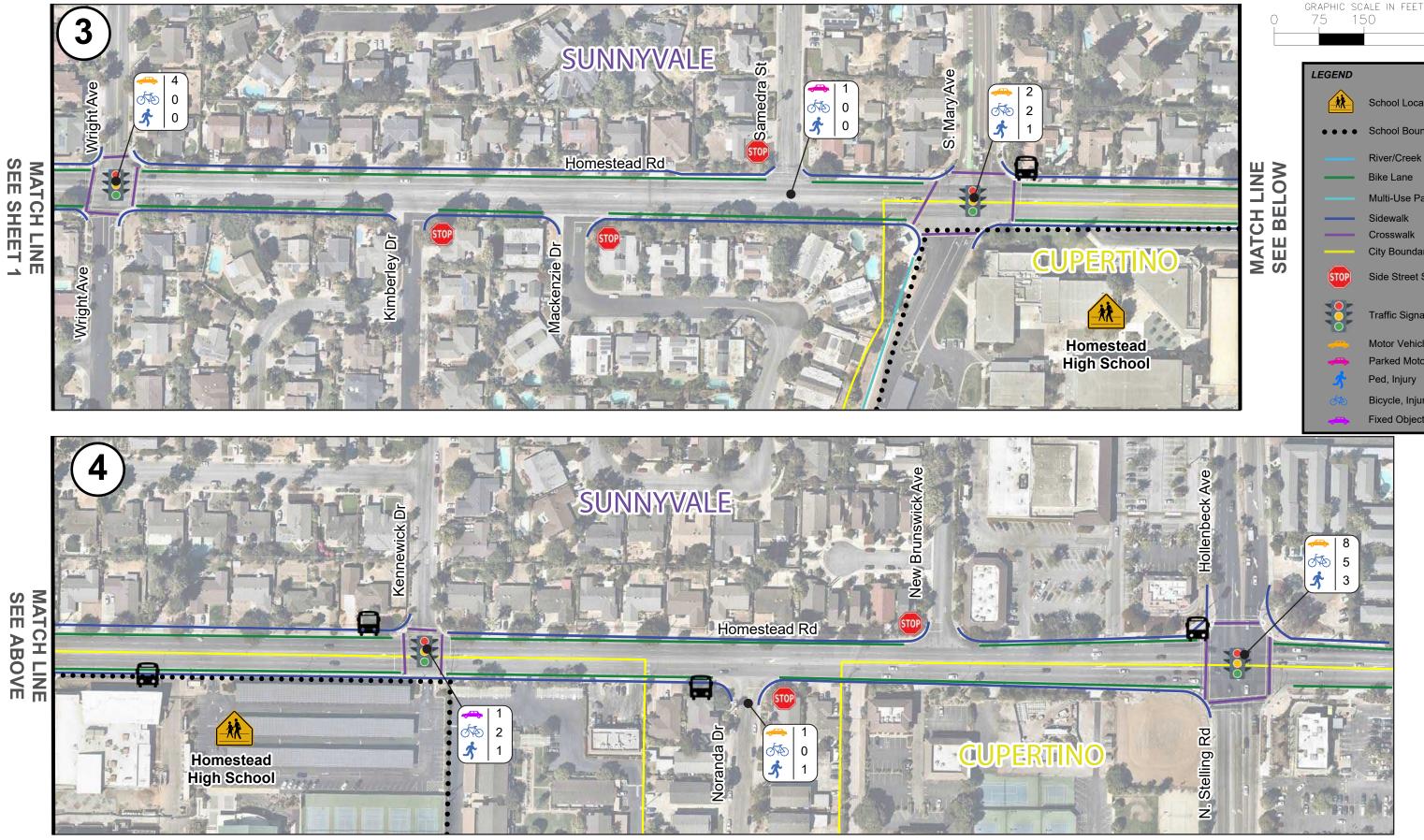


FIGURE 4 - Collision History (2013-2018) (SHEET 2 OF 2)

300 Ð

Sunnyvale

Existing Traffic Operations Analysis

An existing traffic operations analysis was completed for the AM, school PM, and PM peak hours. The analysis evaluated each study intersection along the project corridor using Synchro traffic model software. The Synchro model analyses are based on the Highway Capacity Manual (HCM) methodology. It should be noted that the Santa Clara Valley Transportation Authority (VTA), which provides the overall standards and methodologies for traffic operations in Santa Clara County, uses the HCM 2000 methodology, and not the latest HCM 6th Edition methodology. The following sections summarize the model development process, the Level of Service (LOS) methodology, and the results of the intersection analysis.

Model Development

Existing conditions traffic models were developed in Synchro software for each of the peak periods. Peak hour turning movement volumes, existing lane information, and existing timing parameters were used for development of the models. The peak hour turning movement volumes were collected in October and December 2018, while local schools were in session and outside of any holidays. The vehicle counts are shown in **Figure 5**; bicycle counts are shown in **Figure 6**; and pedestrian counts are shown in **Figure 7**. The existing lane information was reviewed in the field and input into the Synchro model for each intersection. The existing intersection lane geometry used for analyses is shown in **Figure 8**. The latest timing sheets were provided by each corresponding jurisdiction and entered into the Synchro models.

Analysis Methodology

Traffic operations analysis at intersections is based on the concept of level of service (LOS).

The LOS of an intersection is a qualitative measure used to describe operational conditions. LOS ranges from A (best), which represents minimal delay, to F (worst), which represents heavy delay and a facility that is operating at or near its functional capacity. Levels of service for this study were determined using methods defined in the Highway Capacity Manual, 2000 and appropriate traffic analysis software. The HCM methodology utilizes average delay per vehicle based upon peak hourly traffic volumes, peak hour factors, number of lanes, etc., in the calculation.

The HCM includes procedures for analyzing side-street stop-controlled (SSSC), all-way stopcontrolled (AWSC), and signalized intersections. The SSSC procedure defines LOS as a function of average control delay for each minor street approach movement and major street left-turns. Conversely, the AWSC and signalized intersection procedures define LOS as a function of average control delay for the intersection as a whole.

Table 2 relates the operational characteristics associated with each LOS category for signalized intersections. **Table 3** relates the operational characteristics associated with each LOS category for unsignalized intersections.

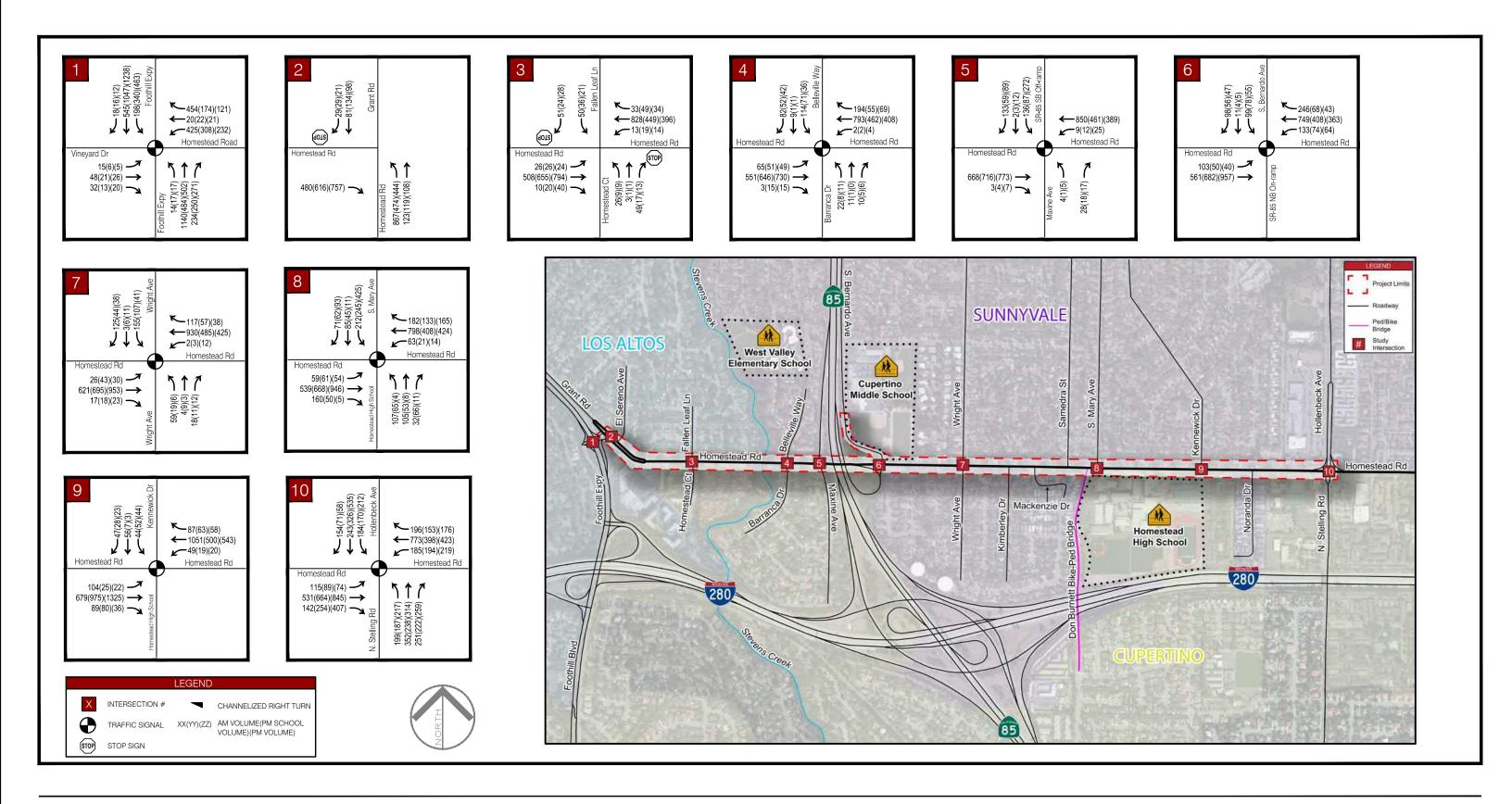
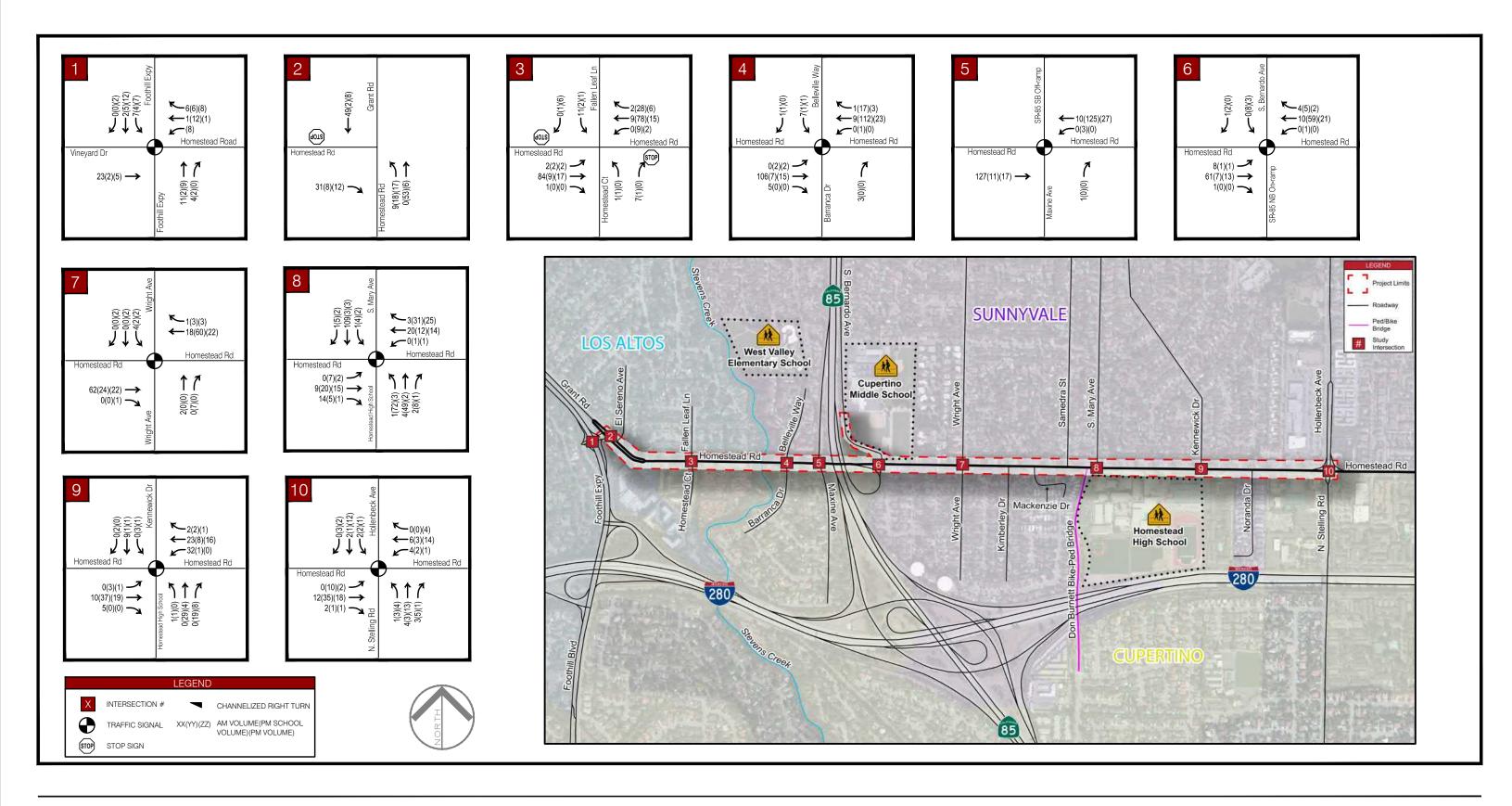


FIGURE 5 - EXISTING PEAK HOUR AUTO TURNING MOVEMENT VOLUMES



(0)(0)0 ▼

12(47)(16)

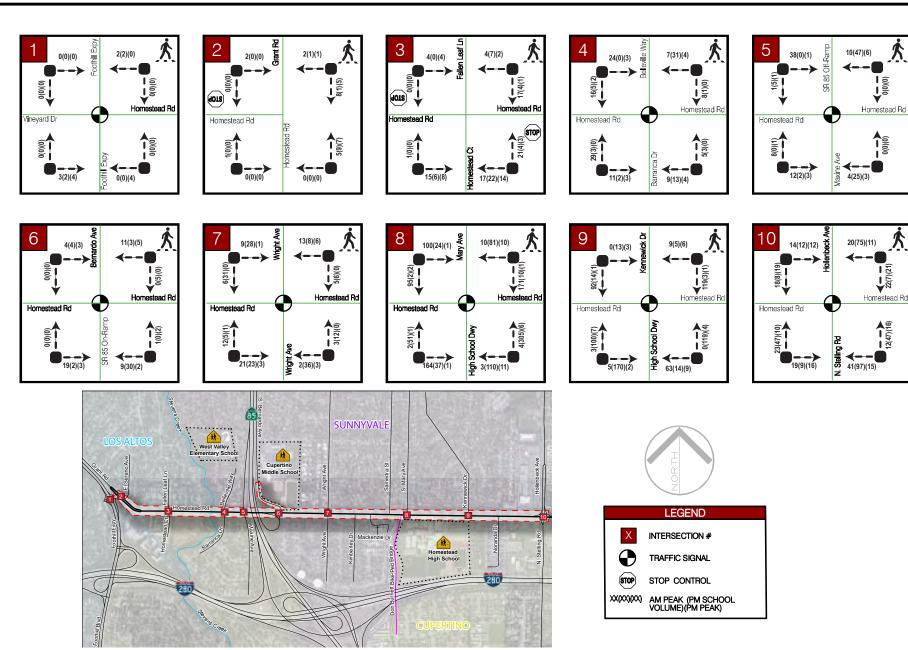


FIGURE 7 - EXISTING PEAK HOUR PEDESTRIAN VOLUMES

-

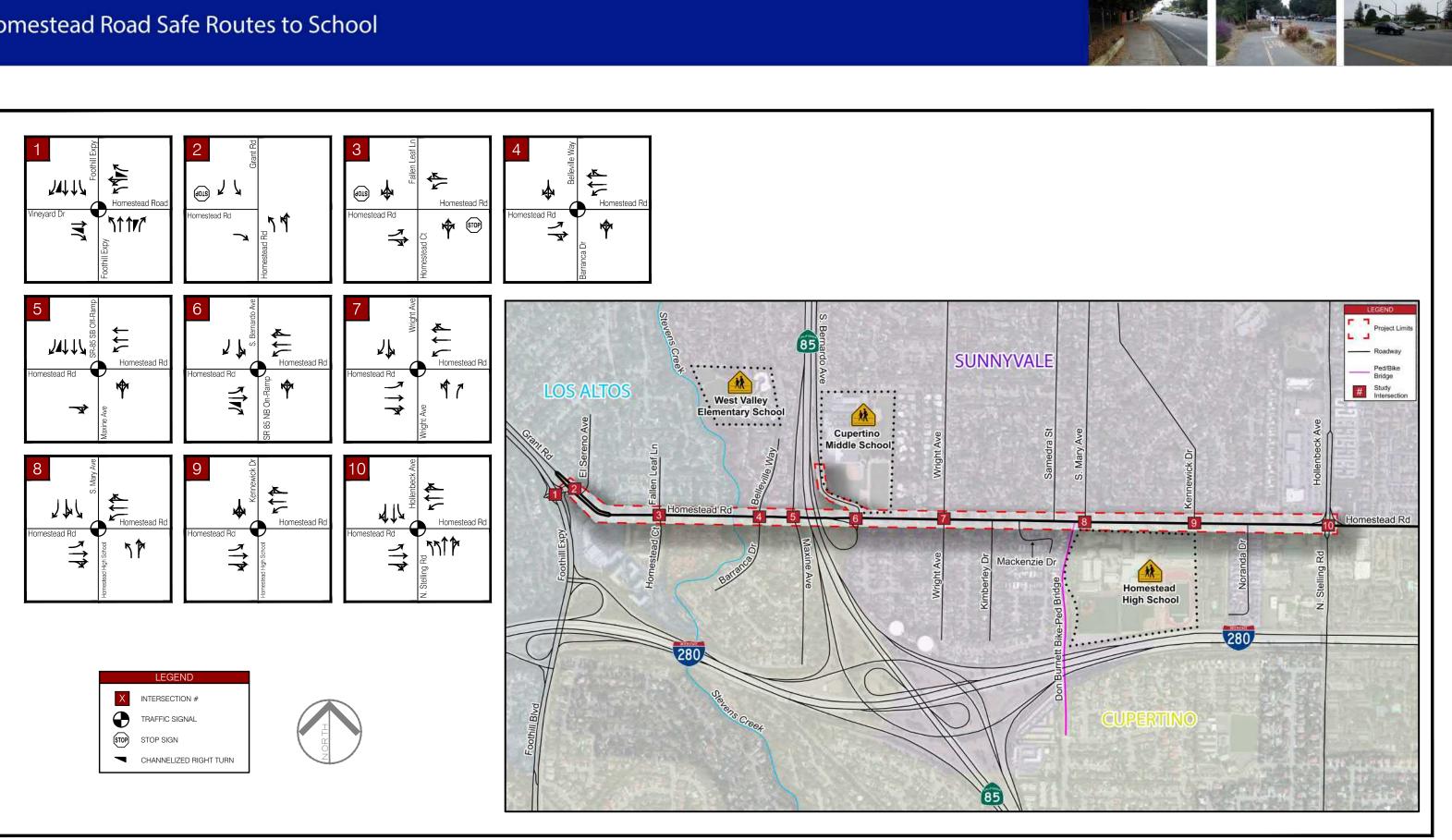


FIGURE 8 - EXISTING INTERSECTION GEOMETRY

Table 2: Signalized Intersection Level of Service Definitions	Table 2: Signalize	ed Intersection	Level of Servi	ce Definitions
---	--------------------	-----------------	----------------	----------------

Level of Service	Description	Avg. control delay per vehicle (sec/veh)
А	Free flow with no delays. Users are virtually unaffected by others in the traffic stream.	≤ 10
В	Stable traffic. Traffic flows smoothly with few delays.	> 10 – 20
С	Stable flow but the operation of individual users becomes affected by other vehicles. Modest delays.	> 20 - 35
D	Approaching unstable flow. Operation of individual users becomes significantly affected by other vehicles. Delays may be more than one cycle during peak hours.	> 35 – 55
E	Unstable flow with operating conditions at or near the capacity level. Long delays and vehicle queuing.	> 55 - 80
F	Forced or breakdown flow that causes reduced capacity. Stop and go traffic conditions. Excessive long delays and vehicle queuing.	> 80

Table 3: Unsignalized Intersection Level of Service Definitions

Level of Service	Description	Unsignalized (Avg. control delay per vehicle sec/veh.)
А	Free flow with no delays. Users are virtually unaffected by others in the traffic stream.	≤ 10
В	Stable traffic. Traffic flows smoothly with few delays.	> 10 – 15
с	Stable flow but the operation of individual users becomes affected by other vehicles. Modest delays.	> 15 – 25
D	Approaching unstable flow. Operation of individual users becomes significantly affected by other vehicles. Delays may be more than one cycle during peak hours.	> 25 – 35
E	Unstable flow with operating conditions at or near the capacity level. Long delays and vehicle queuing.	> 35 – 50
F	Forced or breakdown flow that causes reduced capacity. Stop and go traffic conditions. Excessive long delays and vehicle queuing.	> 50

Each jurisdiction along this study corridor has their own LOS criteria for acceptable operations. The following describes the acceptable LOS in each jurisdiction:

Santa Clara County and Caltrans

Consistent with the LOS criteria documented in the *Transportation Impact Analysis Guidelines*¹, VTA accepts a minimum level of service of LOS E for a County intersection or Congestion Management Program (CMP) intersection. In addition, the level of service criteria for Caltrans and County controlled facilities is LOS E per the VTA Congestion Management Program.

City of Sunnyvale

The LOS standard for City of Sunnyvale intersections is LOS D, except for City of Sunnyvale intersections that are designated as regionally significant, which allows for a minimum level of service of LOS E.

City of Cupertino

The LOS standard for City of Cupertino intersections is LOS D at signalized intersections for both the AM and PM peak hours, per the City of Cupertino 2040 General Plan Amendment Draft EIR.

City of Los Altos

The level of service (LOS) criteria for the City of Los Altos is LOS D per the Los Altos General Plan.

Existing Level of Service (LOS) Results

Traffic operations were evaluated at the study intersections under existing traffic conditions. Results of the analysis are presented in **Table 4**. **Table 4** lists the LOS criteria, jurisdiction, intersection control, LOS, and delay for each intersection. The following intersections operate at an unacceptable LOS in the existing conditions:

- Homestead Road / Grant Road operates at LOS E in the PM peak hour for the worst approach
- Homestead Road / Fallen Leaf Lane operates at LOS F in the AM peak hour and LOS E in the school PM peak hour for the worst approach
- Homestead Road / Mary Avenue operates at LOS E in the AM peak hour
- Homestead Road / Hollenbeck Avenue operates at LOS E in the PM peak hour

Analysis sheets are provided in the **Appendix**.

Homestead Road and Grant Road

The intersection of Homestead Road and Grant Road operates at LOS E in the PM peak hour for the worst approach. This intersection is a side-street stop-controlled intersection with a stop sign on the southbound approach on Grant Road. Homestead Road is uncontrolled, although it is in close proximity to the signalized intersection of Homestead Road and Foothill Expressway. Due to the high volumes on Homestead Road, the southbound approach (98 vehicles in the PM peak hour) has to wait for an acceptable gap. It should be noted that this intersection is heavily influenced by the intersection of Homestead Road and Foothill Expressway. The queues from the intersection of Homestead Road and Foothill Expressway. The queues from the southbound vehicles to proceed through the intersection. Therefore, the delay results from the Synchro models may overestimate the delay.

¹ Transportation Impact Analysis Guidelines, Santa Clara Valley Transportation Authority Guidelines, October 2014.
 Final Report 23
 Kimley >> Horn

Table 4: Existing Intersection Level of Service (LOS) Summary

ш	latomostion	Critorio	luriadiation	AM Peak Hou		ak Hour	School PM Peak Hour		PM Peak Hour		
#	Intersection	Criteria	Jurisdiction	Control ¹	LOS	Delay (sec)	LOS	Delay (sec)	LOS	Delay (sec)	
1	Homestead Road/Foothill Expressway	Е	County	Signal	D	44.1	С	32.5	С	34.2	
2	Homestead Road/Grant Road	D		SSSC	В	1.3	А	2.0	А	3.5	
2	Worst Approach	U	Los Altos	3330	С	19.2	С	16.5	Е	41.9	
3	Homestead Road/Fallen Leaf Lane	D Los Altos		SSSC	D	30.1	А	2.8	А	1.4	
3	Worst Approach D Los Alto		LOS AILOS	3330	F	376.8	Е	41.7	С	24.9	
4	Homestead Road/Belleville Way	D	Sunnyvale	Signal	В	14.8	В	15.1	В	15.8	
5	Homestead Road/Maxine Ave-SR 85 SB Off-ramp	Е	Sunnyvale/Caltrans	Signal	В	17.1	В	15.6	С	30.9	
6	Homestead Road/S Bernardo Ave-SR 85 NB Off-ramp	Е	Sunnyvale/Caltrans	Signal	С	26.2	В	15.1	В	18.3	
7	Homestead Road/Wright Avenue	D	Sunnyvale	Signal	С	25.9	В	15.0	В	13.6	
8	Homestead Road/Mary Avenue	D	Sunnyvale	Signal	E	78.7	D	41.3	С	31.7	
9	Homestead Road/Kennewick Drive	D	Sunnyvale	Signal	С	22.0	В	14.1	В	11.9	
10	Homestead Road/Hollenbeck Avenue	D	Sunnyvale	Signal	D	54.6	D	50.4	Е	59.5	

¹Intersection Control: Signal or Side-street Stop-control (SSSC)

Homestead Road and Fallen Leaf Lane

The intersection of Homestead Road and Fallen Leaf Lane operates at LOS F in the AM peak hour and LOS E for the school PM peak hour for the worst approach. This intersection is a sidestreet stop-controlled intersection with a stop sign on the southbound and northbound approaches and the eastbound and westbound approaches are uncontrolled. A pedestrian activated flashing beacon also exists for pedestrians who want to cross Homestead Road at this intersection. Due to the high volume on the uncontrolled approaches along Homestead Road, the southbound vehicles have to wait for an acceptable gap. There are 50 vehicles that are making a left turn in the AM peak hour, so these vehicles have to wait for both directions to clear before proceeding. This condition results in the high delay for this approach.

Homestead Road and Mary Avenue

The intersection of Homestead Road and Mary Avenue operates at LOS E in the AM peak hour. This intersection has a high number of pedestrians and bicyclists traversing the intersection, in addition to the number of vehicles. The westbound approach has a high delay due to the right turning vehicles yielding to the high number of pedestrians on the conflicting north crosswalk. The outside westbound travel lane is a shared through-right turn lane, so the westbound right turning vehicles yielding to the pedestrians also results in a delay for the westbound through vehicles in the outside lane.

Homestead Road and Hollenbeck Avenue

The intersection of Homestead Road and Hollenbeck Avenue operates at LOS E in the PM peak hour. This intersection has a high number of vehicles for the left turn movements that conflict with the opposing through movements.

Opportunities and Constraints

Several "hot spot" locations have been identified for specific intersection or segment improvements, based on existing conditions analyses, including multimodal operations, field visits, and stakeholder and public input. Existing geometric constraints associated with these locations introduce opportunities for a more connected and safe network and complete street.

Homestead Road-Grant Road/Foothill Expressway Intersection

The intersection has notable bicycle circulation challenges, particularly for southbound movements from Grant Road onto Homestead Road. Homestead Road and Grant Road have eastbound and westbound bike lanes, with the exception of a gap in bicycle facility eastbound 300 feet before and after the Homestead Road/Grant Road intersection. This gap in bicycle facility introduces connectivity issues and safety considerations for eastbound bicycle traffic, continuing from Grant Road to Homestead Road. Currently, bicyclists must merge into the eastbound travel lane leading to a stop-controlled approach before navigating a difficult intersection. The shared-use path on the north side of Homestead Road terminates at El Sereno Avenue.

Homestead Road/El Sereno Avenue-Chevron Driveway

The intersection has notable vehicle circulation challenges, particularly for northbound left movements into the Chevron Driveway. Vehicles wanting to perform a northbound left turn do not have a separate turn pocket, like southbound traffic, which can cause queues while left turning vehicle wait for a gap to perform a left turn. Currently the intersection has a stop sign on El Sereno Avenue; however, no stop sign exists on the Chevron Driveway. Additionally, there are five (5) other driveways between El Sereno Avenue and Fallen Leaf Lane on the south side of Homestead Road that currently do not have stop signs. Bike lanes also exist for northbound and southbound traffic, and the shared-use path on the north side of Homestead Road terminates just south of El Sereno Avenue.

Homestead Road/Fallen Leaf Lane Intersection

Fallen Leaf Lane is an important bicycle and pedestrian connection for the West Valley Elementary School, as it connects to the shared-use path that crosses Stevens Creek and accesses the school fields. The intersection is a side-street stop-controlled intersection with no bicycle or pedestrian priority treatments. A pedestrian activated flashing beacon also exists for pedestrians who want to cross Homestead Road at this intersection. Although the intersection has an existing pedestrian-activated flashing beacon, community input noted limited visibility of the flashing beacon system due to existing roadway geometry and vertical grade.

Homestead Road between S. Bernardo Avenue and Belleville Way

Bicycle and pedestrian connectivity and safety is an existing concern along this segment of Homestead Road, particularly for eastbound travel. Both the West Valley Elementary School and the Cupertino Middle School are located on the north side of Homestead Road which introduces circulation challenges for eastbound bicycle and pedestrian traffic destined for the schools. Existing roadway geometries provide opportunities to repurpose travel lanes for additional sidewalk widths and bicycle facilities.

Homestead Road/S. Bernardo Avenue-SR-85 NB On-Ramp Intersection

This intersection has a challenging geometry, including an eastbound channelized right-turn lane, long crosswalks, wide turning radii, and no bicycle priority treatments. There is an opportunity to improve this intersection to better serve multimodal travel.

S. Bernardo Avenue/Shared-Use Path

There is an existing shared-use path that connects Homestead Road and S. Bernardo Avenue, behind the existing 76 gas station. S. Bernardo Avenue has relatively narrow sidewalks on both sides of the road that lead to an uncontrolled crosswalk at the southern middle school access. The sidewalk is too narrow to accommodate both bicyclists and pedestrians on the west side of the road.

Homestead Road/Mary Avenue and Homestead Road/Kennewick Drive Intersections

Signal modifications and pedestrian and bicycle improvements are proposed at both intersections funded through a Vehicle Emissions Reductions Based at Schools (VERBS) grant. The improvements include high visibility crosswalks on all approaches, modified signal phasing, and tighter curb radii in conjunction with bulb-outs.

Homestead High School Drop-Off Frontage

Based on field observations, the drop-off zone to the high school experiences congestion and spill-back onto Homestead Road. The existing green bike lane is often used as a storage lane for vehicles spilling onto Homestead Road, thereby forcing eastbound bicyclists to merge into the travel lane.

Homestead Road/Hollenbeck Avenue Intersection

This intersection is a relatively large intersection with four through lanes and separate left-turn lanes at the intersection. The intersection currently does not provide bicycle priority treatments and has long crosswalks. Based on field observations, eastbound right-turning vehicles cross the bike lane causing notable safety issues.

In addition to these "hot spot" locations, there are additional constraints and opportunities worth noting. Bicycle facilities along Homestead Road are not consistent, Class I and Class II facilities are provided throughout the corridor with some gaps in the network. In addition, safer and more effective bicycle treatments at intersection may be provided. The shared-use path on the north side of Homestead Road provides off-street connections for both pedestrians and bicyclists between Stevens Creek and EI Sereno Avenue. Opportunities to connect this shared-use path across barriers should be evaluated to provide off-street access to the more vulnerable student

populations, namely the elementary school and middle school. Sidewalks along the corridor vary in width and condition, ranging between four feet and ten feet. Existing transit service along the corridor lacks service and connections west of Mary Avenue.

DEVELOPMENT OF PREFERRED ALTERNATIVE

Project Alternatives

Proposed improvements were identified to provide solutions to the corridor "hot spot" locations detailed in the Existing Conditions Report and were based on feedback received at Community Meeting #1 and stakeholder input. The initial recommendations are potential improvements that were considered and evaluated, but are not the final project recommendations. The following are the improvements proposed along the study corridor:

1. Install sidewalk along Vineyard Drive between Deodara Drive and Foothill Expressway

Currently, there are no pedestrian connections along Vineyard Drive that connect to Homestead Road. Improvement #1 proposes to install a sidewalk along the north/west side of Vineyard Drive between Deodara Drive and Foothill Expressway.

2. Tighten curb radii at Foothill Expressway/Homestead Road

Improvement #2 proposes to reduce the curb radii of the southwest, northwest, and northeast corner at the intersection of Foothill Expressway and Homestead Road. Reduced curb radii result in vehicles turning at slower speeds.

Foothill Expressway south of Homestead Road will be evaluated with a future study and funded by Measure B.

3. Improve bicycle circulation at Homestead Road-Grant Road/Foothill Expressway Intersection

A. Provide bike left turn in median and bike crossing improvements

Improvement #3A proposes to modify the existing median at the southbound Grant Road approach to provide a southbound left turn for bicyclists to access Improvement #4. Bicyclists would cross auto traffic using the existing Class III bike route where the bike lane drops north of the intersection.

B. Widen Grant Road 5 feet to accommodate bike lane

Improvement #3B proposed to widen Grant Road 5' to provide a bike lane all the way to the intersection of Homestead Road-Grant Road/Foothill Expressway. The median would be modified to provide a queueing area for bikes to access Improvement #4. Bicycle intersection crossing markings would be striping to connect between the proposed bike lane and Improvement #4.

4. Upgrade sidewalk to shared-use path between Grant Road and El Sereno Avenue

Improvement #4 proposes to extend the shared-use path to Grant Road. The existing shared-use path ends at El Sereno Avenue. Improvement #4, combined with improvement #3, will provide a way for bicyclists to navigate around the intersection of Homestead Road-Grant Road and Foothill Expressway. The existing bike lane would need to be removed to provide the proposed shared-use path.

5. Homestead Road and El Sereno Avenue Intersection Improvements

Improvement #5 proposes intersection improvements at Homestead Road and El Sereno Avenue-Chevron Driveway intersection to help better facilitate access and intersection visibility.

Several options are available depending on further community engagement and development opportunities. The following options are available:

- A. Provide a westbound left-turn lane in the existing median
- B. Modify the El Sereno approach to be right-in and right-out only, but maintain the eastbound left-turn from Homestead Road to El Sereno Avenue
- C. Modify or consolidate private driveways as development opportunities occur
- 6. Install stop signs and pavement markings at unsignalized intersections between El Sereno Avenue and Fallen Leaf Lane

Improvement #6 proposes to add stop signs and STOP pavement markings at the six unsignalized intersection between El Sereno Avenue and Fallen Leaf Lane along the south side of Homestead Road. There is currently no traffic control at the existing driveways.

7. Signalize Homestead Road/Fallen Leaf Lane

Improvement #7 proposes to install a traffic signal at the intersection of Homestead Road and Fallen Leaf Lane. In addition, an exclusive pedestrian/bicycle phase was evaluated for pedestrians and bicyclists to cross Homestead Road. The exclusive phase would provide pedestrians and bicyclists traveling eastbound on the shared-use path on the north side of Homestead Road to transition to the eastbound on-street bicycle facility along the south side of Homestead Road which is a common movement for Homestead High School students.

8. Widen existing shared-use path where ROW allows between El Sereno Avenue and Stevens Creek

Improvement #8 proposes to widen the existing shared-use path between EI Sereno Avenue and Stevens Creek. The path is currently 8' in existing conditions and there is available ROW to widen the shared-use path to provide a more comfortable facility for two-way traffic.

9. Modify Stevens Creek bridge cross section and extend shared-use path

Improvement #9 proposes to modify the Stevens Creek bridge cross section to connect the shared-use path across Stevens Creek. This improvement would require a reduction in lane width and relocating the existing curb.

10. Install new sidewalk to close existing sidewalk gap west of Barranca Drive

Improvement #10 proposes to install a sidewalk to close to the existing sidewalk gap between Stevens Creek and Barranca Drive along the southside of Homestead Road.

11. Provide Multimodal Connection Across SR-85

The project team developed two alternatives to provide a multimodal connection across SR-85.

A. Repurpose a Westbound Lane between Belleville Way and Bernardo Avenue to a two-way cycle track

Improvement #11A proposes to remove one of the westbound lanes along Homestead Road between Belleville Way and Bernardo Avenue. This would result in one westbound through lane at the intersection of Homestead Road/S Bernardo Avenue, at the intersection of Homestead Road/S BSR-85 off-ramp, and at the intersection of Homestead Road/Belleville Way. This improvement would allow for the installation of a two-way cycle track, or other enhanced bicycle facility, on the north side of Homestead Road between Belleville Way and S Bernardo Avenue.

B. Upgrade Sidewalk to Shared-Use Path with Bike Lane Removal

Improvement #11B proposes to upgrade the northern sidewalk across the SR-85 bridge to a shared-use path. To accommodate the new shared-use path, the bike lane would be removed; however, bicyclists would still be able to use the shared-use path. This improvement would allow for bidirectional flow of students biking or walking to Cupertino Middle School or Homestead High School on the north side of the SR-85 bridge.

12. No Right Turn on Red for Southbound Approach at Homestead Road/SB SR-85 Offramp

Improvement #12 proposes to restrict vehicles from making a right turn on red for the southbound right turn movement at the intersection of Homestead Road/SB SR-85 off-ramp.

13. Upgrade sidewalks to shared-use paths along Bernardo Avenue

Improvement #13 proposes to upgrade the existing sidewalks along Bernardo Avenue to shareduse paths. Along the west side of Bernardo Avenue, the proposed widening is between the existing crosswalk to CMS and the shared-use path behind the gas station. The lane widths would need to be reduced and the existing curb relocated to the east.

Along the east side of Bernardo Avenue, CMS verbally agreed to allow the widening to occur within their ROW, or to the east of the existing sidewalk. The chain-link fence would need to be relocated.

14. Provide a RRFB or PHB across Bernardo Avenue at the existing CMS crosswalk

Improvement #14 proposes to provide a rectangular rapid flash beacon (RRFB) or a pedestrian hybrid beacon (PHB) across Bernardo Avenue at the existing CMS crosswalk. The crosswalk is currently unprotected. The crosswalk is proposed to be upgraded to a high-visibility crosswalk.

15. Provide Eastbound Right Turn Lane at the Intersection of Homestead/Bernardo/SR-85 On Ramp and Remove Free Right Turn Condition

Improvement #15 will remove the existing eastbound free right turn condition and create an eastbound right turn pocket for 265 feet at the intersection of Homestead/Bernardo/SR-85 On Ramp. In existing conditions, vehicle queues from vehicles making the right turn onto NB SR-85 extend into the eastbound through lane, causing higher delays for the eastbound through traffic. With the addition of a 265-foot eastbound right turn lane, eastbound right turning vehicles will be provided with additional queuing storage and impacts to eastbound through traffic would be reduced.

In existing conditions, a crosswalk exists at the beginning of the free right turn lane with no signage to yield to pedestrians. This crosswalk creates a conflict zone between pedestrians/bicyclists and vehicles speeding up to get on the freeway. With the removal of the free eastbound right turn, vehicles would make the eastbound right turn at a controlled signal. In addition, the curb radius would be tighter, and consequently reduce the speed of vehicles making the eastbound right turn.

Near-term intersection improvements are currently being evaluated by the Caltrans SCL/85 & ALA/80 Project.

16. Provide Protected Northbound and Southbound Left Turns at Homestead Road/Wright Avenue

Improvement #16 proposes to add a protected northbound left turn lane and a protected southbound left turn lane at the intersection of Homestead Avenue/Wright Avenue and protected left-turn signal phasing. This would include restriping the northbound and southbound approaches

to each be a left turn lane and a shared through/right turn lane. In existing conditions, the northand southbound approaches are striped as a right-turn only lane and shared left/through lane.

17. Upgrade sidewalk to shared-use path in front of Homestead High School

Improvement #17 proposes to widen the existing sidewalk between the middle HHS driveway and Kennewick Drive to a shared-use path. This would provide a way for bicyclists to access the bike lockers that are accessed via the middle HHS driveway.

18. Install bike ramp at southwest corner of Homestead Road/ Mary Avenue

Improvement #18 proposes to install a bike ramp at the southwest corner of Homestead Road and Mary Avenue south of Homestead Road. The VERBs grant did not include a solution for southbound bicyclists to access the bicycle-pedestrian bridge without interfering with pedestrians.

19. Provide Bicycle Boxes at Homestead Road/Hollenbeck Avenue/N. Stelling Road

Improvement #19 proposes to add bicycle boxes at the intersection of Homestead Road/Hollenbeck Avenue/N. Stelling Road. This will result in restricting vehicles from making a right turn on red for all approaches.

20. Typical corridor wide improvements

A. Provide bike intersection crossing markings

Bike intersections crossing markings organize bicyclists through intersections and provide a separate space from auto traffic. Typically, bicycle intersection crossing markings can green dashes or white transverse dashed lines.

B. Provide high-visibility crosswalks

High-visibility crosswalks increase visibility of crosswalks and improve compliance of vehicles yielding and stopping behind crosswalks. The ladder pattern was utilized for the study, but other high-visibility patterns may be used as well.

C. Provide green paint at bicycle conflict areas

Bicycle conflict areas are where bus stops or driveways area. Green dashes help highlight that the space is for bicycles.

D. Reduce Lane Widths to 11' and install Class IV bike lanes where ROW allows

Class IV protected bike lanes help improve the comfort of bicycle facilities. Currently, the corridor only has Class II bike lanes or Class II buffered bike lanes. A vertical separation element must be provided within the buffer to upgrade to Class IV. Buffer types vary between flexi-posts, planters, rain gardens, concrete medians, and other types. No specific buffer type is proposed at this point of the project.

E. Upgrade curbs ramps to comply with ADA

There are several curb ramps that do not comply with ADA standards along the corridor. This improvement proposes to upgrade the curb ramps to comply with those standards.

F. Reduce curb radii where applicable

Reducing curb radii helps reduce vehicle speeds when turning. They also help reduce pedestrian crossing distances if a bulb-out is provided as well. There are some intersections along the corridor that

G. Coordinate Traffic Signals along Corridor

Coordinating the traffic signals along the corridor would provide an overall benefit to the corridor by reducing vehicle delay and the associated driver frustrations. Since the traffic signals are currently managed individually by the respective Partner Agencies and are of different controller types, full implementation of this improvement would require coordination

between the agencies to implement a common cycle length, time source, and/or communication across the corridor. The specifics of this improvement should be considered during the design phase. For the purpose of the analysis of this study, the corridor was coordinated based on using existing cycle lengths. The cycle lengths remained the same as existing cycle length, but the offsets and splits at individual intersections were optimized.

Review of Project Alternatives

All alternatives were reviewed by the Partner Agencies, the County, and Kimley-Horn staff. After agency review, it was determined that Improvement #3A, Improvement #5, Improvement #11A, and Improvement #19 should not be included in the preferred alternative.

For Improvement #3A, the potential conflict of weaving vehicles and bicyclists to reach the median left-turn lane was discussed. Improvement #3B was determined to be the preferred alternative.

For Improvement #5, several alternatives were proposed but a preferred alternative could not be determined. The City of Los Altos should continue evaluating the options to determine the appropriate improvement. A westbound left-turn lane was proposed by the City of Los Altos, but the impacts of the left-turn were not evaluated with this study.

For Improvement #11A, the effects of reducing an auto travel lane were discussed. The improvement was analyzed using grown near-term volumes, but an in-depth future model forecast was not developed. The preferred option was determined to be the one that did not reduce auto travel lanes.

For Improvement #19, two-stage turn queue boxes were determined to not be a preferred alternative for the intersection. Two-stage turn queue boxes require no right turn on red restrictions at the intersection. The improvement was analyzed using grown near-term volumes and caused some additional delay at the intersection.

The improvements identified were modified to reflect the feedback provided and concept plans were developed for further feedback and analysis. The concept plans were presented at Community Meeting #2 for feedback. Public comments were collected, and the preferred alternative was refined based on community input. The comments are included in the Community Meeting #2 Summary in the **Appendix**.

The City of Los Altos provided additional recommendations beyond the scope and limits of this study that need to be further analyzed. These recommendations are noted on the concept plans. The recommendations provided that are beyond the scope of this study are:

- Install speed humps along Vineyard Drive
- Install all-way stop sign at Deodara Drive
- Install ped-activated flashing beacon at northbound approach of Foothill Expressway
- Extend shared-use path to Crist Drive
- Consider red crosswalk table at Grant Road/Homestead Road and northbound approach of Foothill Expressway

Preferred Alternative

The preferred alternative concept plan is included in the **Appendix**. The preferred alternative achieves the study objectives of developing infrastructure recommendations that are feasible and implementable in the near-term. The recommended improvements aim to serve all ages and abilities and better connect the students of West Valley Elementary School, Cupertino Middle School, and Homestead High School. The concept plans were developed with coordination between the Partner Agencies and the community.

An opinion of probable cost was conducted for the preferred alternative. The cost was developed using recent bids for similar bike/pedestrian and Safe Routes to School projects within Santa Clara County. The Caltrans cost data book was also utilized to develop costs. Various soft costs were included in the unit price for each improvement. A contingency of 50% was applied to the total cost that are assumed to cover items not explored at the current stage of the project. The opinion of probable cost is included in the **Appendix**.

Preferred Alternative Traffic Operations Analysis

A traffic operations analysis was completed for the AM, school PM, and PM peak hours for the preferred alternative. The analysis evaluated each study intersection along the project corridor using Synchro traffic model software. The model analyses are based on the Highway Capacity Manual (HCM) methodology. It should be noted that the Santa Clara Valley Transportation Authority (VTA), which provides the overall standards and methodologies for traffic operations in Santa Clara County, uses the HCM 2000 methodology, and not the latest HCM 6th Edition methodology. The following sections summarize the model development process, the Level of Service (LOS) methodology, and the results of the intersection analysis.

One model was developed that included each improvement listed above to determine the potential impacts on the corridor. Near-term signal cycle lengths for AM, school PM, and PM peak hours were assumed to be the same as existing cycle lengths. Near-term volumes assumed a growth of 1.5 percent annually over five (5) years from the existing condition to the auto and pedestrian/bicycle volumes and were used for all analyses of the proposed improvements. The near-term volumes were analyzed using the existing geometry of the corridor and with the preferred alternative

Preferred Alternative Level of Service (LOS) Results

Traffic operations were evaluated at the study intersections under the near-term preferred alternative traffic conditions. Results of the analysis are presented in **Table 5**. **Table 5** lists the LOS criteria, jurisdiction, intersection control, LOS, and delay for each intersection. The following intersections operate at an unacceptable LOS in the near-term no build and near-term preferred alternative traffic conditions:

- Homestead Road / Grant Road operates at LOS F in the PM peak hour for the worst approach
- Homestead Road / Fallen Leaf Lane operates at LOS C or better in all peak hours
- Homestead Road / Mary Avenue operates at LOS F in the AM peak hour
- Homestead Road / Hollenbeck Avenue operates at LOS E in the PM peak hour

Analysis sheets are provided in the **Appendix**.

Homestead Road and Grant Road

The intersection of Homestead Road and Grant Road operates at LOS F in the PM peak hour for the worst approach. As noted in the existing conditions analysis, this intersection is a side-street stop-controlled intersection with a stop sign on the southbound approach on Grant Road and is in close proximity to the signalized intersection of Homestead Road and Foothill Expressway. No improvements are recommended to improve the auto capacity of this intersection.

						Nea	ar-Term	No Buil	d				Near	r-Term F	Preferred	l Alterna	tive			
#	Intersection	Criteria	Jurisdiction	Control ¹	AM Peak Hour		School PM Peak Hour		PM Peak Hour		AM Peak Hour			School PM Peak Hour			PM Peak Hour			
T		Cinteria		Control	LOS	Delay (sec)	LOS	Delay (sec)	LOS	Delay (sec)	LOS	Delay (sec)	∆ Delay (sec)	LOS	Delay (sec)	∆ Delay (sec)	LOS	Delay (sec)	Δ Delay (sec)	
1	Homestead Road/Foothill Expressway	Е	County	Signal	D	50.8	С	33.8	С	35.0	D	50.8	0	С	33.8	0	С	35.0	0	
2	Homestead Road/Grant Road		Los Altos	SSSC	А	1.5	А	2.1	А	5.1	В	1.7	0.2	А	2.1	0	В	5.3	0.2	
2	Worst Approach	D	- D	LOS AILOS	3330	С	21.3	С	18.0	F	60.6	D	25.0	3.7	С	18.1	0.1	F	63.1	2.5
3	Homestead Road/Fallen Leaf Lane		D		SSSC/	F	69.7	А	3.7	А	2.0	С	21.8		В	16.5		В	17.4	
3	Worst Approach		Los Altos	Signal ²	F	OVRFL	F	58.9	D	34.3		C 21.0 -	-	D	16.5	-	D	17.4	-	
4	Homestead Road/Belleville Way	D	Sunnyvale	Signal	В	15.4	В	15.5	В	16.3	В	14.6	-0.8	В	13.4	-2.1	В	11.4	-4.9	
5	Homestead Road/Maxine Ave-SR 85 SB Off- ramp	E	Sunnyvale/Caltrans	Signal	В	18.3	В	16.6	С	33.2	В	19.6	1.3	В	13.8	-2.8	С	30.6	-2.6	
6	Homestead Road/S Bernardo Ave-SR 85 NB Off-ramp	E	Sunnyvale/Caltrans	Signal	С	28.1	В	15.8	В	19.3	С	20.2	-7.9	В	14.4	-1.4	В	15.9	-3.4	
7	Homestead Road/Wright Avenue	D	Sunnyvale	Signal	С	27.7	В	14.9	В	14.2	С	23.9	-3.8	В	18.5	3.6	В	11.1	-3.1	
8	Homestead Road/Mary Avenue	D	Sunnyvale	Signal	F	102.6	D	43.2	С	33.0	F	97.2	-5.4	D	37.1	-6.1	D	35.6	2.6	
9	Homestead Road/Kennewick Drive	D	Sunnyvale	Signal	С	23.7	В	15.2	В	13.6	С	22.8	-0.9	В	16.4	1.2	В	10.2	-3.4	
10	Homestead Road/Hollenbeck Avenue	D	Sunnyvale	Signal	Е	59.5	D	53.3	Е	71.0	D	53.2	-6.3	D	44.3	-9	Е	62.5	-8.5	

 Table 5: Preferred Alternative Intersection Level of Service (LOS) Summary

Notes: OVRFL = overflow conditions where the delay exceeds 400 seconds

¹Intersection Control: Signal or Side-street Stop-control (SSSC)

²Intersection #3 operates as a Side-street Stop-control (SSSC) in the Existing condition and as a Signal with Preferred Alternative

Kimley »Horn

Homestead Road and Fallen Leaf Lane

Without signalization, the intersection of Homestead Road and Fallen Leaf Lane operates at LOS F in the AM peak hour and the school PM peak hour for the worst approach. This intersection is a side-street stop-controlled intersection with a stop sign on the southbound and northbound approaches and the eastbound and westbound approaches are uncontrolled. A traffic signal is recommended as part of the preferred alternative which will improve the capacity of the intersection. The intersection operates at LOS C or better with signalization. The traffic signal would be coordinated with the other traffic signals along the corridor.

Homestead Road and Mary Avenue

The intersection of Homestead Road and Mary Avenue operates at LOS F in the AM peak hour in the no-build and preferred alternative scenario. This intersection has a high number of pedestrians and bicyclists traversing the intersection, in addition to the number of vehicles. The coordination of the traffic signals along the corridor help improve operations slightly, but no other improvements are recommended to improve the auto capacity of this intersection.

Homestead Road and Hollenbeck Avenue

The intersection of Homestead Road and Hollenbeck Avenue operates at LOS E in the AM and PM peak hour. This intersection has a high number of vehicles for the left turn movements that conflict with the opposing through movements. The coordination of the traffic signals along the corridor help improve operations slightly, but no other improvements are recommended to improve the auto capacity of this intersection.

Coordination of Traffic Signals along Corridor

The traffic signals along the corridor were coordinated based on the existing cycle lengths for each peak period analyzed. Since the traffic signals are currently managed individually by the respective Partner Agencies and are of different controller types, full implementation of this improvement would require coordination between the agencies to implement a common cycle length, time source, and/or communication across the corridor. For the purpose of the analysis of this study, the corridor was coordinated based on using existing cycle lengths. The cycle lengths remained the same as existing cycle lengths, but the offsets and the splits at individual intersections were optimized, resulting in improved operations at some locations. The specifics of this improvement should be considered during the design phase. It is assumed that the full implementation of this improvement would reduce the travel time along the corridor.

FUNDING & NEXT STEPS

Funding Sources

Measure B

Measure B is a potential funding source provided by VTA. Measure B proposed a 0.5% sales tax to help fund projects that include, but are not limited to, bicycle and pedestrian safety improvements. Measure B will give priority to projects that connect to schools and make walking or biking a safer and more convenient means of transportation for all county residents and visitors.

In the Measure B ballot, Attachment A through D list out the potential projects that are eligible for Measure B funding. The Homestead Road Safe Routes to School Project is eligible for Measure B funding because this project is in the Santa Clara Countywide Bike Plan outlined in Attachment A of the Measure B ballot.

As of this report, no applications are being accepted; however, it is anticipated that a call for projects will go out in Winter 2019/2020. More information about Measure B funding can be found at: <u>http://www.vta.org/measure-b-2016</u>

Active Transportation Program (ATP)

The Active Transportation Program (ATP) is funding provided by Caltrans to encourage increased use of active modes of transportation. Goals of the ATP include, but are not limited to:

- Increase the proportion of trips accomplished by walking and biking,
- Increase safety and mobility for non-motorized users,
- And provide a broad spectrum of projects to benefit many types of active transportation

The 2019 ATP Cycle 5 call for projects is anticipated announced in the Spring of 2020. Cycle 5 is expected to include about \$440 million in ATP funding made up of Federal funding, State SB1 and State Highway Account funding. More information about ATP funding can be found at: http://www.dot.ca.gov/hg/LocalPrograms/atp/

Sustainable Communities Grants

The Sustainable Communities Grants is a funding source provided by Caltrans. The purpose of this funding source is to encourage local and regional planning that furthers state goals including practices provided in the Regional Transportation Plan (RTP). This funding source provided a total of \$29.5 million to eligible projects.

The application deadline for the Sustainable Communities Grants ended in November 2018 and another call for projects has not be announced. More information about the Sustainable Communities Grants can be found at: <u>http://www.dot.ca.gov/hq/tpp/grants.html</u>

One Bay Area Grants (OBAG)

The One Bay Area Grant program (OBAG) is a grant that was established in 2012 to use federal funds for bicycle and pedestrian improvements or Safe Routes to School Programs. Project applications for the second round of OBAG (OBAG 2) was completed in August 2017 and would provide a total of \$386 million to eligible projects over 5 years.

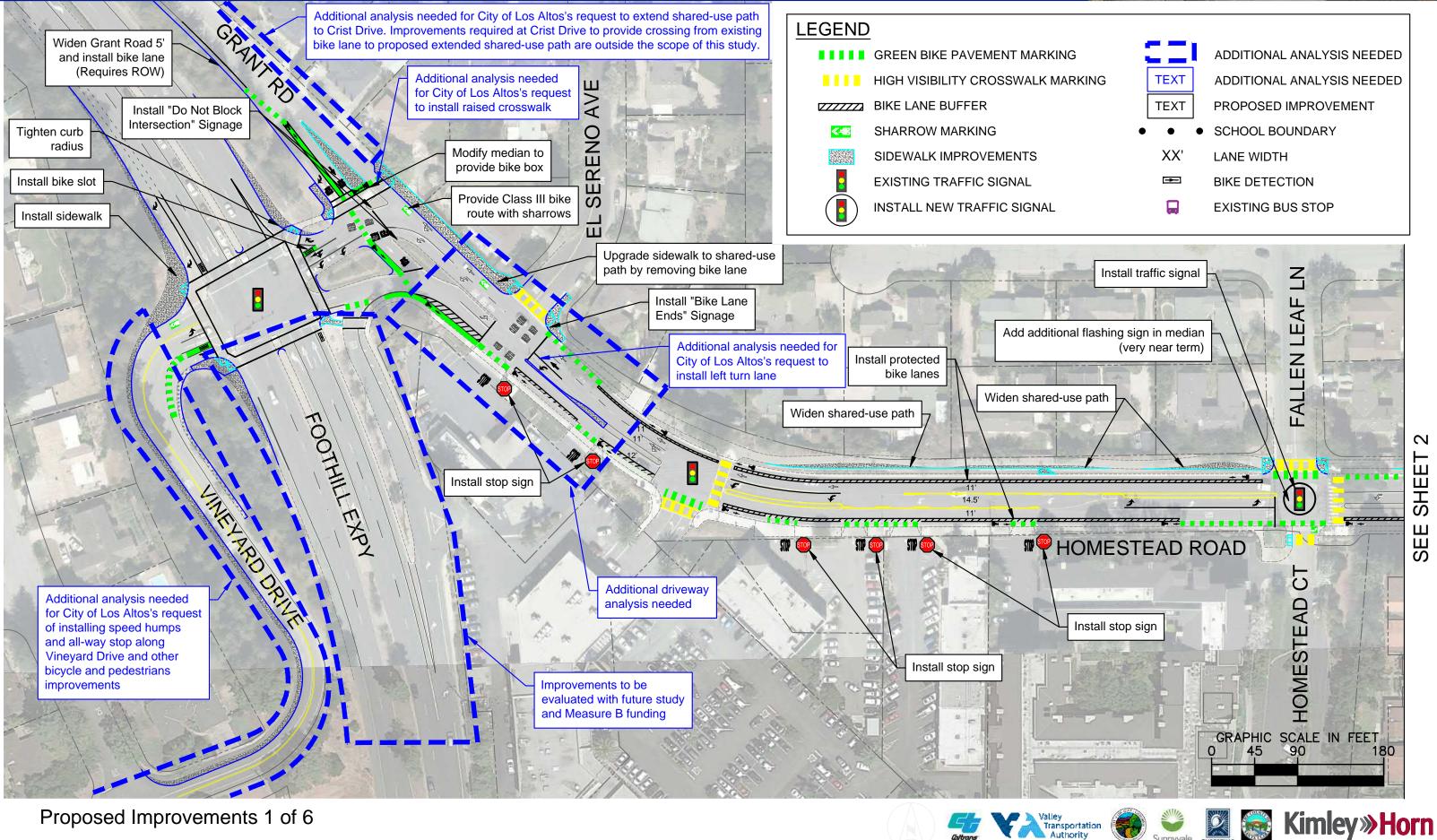
The third round of OBAG funding has not been announced. More information about OBAG funding can be found at:

https://mtc.ca.gov/our-work/fund-invest/investment-strategies-commitments/focusedgrowth/one-bay-area-grants

Next Steps

The next steps for the Homestead Road Safe Routes to School Project are to apply for grant funding based on the funding sources identified. It is intended that the Partner Agencies will jointly apply for grant funding. A 'project champion' from each agency should be appointed.

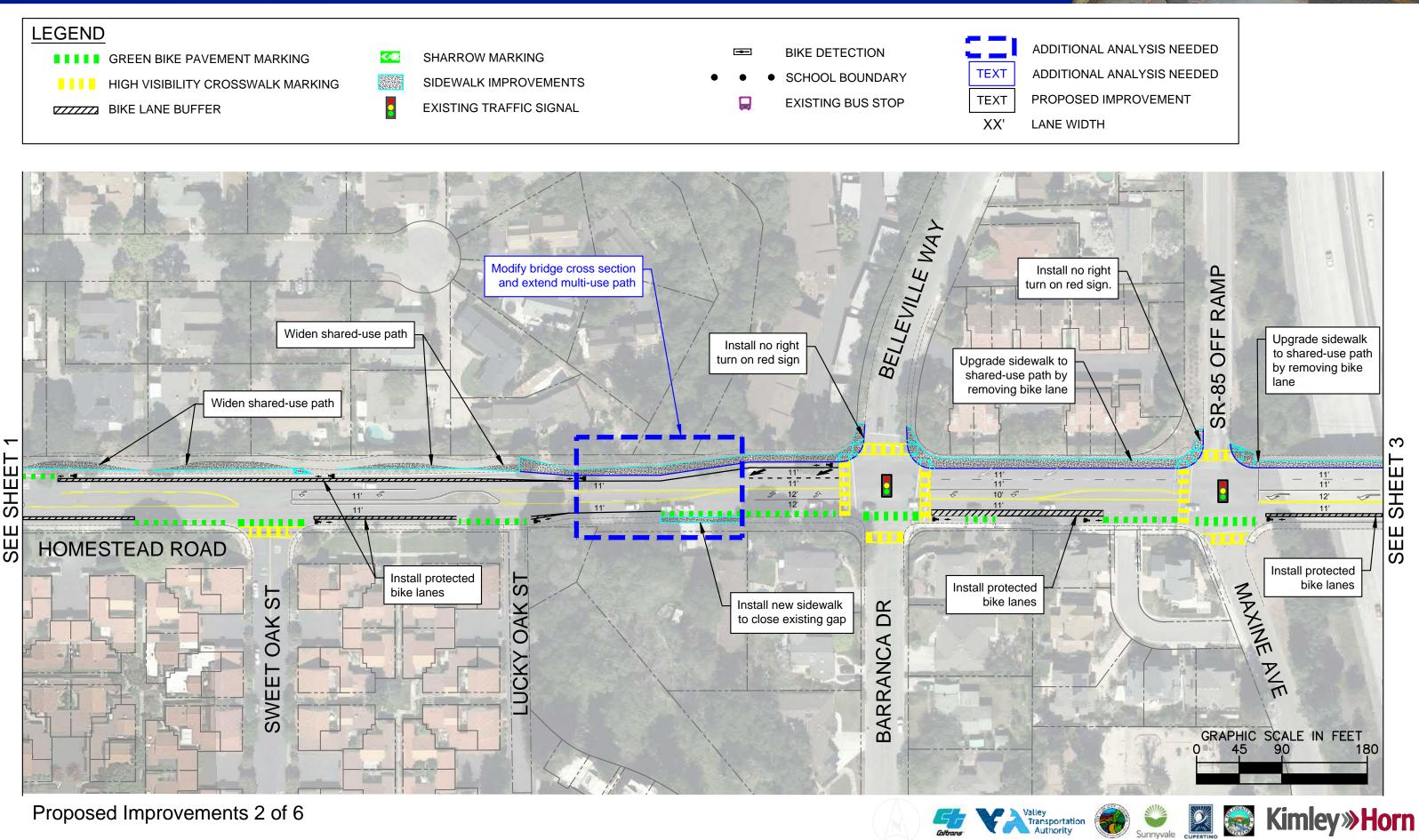
The construction and implementation timeline is unknown. It is not guaranteed that grant funding can be secured. If grant funding is not secured, other means of funding should be explored by the Partner Agencies.


APPENDIX

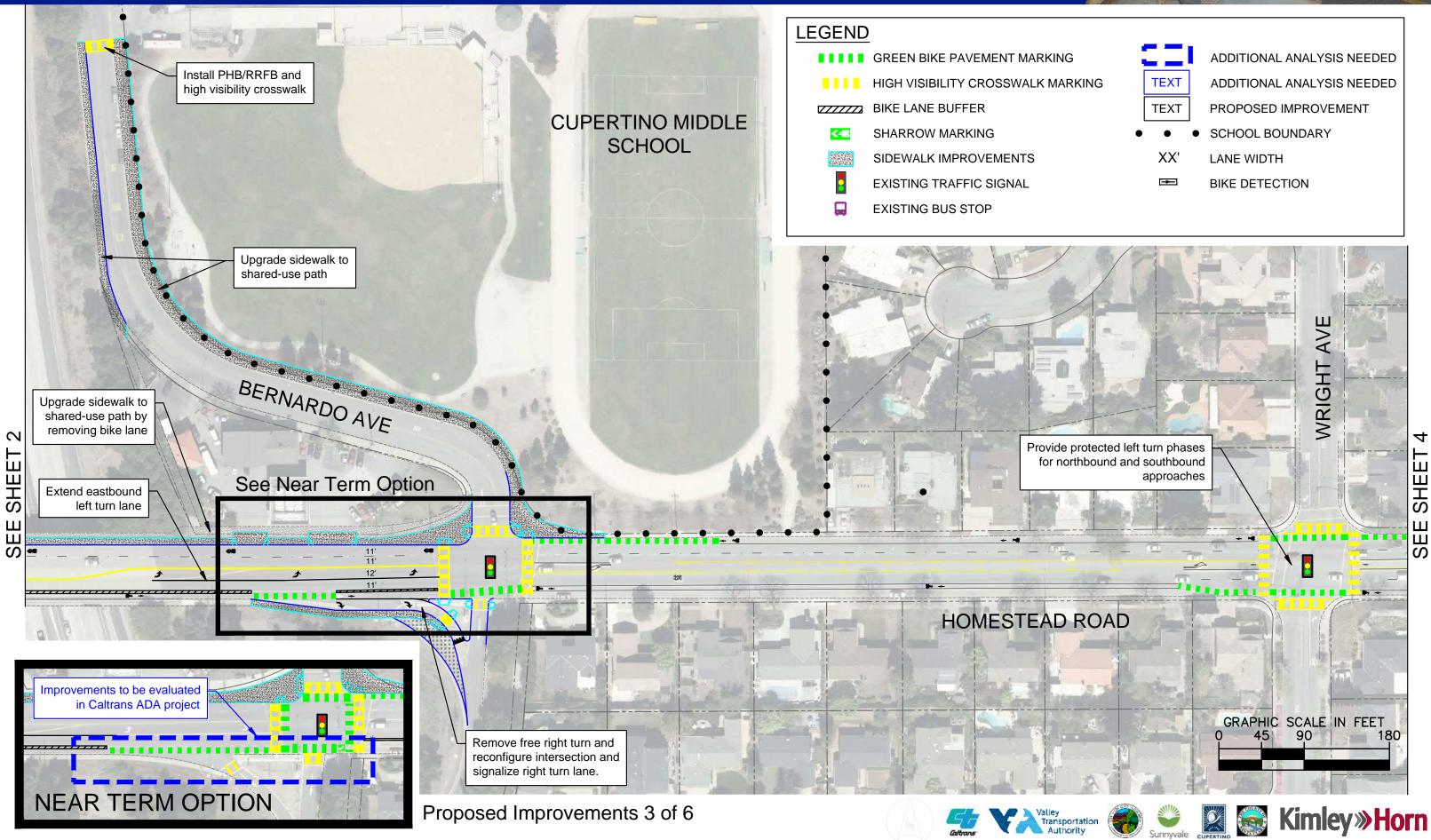
- A. Preferred Alternative Concept Plan
- B. Opinion of Probable Cost
- C. Community Meeting #1 Summary
- D. Community Meeting #2 Summary
- E. Collected Traffic Count Data
- F. Synchro Worksheets

A. Preferred Alternative Concept Plan

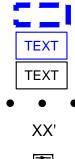
Proposed Improvements 1 of 6


Transportation

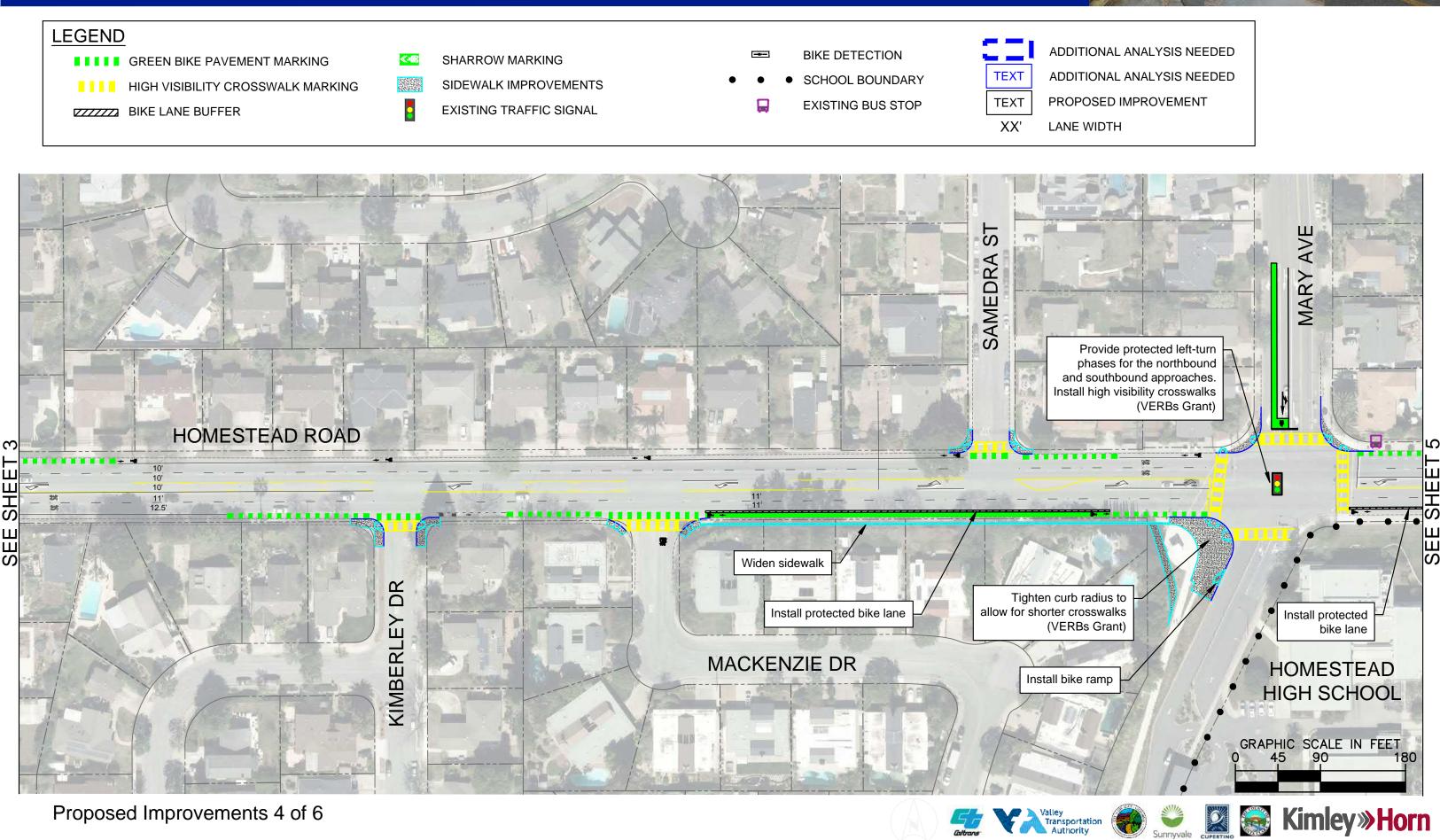
Sunnyvale


	TEXT	
	TEXT	
•	•	•
	XX'	

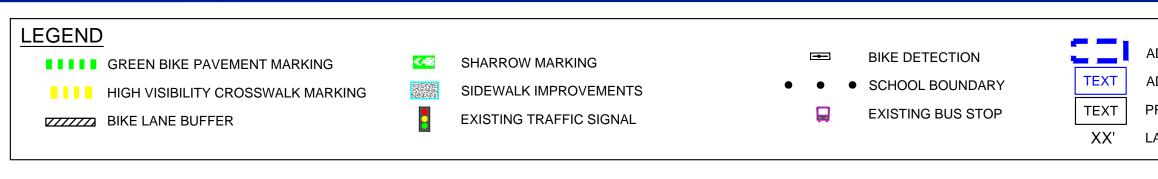
 \sim SHEET SEE

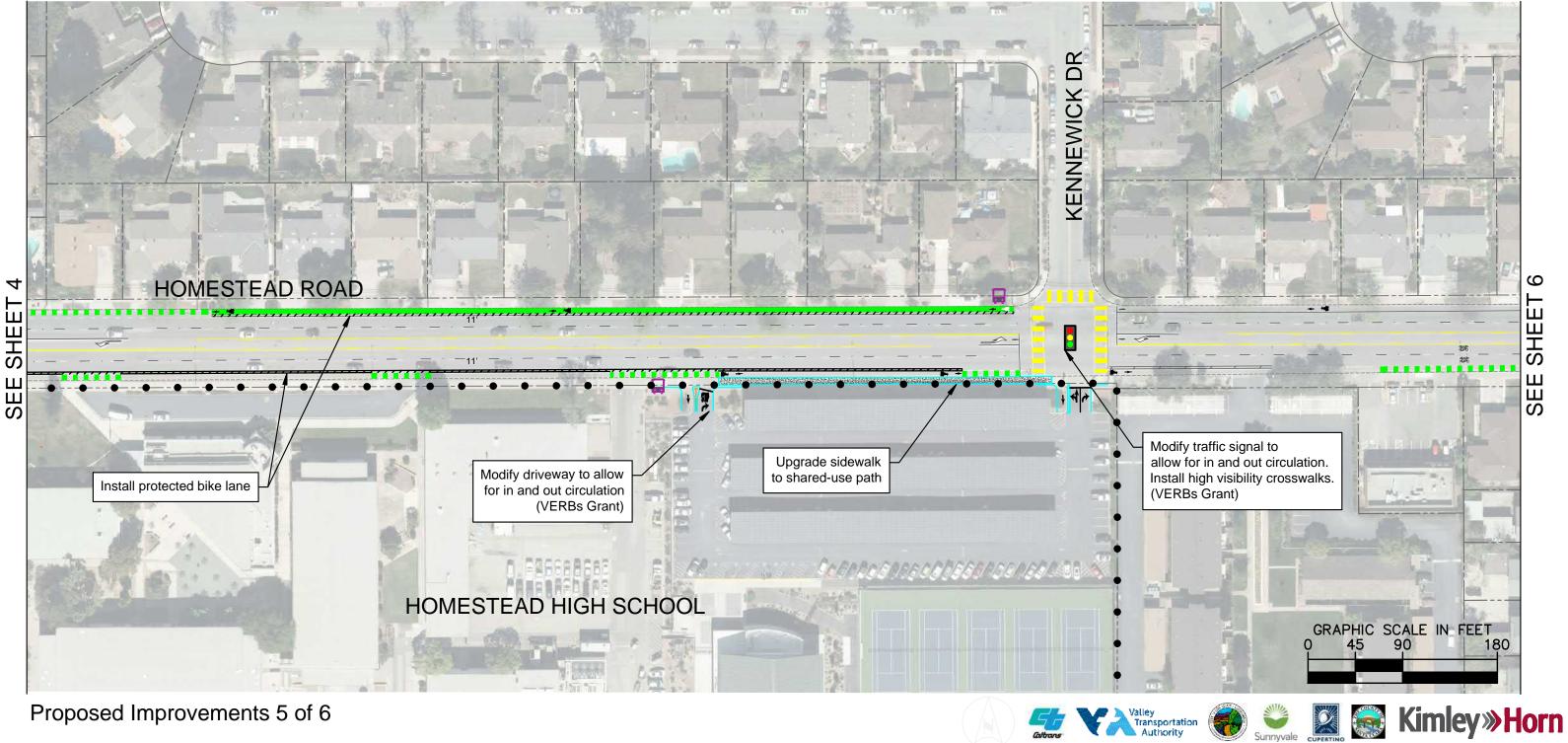


Proposed Improvements 2 of 6

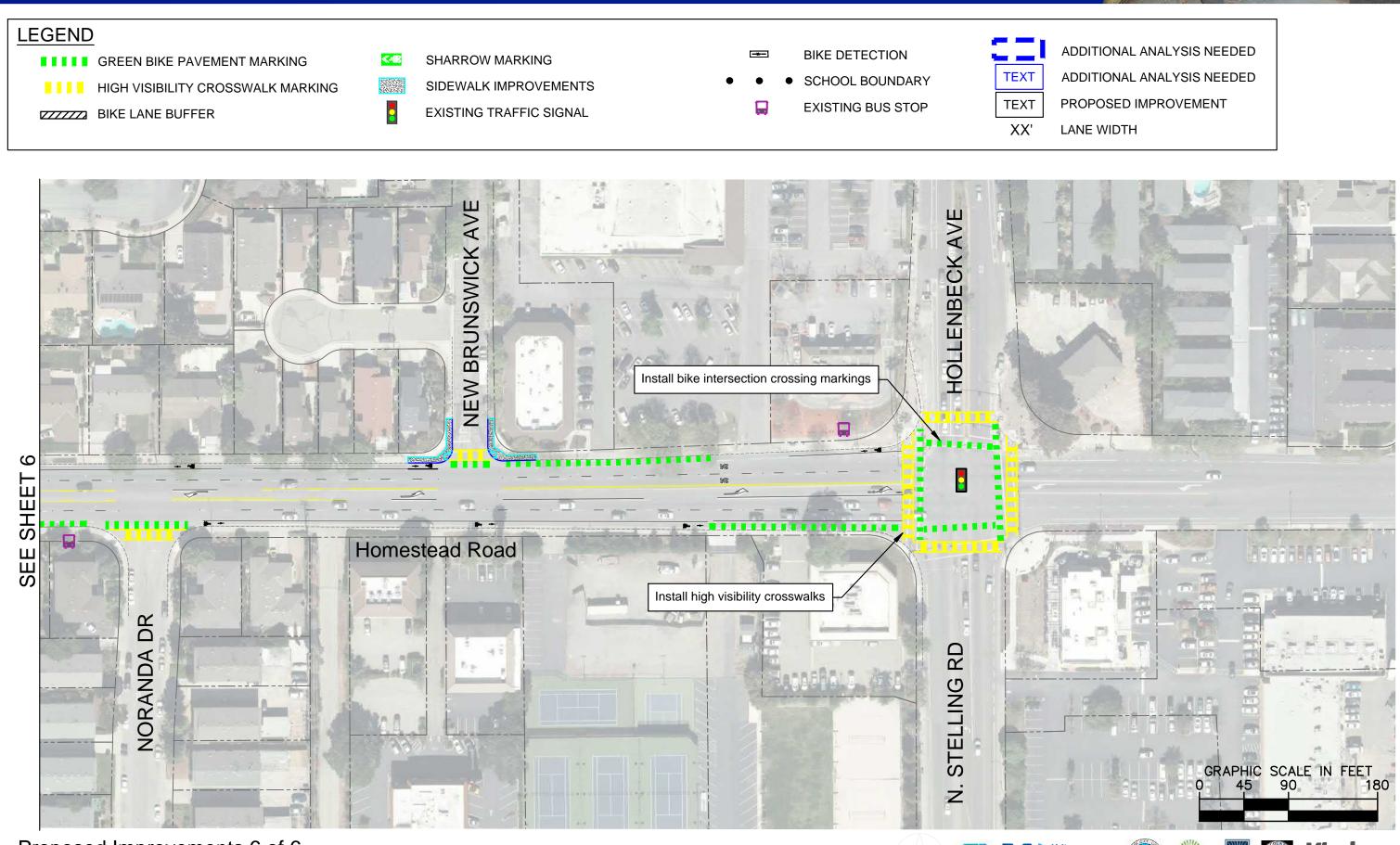


4 SHEET SEE




Proposed Improvements 4 of 6

SHEE



Proposed Improvements 5 of 6

ADDITIONAL ANALYSIS NEEDED ADDITIONAL ANALYSIS NEEDED PROPOSED IMPROVEMENT LANE WIDTH

Proposed Improvements 6 of 6

B. Opinion of Probable Cost

Opinion of Probable Cost for Homestead Road Safe Routes to School Improvements

Prepared By: Kimley-Horn

Date: May 2019

#	DESCRIPTION	QUANTITY	UNIT	CO	ST / UNIT	TOTAL COST
1	Install Flashing Sign and Post at Homestead Road/Fallen Leaf Lane (very near term)	1	EA	\$	10,000	\$10,000
2	Install Thermoplastic Pavement Marking	167	EA	\$	140	\$23,380
3	Install Green Thermoplastic Pavement Marking	29,500	SF	\$	14	\$407,100
4	Install Thermoplastic Striping	200,500	LF	\$	3	\$553,380
5	Install Concrete Sidewalk	56,000	SF	\$	55	\$3,091,200
6	Install Concrete Curb and Reconstruct AC Pavement	6,500	LF	\$	210	\$1,365,000
7	Install Traffic Signal at Homestead Road/Fallen Leaf Lane	1	EA	\$	700,000	\$700,000
8	Install Sign and Post	8	EA	\$	1,200	\$9,600
9	Install Curb Access Ramps	44	EA	\$	14,000	\$616,000
10	Modify Traffic Signal (Bernardo Avenue, Wright Avenue)	2	EA	\$	200,000	\$400,000
11	Install RRFB at CMS	1	EA	\$	42,000	\$42,000
12	Install Chainlink Fence	1,200	LF	\$	140	\$168,000
					Total	\$7,385,660
		Total Co	st with Co	nting	ency (50%)	\$11,078,490

Notes:

1. The Engineer has no control over the cost of labor, materials, equipment, or over the Contractor's methods of determining prices or over competitive bidding or market conditions. Opinions of probable costs provided herein are based on the information known to Engineer at this time and represent only the Engineer's judgment as a design professional familiar with the construction industry. The Engineer cannot and does not guarantee that proposals, bids, or actual construction costs will not vary from its opinions of probable costs.

2. This OPC was prepared without City review and approval, and as such, may be subject to change during the City permitting process(es).

3. Underground non-pavement utilities such as, but not limited to, water, sanitary sewer, and gas are assumed to be at an adequate depth.

4. Miscellaneous soft costs were applied individually to each project line item above. Soft costs were assumed to be 4% Admin, 4% Environmental, 15%

5. Projects listed as line items above do not include any contingency as a factor for the cost. Contingency was only applied towards the

Construction/Engineering for the project as a whole.

6. The assumed contingency assumes to cover items not explored at the current stage. Items include but are not limited to:

• Unknown improvements needed as part of the project (such as drainage improvements, pavement failure repair, landscaping/irrigation replacement,

restriping, impacts to lighting/electrical, utility relocations that are not under franchise)

• More costly approach to the design/construction of the improvements than anticipated

• Environmental unknowns (contaminated soil, regulatory-required mitigations, high groundwater)

Unscoped right-of-way acquisition, including temporary permits

• Federalizing the project and the additional costs of performing NEPA, coordinating with Caltrans

7. Cost shown is based on 2019 dollars.

C. Community Meeting #1 Summary

Community Meeting #1 Summary

The County of Santa Clara hosted a community meeting on November 26, 2018, from 6:00-8:00PM to discuss and present a recently underway study to improve mobility to three schools that exist along the Homestead Road corridor between Grant Road and N. Stelling Road/Hollenbeck Avenue. The three schools that are within the study are West Valley Elementary School, Cupertino Middle School, and Homestead High School. The meeting was held at the Homestead High School Auditorium.

Approximately sixty-two (62) community members attended the meeting. The County of Santa Clara was represented by Santa Clara District 5 Supervisor Joe Simitian, Kristine Zanardi, Ananth Prasad, and Thien Pham. Representatives from all partner agencies were present.

The Project Team was represented by Ananth Prasad (County of Santa Clara), Thien Pham (County of Santa Clara), Adam Dankberg (Kimley-Horn), Brian Sowers (Kimley-Horn), Dennis Kearney (Kimley-Horn), Tyler Wacker (Kimley-Horn), and Anthony Nuti (Kimley-Horn).

This was the first community outreach meeting with members of the public for the Homestead Road Safe Routes to School Study. The purpose of the meeting was to introduce the scope of the study and provide a study schedule and process; present existing conditions observed through data collection and field observations; and receive community feedback on existing issues and priorities for the corridor.

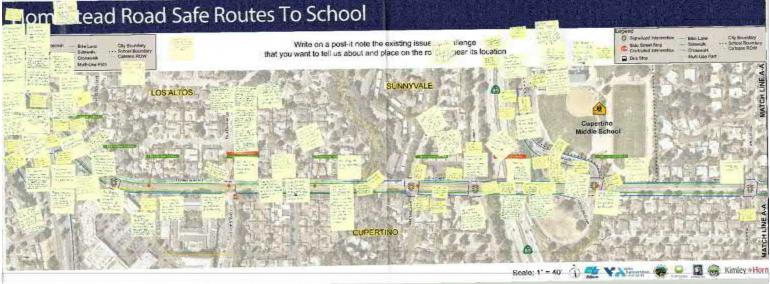
The meeting started just past 6:00PM and included an introduction by Santa Clara District 5 Supervisor Joe Simitian. Adam Dankberg, the Kimley-Horn project manager, then explained the purpose and objectives of the Study and used a PowerPoint presentation to explain existing conditions. In addition, the Project Manager covered the schedule for the Study and opportunities for additional input from the public including future meetings and a project email. The meeting included a 'Question and Answer' portion where there was an opportunity for many questions from the public to be answered by the Project Team.

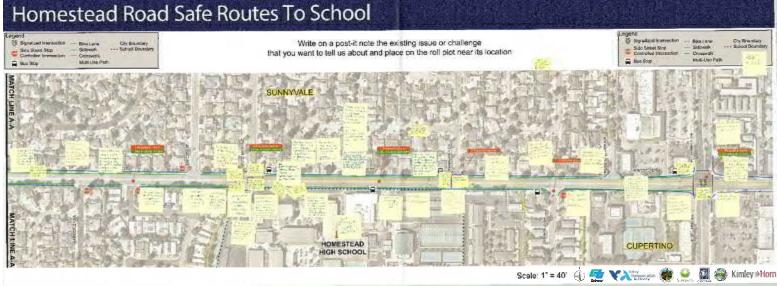
The second half of the meeting was an open house format and attendees were asked to go to two stations to give input on where they live, how they use the Homestead Road corridor, what modes of transportation they primarily use on the corridor, what school they are affiliated with, and to mark on a map where hot spots and problematic conditions exist. Attendees were free to leave the meeting whenever they chose during the open house session. The meeting ended at 8:00PM and the information received from Community Meeting #1 is documented below.

Community Meeting #1 Summary

During the 'Question and Answer' portion of the meeting, many questions, suggestions, and opinions were offered to the staff and project team. The questions and responses offered during the meeting are captured below in the order they were given at the meeting.

Feedback/Question	Response
Will the project look at N/S connections from N. Stelling Road/Hollenbeck Avenue to Homestead Road?	Yes, improvements that help users access Homestead Road from N. Stelling Road/Hollenbeck Avenue will be considered.
How does your work involve all jurisdictions?	Representatives from each agency involved in process. The recommendations of the study will be vetted by the jurisdictions. The study may end up a multiagency grant application(s).
Is the hospital included in the study?	No. The hospital is not a part of the study.
There has been a lot of work done on the corridor, including the Stevens Creek Trail Study.	Comment noted.
The study should think about how the kids will bike or walk through the corridor.	Comment noted.
The study should look at changing transit service to serve the corridor.	Comment noted.
Will this be a "24-hour" study? Will is cover outside school hours?	Yes. The study will look at improvements for all bicyclists and all modes.
How is the project team getting the word for public outreach?	The project team is utilizing existing channels established by the different jurisdictions and interested attendees can sign up for updates on the project website.
At Homestead High School, administrators send out to various groups via NextDoor, email, via schools, etc.	Commented noted.
Improvements need to be compliant with the California Complete Streets Act and other agency policies.	Comment noted.
What kind of projects has the team done and what are some improvements?	The team will work closely together to come up with recommendations that are vetted by all the agencies involved.
If the goal is to get grants, will be picking projects that are suitable to the corridor?	We want to make sure we are identifying solutions that improve the corridor (i.e. better separation of modes and better visibility at conflict zones).





Homestead Road Safe Routes to School Study Community Meeting #1 Summary

The following maps display the results of the meeting. **Roll plot #1 (all comments summarized below)**

Roll plot #2 (all comments summarized below)

Homestead Road Safe Routes to School Study Community Meeting #1 Summary

Mode of Transportation

Neighborhood Map

Community Meeting #1 Summary

The following table summarizes the feedback received at Community Meeting #1 via the open house or comment card. Feedback that was emailed to the project email after the meeting are also included.

Number	Homestead Road Safe Routes to School Public Feedback received from Community Meeting #1 and Project Email
	Received at Community Meeting #1, November 26, 2018
Foothill Roa	ad at Homestead Road
1	Lack of safety for kids crossing Foothill Expressway to Homestead Road
2	Bike lane needed for either Vineyard Drive or Foothill Expressway
3	Bike path needed near Vineyard Drive
4	Bumpers needed on Vineyard Drive
5	Signal timing at Foothill Expressway needs work
6	Intersection lacks ADA ramps
7	Two crosswalks needed to cross Foothill Expressway for to and from school movements
Grant at Ho	omestead Road
8	Intersection is dangerous for bikes/cars
9	Kids bike on wrong side of the road
10	There is speeding on Grant Road
11	Difficult for kids cross from Grant Road to multiuse path
12	Additional lane needed for people turning right from Foothill Expressway
13	Non-continuous bike lanes results in dangerous crossings for bicyclists
El Sereno A	Avenue at Homestead Road
14	Bikes turning left to enter bike lane from wrong side of road while cars also entering and exiting
	at Foothill Crossing exit
15	Intersection is dangerous for bikes. Needs major redesign
	Road at Fallen Leaf Lane/Homestead Court
16	Kids bike on wrong side of the road
17	Interaction of two-way path and turning vehicles is dangerous
18	Sun glare impairs drivers from seeing pedestrians
19	Crossing guard needed
Homestead	Road between Fallen Leaf Lane and Barranca Drive
20	Kids do not follow rules
21	Multiuse path not safe/too narrow
22	No ramps to multiuse path
23	Multiuse path ends abruptly

Community Meeting #1 Summary

Homestead	Road at Barranca Drive/Belleville Way
24	Sidewalk too narrow for morning pedestrian and bike traffic
25	Signal timing needs work
26	Need keep intersection clear sign
Homestead	Road between Barranca Drive and SR-85 off-ramp/Maxine Avenue
27	Signal timing needs work
Homestead	Road at SR-85 off-ramp/Maxine Avenue
28	Bicyclist bike on wrong side of the road
29	Two-way off-street bike path needed
30	Consider no right-turn off SR-85 off-ramp
31	Students cross against red light
32	Multiuse path needs to connect to the gas station path
33	Crossing guard needed
Homestead	Road between SR-85 and Bernardo Avenue
34	Kids bike on wrong side of the road
35	Allow kids to bike wrong way over overpass in morning
36	Make sidewalk wider
37	Remove painted island to increase left-turn pocket to Bernardo
Homestead	Road at Bernardo Avenue
38	No ramp from gas station path to Homestead Road
39	Cars go through gas station to bypass left-turn
40	Signal timing needs work
41	Cars don't stop at intersection and is dangerous for bikes
42	License plate readers needed at intersection
43	Parents park at gas station to pick-up students
44	Homeless encampment on pedestrian path is scary for kids
Bernardo A	venue at Cupertino Middle School
45	Bikes in danger of cars
46	Little visibility for crosswalk near school
47	No clear way to get from bike cages to Bernardo Avenue
48	Kids ride on sidewalk making it very congested with pedestrians
49	Parents park in school lot for pickup times, interact with school kid exiting
50	No bike lanes on Bernardo Ave
Homestead	Road between Bernardo Avenue and Wright Avenue
51	No parking anytime in the bike lane needed on north side of Homestead Road
Homestead	Road at Wright Avenue
52	Cars turning left from Wright do not yield to cross traffic

Homestead Road Safe Routes to School Study Community Meeting #1 Summary

53Crossing guards are not effectiveHomesteadRoad between Wright Avenue and Mary Avenue54Hazards from either the trash or parked cars55Install bollards at intersections to separate cars and bikesHomesteadRoad at Mary Avenue56Signal timing needs to be improved for all modes57Cars turn right without stopping58Consider pedestrian scramble59Cars queue along Homestead Road waiting to get into the Horseshoe60Close the Horseshoe to drop-of and pick-upHomesteadRoad between Mary Avenue and Kennewick Drive61People turn left into Horseshoe from left-turn lane62Separate cars from bikes near the Horseshoe and add dedicated drop-off zones63Left turn out of west driveway of student parking is difficult64Students park on Louise Road65Evaluate more crossing guards66Evening and weekend parking should be allowed676pm is too early to allow parking68Parked cars make it unsafe to bike69Homestead Road at Kennewick Drive70Signal timing needs work71Consider pedestrian scramble72Student driveway is difficult to get in and out of73Separate cars from bikes74Make bike lanes full-time75Consider mod like76Vehicles parked in bike lane before 6pm77Consider mid-block crosswalk and HAWK at Noranda Drive78Students walk in bike lane during lunch79Fix bike		
54Hazards from either the trash or parked cars55Install bollards at intersections to separate cars and bikesHomesteadRoad at Mary Avenue56Signal timing needs to be improved for all modes57Cars turn right without stopping58Consider pedestrian scramble59Cars queue along Homestead Road waiting to get into the Horseshoe60Close the Horseshoe to drop-of and pick-upHomesteadRoad between Mary Avenue and Kennewick Drive61People turn left into Horseshoe from left-turn lane62Separate cars from bikes near the Horseshoe and add dedicated drop-off zones63Left turn out of west driveway of student parking is difficult64Students park on Louise Road65Evaluate more crossing guards66Evening and weekend parking should be allowed676pm is too early to allow parking68Parked cars make it unsafe to bike69Homestead Road at Kennewick Drive70Signal timing needs work71Consider pedestrian scramble72Student driveway is difficult to get in and out of74Make bike lanes full-time75Consider road diet76Vehicles parked in bike lane before 6pm77Consider road diet78Students walk in bike lane during lunch79Fix bike lane width at northwest corner. Too narrow79Fix bike lanes should be wider71Street markings and signs should prevent right hook conflicts78Street m	53	Crossing guards are not effective
55Install bollards at intersections to separate cars and bikesHomesteadRoad at Mary Avenue56Signal timing needs to be improved for all modes57Cars turn right without stopping58Consider pedestrian scramble59Cars queue along Homestead Road waiting to get into the Horseshoe60Close the Horseshoe to drop-of and pick-upHomesteadRoad between Mary Avenue and Kennewick Drive61People turn left into Horseshoe from left-turn lane62Separate cars from bikes near the Horseshoe and add dedicated drop-off zones63Left turn out of west driveway of student parking is difficult64Students park on Louise Road65Evaluate more crossing guards66Evening and weekend parking should be allowed676pm is too early to allow parking68Parked cars make it unsafe to bike69Homestead needs full-time bike lanes70Signal timing needs work71Consider pedestrian scramble72Student driveway is difficult to get in and out of73Separate cars from bikes74Make bike lanes full-time75Consider road diet76Vehicles parked in bike lane before 6pm77Consider mod diet78Student mich bick crosswalk and HAWK at Noranda Drive79Fix bike lane width at northwest corner. Too narrow80Westbound bike lane should be wider81Street markings and signs should prevent right hook conflicts82Mark bi	Homestead	Road between Wright Avenue and Mary Avenue
HomesteadRoad at Mary Avenue56Signal timing needs to be improved for all modes57Cars turn right without stopping58Consider pedestrian scramble59Cars queue along Homestead Road waiting to get into the Horseshoe60Close the Horseshoe to drop-of and pick-upHomesteadRoad between Mary Avenue and Kennewick Drive61People turn left into Horseshoe from left-turn lane62Separate cars from bikes near the Horseshoe and add dedicated drop-off zones63Left turn out of west driveway of student parking is difficult64Students park on Louise Road65Evaluate more crossing guards66Evening and weekend parking should be allowed676pm is too early to allow parking68Parked cars make it unsafe to bike69Homestead needs full-time bike lanesHomesteadRoad at Kennewick Drive70Signal timing needs work71Consider pedestrian scramble72Student driveway is difficult to get in and out of73Separate cars from bikes74Make bike lanes full-time75Consider road diet76Vehicles parked in bike lane before 6pm77Consider road diet78Students walk in bike lane during lunch79Fix bike lane stull-time bike and Drive78Students walk in bike lane during lunch79Fix bike lane width at northwest correr. Too narrow79Fix bike lane should be wider80Westbound	54	Hazards from either the trash or parked cars
56Signal timing needs to be improved for all modes57Cars turn right without stopping58Consider pedestrian scramble59Cars queue along Homestead Road waiting to get into the Horseshoe60Close the Horseshoe to drop-of and pick-upHomestead Road between Mary Avenue and Kennewick Drive61People turn left into Horseshoe from left-turn lane62Separate cars from bikes near the Horseshoe and add dedicated drop-off zones63Left turn out of west driveway of student parking is difficult64Students park on Louise Road65Evaluate more crossing guards66Evening and weekend parking should be allowed676pm is too early to allow parking68Parked cars make it unsafe to bike69Homestead Road at Kennewick Drive70Signal timing needs work71Consider pedestrian scramble72Student driveway is difficult to get in and out of73Separate cars from bikes74Make bike lanes full-time75Consider road diet76Vehicles parked lin bike lane before 6pm77Consider mod diet78Students walk in bike lane during lunch79Fix bike lane width at northwest corner. Too narrow80Westbound bike lanes should be wider81Street markings and signs should prevent right hook conflicts82Mark bike lanes across intersection	55	Install bollards at intersections to separate cars and bikes
57Cars turn right without stopping58Consider pedestrian scramble59Cars queue along Homestead Road waiting to get into the Horseshoe60Close the Horseshoe to drop-of and pick-upHomestead Road between Mary Avenue and Kennewick Drive61People turn left into Horseshoe from left-turn lane62Separate cars from bikes near the Horseshoe and add dedicated drop-off zones63Left turn out of west driveway of student parking is difficult64Students park on Louise Road65Evaluate more crossing guards66Evening and weekend parking should be allowed676pm is too early to allow parking68Parked cars make it unsafe to bike69Homestead needs full-time bike lanesHomesteadRoad at Kennewick Drive70Signal timing needs work71Consider pedestrian scramble72Student driveway is difficult to get in and out ofHomesteadRoad between Kennewick Drive and N. Stelling Road/Hollenbeck Avenue73Separate cars from bikes74Make bike lanes full-time75Consider road diet76Vehicles parked in bike lane before 6pm77Consider mid-block crosswalk and HAWK at Noranda Drive78Students walk in bike lane before 6pm77Steel mid-block crosswalk and HAWK at Noranda Drive78Students walk in bike lane before 7080Westbound bike lanes should be wider80Westbound bike lanes should be wider81Street marki	Homestead	Road at Mary Avenue
58Consider pedestrian scramble59Cars queue along Homestead Road waiting to get into the Horseshoe60Close the Horseshoe to drop-of and pick-upHomestead Road between Mary Avenue and Kennewick Drive61People turn left into Horseshoe from left-turn lane62Separate cars from bikes near the Horseshoe and add dedicated drop-off zones63Left turn out of west driveway of student parking is difficult64Students park on Louise Road65Evaluate more crossing guards66Evening and weekend parking should be allowed676pm is too early to allow parking68Parked cars make it unsafe to bike69Homestead Road at Kennewick Drive70Signal timing needs work71Consider pedestrian scramble72Student driveway is difficult to get in and out of74Make bike lanes full-time75Consider road diet76Vehicles parked in bike lane before 6pm77Consider mid-block crosswalk and HAWK at Noranda Drive78Students walk in bike lane during lunchHomestead Road at N. Stelling Road/Hollenbeck Avenue79Fix bike lane width at northwest corner. Too narrow80Westbound bike lane should be wider81Street markings and signs should prevent right hook conflicts82Mark bike lanes across intersection	56	Signal timing needs to be improved for all modes
59Cars queue along Homestead Road waiting to get into the Horseshoe60Close the Horseshoe to drop-of and pick-upHomesteadRoad between Mary Avenue and Kennewick Drive61People turn left into Horseshoe from left-turn lane62Separate cars from bikes near the Horseshoe and add dedicated drop-off zones63Left turn out of west driveway of student parking is difficult64Students park on Louise Road65Evaluate more crossing guards66Evening and weekend parking should be allowed676pm is too early to allow parking68Parked cars make it unsafe to bike69Homestead needs full-time bike lanesHomesteadRoad at Kennewick Drive70Signal timing needs work71Consider pedestrian scramble72Student driveway is difficult to get in and out ofHomesteadRoad between Kennewick Drive and N. Stelling Road/Hollenbeck Avenue73Separate cars from bikes74Make bike lanes full-time75Consider road diet76Vehicles parked in bike lane before 6pm77Consider mid-block crosswalk and HAWK at Noranda Drive78Students walk in bike lane during lunchHomesteadRoad at N. Stelling Road/Hollenbeck Avenue79Fix bike lane width at northwest corner. Too narrow80Westbound bike lanes should be wider81Street markings and signs should prevent right hook conflicts82Mark bike lanes across intersection	57	Cars turn right without stopping
60Close the Horseshoe to drop-of and pick-upHomesteadRoad between Mary Avenue and Kennewick Drive61People turn left into Horseshoe from left-turn lane62Separate cars from bikes near the Horseshoe and add dedicated drop-off zones63Left turn out of west driveway of student parking is difficult64Students park on Louise Road65Evaluate more crossing guards66Evening and weekend parking should be allowed676pm is too early to allow parking68Parked cars make it unsafe to bike69Homestead needs full-time bike lanesHomesteadRoad at Kennewick Drive70Signal timing needs work71Consider pedestrian scramble72Student diveway is difficult to get in and out of73Separate cars from bikes74Make bike lanes full-time75Consider road diet76Vehicles parked in bike lane before 6pm77Consider mod Holk kand HAWK at Noranda Drive78Students walk in bike lane during lunchHomesteadRoad at N. Stelling Road/Hollenbeck Avenue79Fix bike lane width at northwest corner. Too narrow80Westbound bike lanes should be wider81Street markings and signs should prevent right hook conflicts82Mark bike lanes across intersection	58	Consider pedestrian scramble
HomesteadRoad between Mary Avenue and Kennewick Drive61People turn left into Horseshoe from left-turn lane62Separate cars from bikes near the Horseshoe and add dedicated drop-off zones63Left turn out of west driveway of student parking is difficult64Students park on Louise Road65Evaluate more crossing guards66Evening and weekend parking should be allowed676pm is too early to allow parking68Parked cars make it unsafe to bike69Homestead needs full-time bike lanesHomesteadRoad at Kennewick Drive70Signal timing needs work71Consider pedestrian scramble72Student driveway is difficult to get in and out ofHomesteadRoad between Kennewick Drive and N. Stelling Road/Hollenbeck Avenue73Separate cars from bikes74Make bike lanes full-time75Consider road diet76Vehicles parked in bike lane before 6pm77Consider mid-block crosswalk and HAWK at Noranda Drive78Students walk in bike lane during lunchHomesteadRoad at N. Stelling Road/Hollenbeck Avenue79Fix bike lane width at northwest corner. Too narrow80Westbound bike lanes should be wider81Street markings and signs should prevent right hook conflicts82Mark bike lanes across intersection	59	Cars queue along Homestead Road waiting to get into the Horseshoe
61People turn left into Horseshoe from left-turn lane62Separate cars from bikes near the Horseshoe and add dedicated drop-off zones63Left turn out of west driveway of student parking is difficult64Students park on Louise Road65Evaluate more crossing guards66Evening and weekend parking should be allowed676pm is too early to allow parking68Parked cars make it unsafe to bike69Homestead needs full-time bike lanesHomestead Road at Kennewick Drive70Signal timing needs work71Consider pedestrian scramble72Student driveway is difficult to get in and out ofHomesteadRoad between Kennewick Drive and N. Stelling Road/Hollenbeck Avenue73Separate cars from bikes74Make bike lanes full-time75Consider road diet76Vehicles parked in bike lane before 6pm77Consider mid-block crosswalk and HAWK at Noranda Drive78Students walk in bike lane during lunchHomesteadRoad at N. Stelling Road/Hollenbeck Avenue79Fix bike lane width at northwest corner. Too narrow80Westbound bike lanes should be wider81Street markings and signs should prevent right hook conflicts82Mark bike lanes across intersection	60	Close the Horseshoe to drop-of and pick-up
62Separate cars from bikes near the Horseshoe and add dedicated drop-off zones63Left turn out of west driveway of student parking is difficult64Students park on Louise Road65Evaluate more crossing guards66Evening and weekend parking should be allowed676pm is too early to allow parking68Parked cars make it unsafe to bike69Homestead needs full-time bike lanesHomesteadRoad at Kennewick Drive70Signal timing needs work71Consider pedestrian scramble72Student driveway is difficult to get in and out ofHomesteadRoad between Kennewick Drive and N. Stelling Road/Hollenbeck Avenue73Separate cars from bikes74Make bike lanes full-time75Consider road diet76Vehicles parked in bike lane before 6pm77Consider mid-block crosswalk and HAWK at Noranda Drive78Students walk in bike lane during lunchHomesteadRoad at N. Stelling Road/Hollenbeck Avenue79Fix bike lane width at northwest corner. Too narrow80Westbound bike lanes should be wider81Street markings and signs should prevent right hook conflicts82Mark bike lanes across intersection	Homestead	Road between Mary Avenue and Kennewick Drive
63Left turn out of west driveway of student parking is difficult64Students park on Louise Road65Evaluate more crossing guards66Evening and weekend parking should be allowed676pm is too early to allow parking68Parked cars make it unsafe to bike69Homestead needs full-time bike lanesHomesteadRoad at Kennewick Drive70Signal timing needs work71Consider pedestrian scramble72Student driveway is difficult to get in and out ofHomesteadRoad between Kennewick Drive and N. Stelling Road/Hollenbeck Avenue73Separate cars from bikes74Make bike lanes full-time75Consider road diet76Vehicles parked in bike lane before 6pm77Consider mid-block crosswalk and HAWK at Noranda Drive78Students walk in bike lane during lunchHomesteadRoad at N. Stelling Road/Hollenbeck Avenue79Fix bike lane width at northwest corner. Too narrow80Westbound bike lanes should be wider81Street markings and signs should prevent right hook conflicts82Mark bike lanes across intersection	61	People turn left into Horseshoe from left-turn lane
64Students park on Louise Road65Evaluate more crossing guards66Evening and weekend parking should be allowed676pm is too early to allow parking68Parked cars make it unsafe to bike69Homestead needs full-time bike lanesHomesteadRoad at Kennewick Drive70Signal timing needs work71Consider pedestrian scramble72Student driveway is difficult to get in and out ofHomesteadRoad between Kennewick Drive and N. Stelling Road/Hollenbeck Avenue73Separate cars from bikes74Make bike lanes full-time75Consider road diet76Vehicles parked in bike lane before 6pm77Consider mid-block crosswalk and HAWK at Noranda Drive78Students walk in bike lane during lunchHomesteadRoad at N. Stelling Road/Hollenbeck Avenue79Fix bike lane width at northwest corner. Too narrow80Westbound bike lanes should be wider81Street markings and signs should prevent right hook conflicts82Mark bike lanes across intersection	62	Separate cars from bikes near the Horseshoe and add dedicated drop-off zones
65Evaluate more crossing guards66Evening and weekend parking should be allowed676pm is too early to allow parking68Parked cars make it unsafe to bike69Homestead needs full-time bike lanes69Road at Kennewick Drive70Signal timing needs work71Consider pedestrian scramble72Student driveway is difficult to get in and out of73Separate cars from bikes74Make bike lanes full-time75Consider road diet76Vehicles parked in bike lane before 6pm77Consider mid-block crosswalk and HAWK at Noranda Drive78Students walk in bike lane during lunch79Fix bike lane width at northwest corner. Too narrow80Westbound bike lanes should be wider81Street markings and signs should prevent right hook conflicts82Mark bike lanes across intersection	63	Left turn out of west driveway of student parking is difficult
 66 Evening and weekend parking should be allowed 67 6pm is too early to allow parking 68 Parked cars make it unsafe to bike 69 Homestead needs full-time bike lanes Homestead Road at Kennewick Drive 70 Signal timing needs work 71 Consider pedestrian scramble 72 Student driveway is difficult to get in and out of Homestead Road between Kennewick Drive and N. Stelling Road/Hollenbeck Avenue 73 Separate cars from bikes 74 Make bike lanes full-time 75 Consider road diet 76 Vehicles parked in bike lane before 6pm 77 Consider mid-block crosswalk and HAWK at Noranda Drive 78 Students walk in bike lane during lunch Homestead Road at N. Stelling Road/Hollenbeck Avenue 79 Fix bike lane width at northwest corner. Too narrow 80 Westbound bike lanes should be wider 81 Street markings and signs should prevent right hook conflicts 	64	Students park on Louise Road
676pm is too early to allow parking68Parked cars make it unsafe to bike69Homestead needs full-time bike lanesHomestead Road at Kennewick Drive70Signal timing needs work71Consider pedestrian scramble72Student driveway is difficult to get in and out ofHomesteadRoad between Kennewick Drive and N. Stelling Road/Hollenbeck Avenue73Separate cars from bikes74Make bike lanes full-time75Consider road diet76Vehicles parked in bike lane before 6pm77Consider mid-block crosswalk and HAWK at Noranda Drive78Students walk in bike lane during lunchHomesteadRoad at N. Stelling Road/Hollenbeck Avenue79Fix bike lane width at northwest corner. Too narrow80Westbound bike lanes should prevent right hook conflicts82Mark bike lanes across intersection	65	Evaluate more crossing guards
68Parked cars make it unsafe to bike69Homestead needs full-time bike lanesHomesteadRoad at Kennewick Drive70Signal timing needs work71Consider pedestrian scramble72Student driveway is difficult to get in and out ofHomesteadRoad between Kennewick Drive and N. Stelling Road/Hollenbeck Avenue73Separate cars from bikes74Make bike lanes full-time75Consider road diet76Vehicles parked in bike lane before 6pm77Consider mid-block crosswalk and HAWK at Noranda Drive78Students walk in bike lane during lunchHomesteadRoad at N. Stelling Road/Hollenbeck Avenue79Fix bike lane width at northwest corner. Too narrow80Westbound bike lanes should be wider81Street markings and signs should prevent right hook conflicts82Mark bike lanes across intersection	66	Evening and weekend parking should be allowed
69Homestead needs full-time bike lanesHomesteadRoad at Kennewick Drive70Signal timing needs work71Consider pedestrian scramble72Student driveway is difficult to get in and out ofHomesteadRoad between Kennewick Drive and N. Stelling Road/Hollenbeck Avenue73Separate cars from bikes74Make bike lanes full-time75Consider road diet76Vehicles parked in bike lane before 6pm77Consider mid-block crosswalk and HAWK at Noranda Drive78Students walk in bike lane during lunchHomesteadRoad at N. Stelling Road/Hollenbeck Avenue79Fix bike lane width at northwest corner. Too narrow80Westbound bike lanes should prevent right hook conflicts82Mark bike lanes across intersection	67	6pm is too early to allow parking
HomesteadRoad at Kennewick Drive70Signal timing needs work71Consider pedestrian scramble72Student driveway is difficult to get in and out ofHomesteadRoad between Kennewick Drive and N. Stelling Road/Hollenbeck Avenue73Separate cars from bikes74Make bike lanes full-time75Consider road diet76Vehicles parked in bike lane before 6pm77Consider mid-block crosswalk and HAWK at Noranda Drive78Students walk in bike lane during lunchHomesteadRoad at N. Stelling Road/Hollenbeck Avenue79Fix bike lane width at northwest corner. Too narrow80Westbound bike lanes should be wider81Street markings and signs should prevent right hook conflicts82Mark bike lanes across intersection	68	Parked cars make it unsafe to bike
70Signal timing needs work71Consider pedestrian scramble72Student driveway is difficult to get in and out ofHomesteadRoad between Kennewick Drive and N. Stelling Road/Hollenbeck Avenue73Separate cars from bikes74Make bike lanes full-time75Consider road diet76Vehicles parked in bike lane before 6pm77Consider mid-block crosswalk and HAWK at Noranda Drive78Students walk in bike lane during lunchHomesteadRoad at N. Stelling Road/Hollenbeck Avenue79Fix bike lane width at northwest corner. Too narrow80Westbound bike lanes should be wider81Street markings and signs should prevent right hook conflicts82Mark bike lanes across intersection	69	Homestead needs full-time bike lanes
71Consider pedestrian scramble72Student driveway is difficult to get in and out ofHomesteadRoad between Kennewick Drive and N. Stelling Road/Hollenbeck Avenue73Separate cars from bikes74Make bike lanes full-time75Consider road diet76Vehicles parked in bike lane before 6pm77Consider mid-block crosswalk and HAWK at Noranda Drive78Students walk in bike lane during lunchHomesteadRoad at N. Stelling Road/Hollenbeck Avenue79Fix bike lane width at northwest corner. Too narrow80Westbound bike lanes should be wider81Street markings and signs should prevent right hook conflicts82Mark bike lanes across intersection	Homestead	Road at Kennewick Drive
72Student driveway is difficult to get in and out ofHomesteadRoad between Kennewick Drive and N. Stelling Road/Hollenbeck Avenue73Separate cars from bikes74Make bike lanes full-time75Consider road diet76Vehicles parked in bike lane before 6pm77Consider mid-block crosswalk and HAWK at Noranda Drive78Students walk in bike lane during lunchHomesteadRoad at N. Stelling Road/Hollenbeck Avenue79Fix bike lane width at northwest corner. Too narrow80Westbound bike lanes should be wider81Street markings and signs should prevent right hook conflicts82Mark bike lanes across intersection	70	Signal timing needs work
HomesteadRoad between Kennewick Drive and N. Stelling Road/Hollenbeck Avenue73Separate cars from bikes74Make bike lanes full-time75Consider road diet76Vehicles parked in bike lane before 6pm77Consider mid-block crosswalk and HAWK at Noranda Drive78Students walk in bike lane during lunchHomesteadRoad at N. Stelling Road/Hollenbeck Avenue79Fix bike lane width at northwest corner. Too narrow80Westbound bike lanes should be wider81Street markings and signs should prevent right hook conflicts82Mark bike lanes across intersection	71	Consider pedestrian scramble
73Separate cars from bikes74Make bike lanes full-time75Consider road diet76Vehicles parked in bike lane before 6pm77Consider mid-block crosswalk and HAWK at Noranda Drive78Students walk in bike lane during lunchHomesteadRoad at N. Stelling Road/Hollenbeck Avenue79Fix bike lane width at northwest corner. Too narrow80Westbound bike lanes should be wider81Street markings and signs should prevent right hook conflicts82Mark bike lanes across intersection	72	Student driveway is difficult to get in and out of
74Make bike lanes full-time75Consider road diet76Vehicles parked in bike lane before 6pm77Consider mid-block crosswalk and HAWK at Noranda Drive78Students walk in bike lane during lunchHomesteadRoad at N. Stelling Road/Hollenbeck Avenue79Fix bike lane width at northwest corner. Too narrow80Westbound bike lanes should be wider81Street markings and signs should prevent right hook conflicts82Mark bike lanes across intersection	Homestead	Road between Kennewick Drive and N. Stelling Road/Hollenbeck Avenue
75Consider road diet76Vehicles parked in bike lane before 6pm77Consider mid-block crosswalk and HAWK at Noranda Drive78Students walk in bike lane during lunchHomesteadRoad at N. Stelling Road/Hollenbeck Avenue79Fix bike lane width at northwest corner. Too narrow80Westbound bike lanes should be wider81Street markings and signs should prevent right hook conflicts82Mark bike lanes across intersection	73	Separate cars from bikes
 76 Vehicles parked in bike lane before 6pm 77 Consider mid-block crosswalk and HAWK at Noranda Drive 78 Students walk in bike lane during lunch Homestead Road at N. Stelling Road/Hollenbeck Avenue 79 Fix bike lane width at northwest corner. Too narrow 80 Westbound bike lanes should be wider 81 Street markings and signs should prevent right hook conflicts 82 Mark bike lanes across intersection 	74	Make bike lanes full-time
 77 Consider mid-block crosswalk and HAWK at Noranda Drive 78 Students walk in bike lane during lunch Homestead Road at N. Stelling Road/Hollenbeck Avenue 79 Fix bike lane width at northwest corner. Too narrow 80 Westbound bike lanes should be wider 81 Street markings and signs should prevent right hook conflicts 82 Mark bike lanes across intersection 	75	Consider road diet
78Students walk in bike lane during lunchHomesteadRoad at N. Stelling Road/Hollenbeck Avenue79Fix bike lane width at northwest corner. Too narrow80Westbound bike lanes should be wider81Street markings and signs should prevent right hook conflicts82Mark bike lanes across intersection	76	Vehicles parked in bike lane before 6pm
HomesteadRoad at N. Stelling Road/Hollenbeck Avenue79Fix bike lane width at northwest corner. Too narrow80Westbound bike lanes should be wider81Street markings and signs should prevent right hook conflicts82Mark bike lanes across intersection	77	Consider mid-block crosswalk and HAWK at Noranda Drive
 Fix bike lane width at northwest corner. Too narrow Westbound bike lanes should be wider Street markings and signs should prevent right hook conflicts Mark bike lanes across intersection 	78	Students walk in bike lane during lunch
 80 Westbound bike lanes should be wider 81 Street markings and signs should prevent right hook conflicts 82 Mark bike lanes across intersection 	Homestead	Road at N. Stelling Road/Hollenbeck Avenue
 81 Street markings and signs should prevent right hook conflicts 82 Mark bike lanes across intersection 	79	Fix bike lane width at northwest corner. Too narrow
82 Mark bike lanes across intersection	80	Westbound bike lanes should be wider
	81	Street markings and signs should prevent right hook conflicts
83 Consider hike boxes at 4 corners	82	Mark bike lanes across intersection
	83	Consider bike boxes at 4 corners

Community Meeting #1 Summary

84	Bike lanes on Hollenbeck should extend to intersection
General fee	edback
85	There are 3 schools that start at the same time (8 am) which compounds the traffic congestion and makes it less safe for biking
86	Outreach should be to all residents. This group is not representative of all.
87	Look at cut-through traffic from Montclaire to the NW of Homestead Road
88	Please go back and revisit the effectiveness of previous traffic calming road changes. Did they improve anything?
89	Assuming that pedestrians and cyclists can share the Homestead Road corridor is not plausible
90	We drive to CMS because it is unsafe to bike.
91	Make it convenient to ride or walk and make it a no car school
92	Need wider bike/pedestrian bridge with gentler slope to the north of Homestead Road
93	Put in bike detection
94	Consider green bikes boxes for left-turns for bikes
95	Consider bulbouts
96	Not enough bike parking
Feedback r	eceived outside of Project Limits
97	Cars exiting from Foothill @ Arboretum are going too fast
98	Missing major accident at Crist and Grant
99	Problems extend to Grant Rd for Highlands kids
100	Exit from St. Joseph to Foothill clogged at Montclaire dropoff time
101	Add crossing guard locations to map
102	Please make sure to look at 280 off ramp traffic
103	Fallen Leaf Ln @ Louise Ln 2 utility power towers in middle of the street
104	South Bernardo from the Dalles bridge is sketchy
105	CMS - No bike lanes
106	Helena Bike Cage
107	Helena: Not enough space for a biker
108	Add Helena to this study
Feedback r	eceived via Comment Cards at Community Meeting #1, November 26, 2018
109	Neighborhood: Montclaire Los Altos HHS to offer a longer homework/study room and encourages shared rides Fluorescent clothing should be required on bicyclists, lights too VTA buses between Montclaire area and HHS School must encourage carpooling VTA must factor public safety in its ROI calculations

Community Meeting #1 Summary

110	<u>Neighborhood: Grant Park</u> AM: to school. When cars are entering and existing El Sereno and Fallen Leaf, bikes are coming out of our neighborhood crossing to the wrong side of the road, so they can turn left onto the bike path to go to school. This is so dangerous
111	<u>Neighborhood: Mary / Homestead</u> Homestead needs full time bike lanes. Low collision rate is due to deterring cycling, not an indication of safe conditions. Limited time parking does not serve the needs of students (after school and weekend event) much less commuters and utility cyclists
112	<u>Neighborhood: Homestead Road</u> Lack of education - students need to be coached on road rules- don't penalize the residents. Residents are not scapegoats for students and drivers' stupidity. Don't waste funds on research. Educate the students and fine the wrongful drivers. We need to share. Street parking should not be removed.
113	<u>Neighborhood: Highlands Los Altos</u> What agency operates Foothill Xpwy and way hasn't the scope of this project included safe travels across Foothill to access the Grant frontage road and on to Homestead
Feedback r	eceived via document Commute to Cupertino Middle School
114	Arboretum and Grant Rd - recommend green striped bike crossing or full crosswalk on Arboretum
115	Homestead and Grant Rd intersection onto Foothill Expy - green striped bike crossing be painted across Grant/Homestead Rd to clarify where bikes are crossing
116	Exit of Foothill Expy to Homestead - cars turning left onto Homestead Rd often take right of way over other vehicles, suggest "Bikes must stop" sign
117	Homestead Rd over Stevens Creek - recommend widening bridge for ped and bike traffic only to accommodate 10' wide two-way traffic. Continue asphalt path prior to Stevens Creek
118	Pave the green area on sidewalks between Stevens Creek overpass and Belleville ave on Grant rd sidewalk (southbound) to allow bikes and peds to share sidewalk. Expand sidewalk and remove merging lane to allow two-way traffic on Homestead sidewalk
119	Homestead Rd between 85 and Belleville - expand sidewalk to allow two-way traffic (10') for bikes and peds. Remove second lane on Homestead
120	85 Exit onto Homestead Rd - put no right on red sign, make signal more efficient, better signal cycling
121	<u>85 Bridge overpass: Homestead Rd</u> - make lane only one lane with merge of lanes prior to gas station, widen sidewalk to include bike lane to allow 2-way traffic for peds and bikes, 10' wide or 15' wide, allow onramp for bikes onto sidewalk can eliminate that side bike access, but requires on lane each way
122	Homestead and Bernardo - put a no right on red sign from 8 am to 8:15 am M-F, cars blow through red light getting their kids to school

Community Meeting #1 Summary

123	Gas Station - post a no throughway sign at gas station entrance, car bypass left turn signal onto S. Bernardo to drive through the private driveway of the gas station. This problem occurs in the morning and afternoon pick up times. Put a right turn only exit sign on Bernardo exit ramp.
124	Gas Station - cars park on sidewalk and at the gas station waiting to pick up kids at 3pm. Kids routinely cross through the gas station car wash area, pickup cars make U-turns at the driveway exit area, cars exiting gas station make left turns often
125	Ped Overpass on Bernardo - make a bike lane on S. Bernardo or route all ped and bike traffic through the Dalles and Crornach Ave "school route"
126	<u>CMS</u> - make Helena drive from Edmonton ave S. Bernardo 1 way into S. Bernardo. Make S. Bernardo Dr from Helena Dr. to Homestead 1 way exit onto Homestead
127	<u>S. Bernardo</u> - put do not enter sign on S. Bernardo Dr to prevent entrance from Homestead. Do not enter sign on Helena Dr.
128	 Bike travel distance and times from Google maps. Wolfe and Homestead 2.6 miles 14 minutes (8min at 5:45pm). Benton Street near Lawrence Expy 4.2 miles (21 minute (13 min at 5:45pm)) Whole Foods on Stevens Creek in Cupertino, 2.1 miles, 11 minutes (8 minutes at 5:43 pm) Los Altos Gold and Country Club 2.7 miles 15 minutes (11 min at 5:42 pm)
129	Make schools no cars except for medical exceptions or emergency pickup/dropoff
130	No parents in school parking lots/delineate school w. street cars
Feedback	received via Project Email
131	I am a resident of Homestead Road directly across from Homestead High School for over 15 years. My child attended West Valley Elementary, Cupertino Middle and Homestead High School. On Monday Nov 26 th , 2018 I attended the Homestead Road safety meeting at Homestead High School. It was very surprising that residents of Homestead road were not informed of this important meeting wherein factors that would affect the residents were being discussed. I came to know of the meeting on the 25 th of November due to a chance meeting with one of my neighbors who mentioned about it. I would very much appreciate if efforts are made to provide/make sure that information to the residents about meetings/events that affect the community are posted well in advance via regular US mail so that they can schedule their work timing to attend the meetings. I very much appreciate the efforts of the different school district to evaluate the current road use and the potential ways in which the traffic could be regulated in order to provide for greater safety to the students who attend the three schools that are located along the Homestead corridor. I see that Improvements to the side walk and proper marking of the bike lanes are being looked at as important issues that need immediate attention. Since I get to observe the road traffic and student movement on the main road, bike lane and side walk for over 15 years across from Homestead High School I would like to provide some background on what I perceive as issues that could greatly affect the safety of the students. 1. The bike lane on the Sunnyvale is rightly designated for exclusive use of the folks that ride the bike from 7.00 am to 6.00 pm on weekdays. This covers the working

that ride the bike from 7.00 am to 6.00 pm on weekdays. This covers the workin hours of the three schools that are part of the Homestead cohort. It would be

Homestead Road Safe Routes to School Study Community Meeting #1 Summary

helpful to mark the bike lane prominently so that vehicle drivers stay clear of the bike lanes. Unfortunately, I see that most often students DO NOT use the bike lane and they tend to use sidewalks especially on the Sunnyvale side across from Homestead High. A double line to designate the bike lane would provide for an additional room for the bicyclist to be at a distance of safety from the moving vehicular traffic. I see no reason to make any changes to the exclusive use timings of the bike lane as the current timing is more than sufficient to cover the working hours of the three schools. 2. There have been no reported traffic incidents involving students outside of the 7.00 am to 6.00 pm time frame for which the bike lane is designated for the exclusive use of the students who bike to the school. To raise any argument that changing the bike lane use timings to provide for greater safety for the students is a totally baloney. I see no justification for even thinking in this line and thus would strongly urge that the need for changing the use timing is never brought to the table for any discussion - now and in the future. Any concerns of the recreational bikers have no place in this discussion. They need to share the road with the residents. There are no two options in this regard. 3. The students seem to lack the knowledge of basic road rules. I see students who walk to the school as well as those that bike to the school seems to totally disregard the basic road rules and expect everyone around them to look out for them to avoid any untoward incident. They are always waiting to throw the blame on the others when in reality they are the cause of it. This shows total disrespect for the vehicle drivers who are additionally burdened by the callous attitude of the students. It would be helpful to include a "Road Rule and Ethics" course as part of the curriculum in the school and make it mandatory for the students to attend few classes to get some knowledge about the basic facts. Our tax money would be better spent on educating the students rather than throw it at some private research organization who are more interested in making a quick buck in exchange for some feedback with minimal reflection on how it would affect the residents since they are not part of the community. Education is the key to success rather than wasting money on all kinds of change that were being discussed during the meeting. Educating the students on basic road rules would go a long way as it would help them behave like good citizens now and when they grow up and bring their children to the school. They will be role models to their children and to the community in which reside. 4. As for the parents who drive their children to school – lesser said the better. Significant number of them seem to totally lack any knowledge of road rules and very often flaunt the basic road rules and thus put other drivers and students in complete danger. It would be helpful to heavily fine (up to 10x) even for small road rule infarction during the school hours and display their names along with their children name on a "wall of shame" visible to the public so that the parents make consorted efforts to follow road rules and set an example for their kids. The kids see their parents violate the rules, day in and day out, and thus they also tend to break the rules more often. Student drop-offs on the side of road in front of Homestead High – both Sunnyvale and Cupertino side of the road should

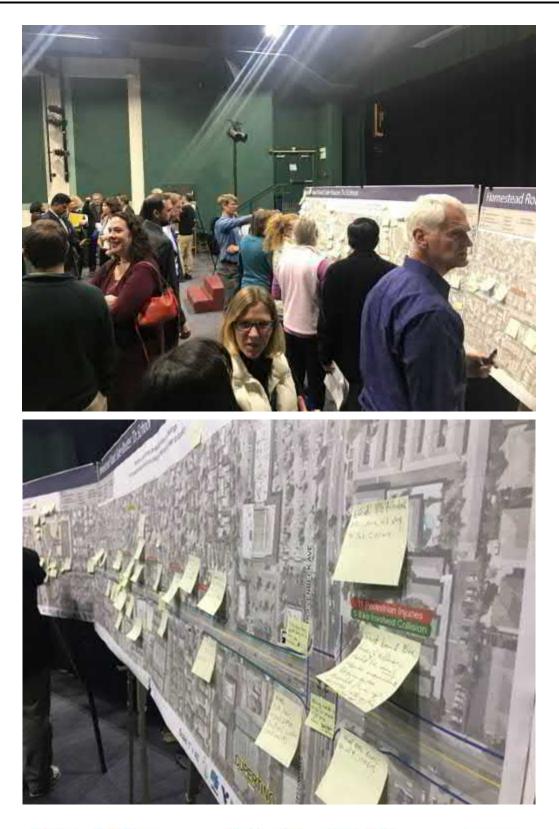
Homestead Road Safe Routes to School Study Community Meeting #1 Summary

	 be banned. Any violation should invoke a large fine. This not only blocks the bicyclist path but could potentially result in serious injury to the rider. 5. More bikers travel the Mary road rather than Homestead road. Coming from Mary they directly enter Homestead High or turn right at Helena to get to Cupertino Middle. Thus, the bike lane use on Homestead is relatively low in comparison to Mary road. Majority of the school going bikers on Homestead road rarely use the bike lane with most preferring the side walk!! Any changes to the bike lane would be futile. One option would be make a single lane of traffic on both sides of Homestead Road from Stelling Road to Belleville Way and increase the width of the bike lane so that there is significant distance between the moving vehicular traffic and the bikes. This will also help to preserve the parking space along the Sunnyvale side of the road for the residents. This should be designated as residents only parking during the bike lane use hours to discourage students from using the spot. The residents would not mind if the parking continues to be restricted to 6.00 pm to 7.00 am during weekdays and all day during weekends and holidays. This should be a good compromise and provide greater room for the bikers and improve safety. 6. Any efforts to change the bike lane use timing will be detrimental to the residents who are already putting up with the chaos during the school hours. The residents cannot expect their guests to park their vehicles a mile from the homestead road and walk to our house. Incidentally during the meeting, 1 observed some recreational bikers putting up a pitch to make the bike lane as an exclusive use of the bikers at all times of the day and night. I would like to reiterate that this review is look for ways to bring about safety for the students and thus there is no place for any discussion on recreational bikers' agenda. Their agenda should not be entertained and the residents concern with regard to the need for parki
	that the team needs clarity based on my comments.
132	I noticed something else I wanted to write in about: On Mary Ave, there are two crossing guards in the morning (at the Helena intersection). I totally get it—Mary is a busy, wide street and it probably takes two crossing guards to be seen by both sides of traffic. But I think the most critical intersection to have two crossing guards is at the intersection of Helena and Wright, right by the middle school. If this isn't the busiest intersection for Cupertino Middle, then it's certainly up there. And I'm sure the committee's aware that there was a student hit by a car there earlier this year. If there were a crossing guard posted to take care of Helena and then one to take care of Wright, they could take turns. I'll bet it would improve the flow of traffic too. I honestly don't know how the crossing

Community Meeting #1 Summary

guard there has handled things by himself this long. (It can't be easy at all.) I also wanted to mention that last year I wrote in to the City of Sunnyvale, suggesting a four way stop sign be put it at Helena and The Dalles. That intersection gets really backed up in the mornings.
133 I was at the meeting at Homestead High School. Since then, I noticed the difference in the striping for crosswalks in the area being discussed and many I've seen in Mountain View. The ones in Mountain View are much more noticeable and obvious! I frequent the corner of Fallen Leaf and Homestead and have noticed that cars frequently do not stop at the BEGINNING of the crosswalk, but often roll into the crosswalk before coming to a complete stop. Part of this is due to not having visibility of the oncoming traffic. However, this results in not stopping until past the point that a pedestrian or bicyclist would be if crossing the street on the hike and bike trail. Perhaps better, more obvious striping would help.

The following photos were taken at the public meeting.



Kimley »Horn

Homestead Road Safe Routes To School

Homestead Road Safe Routes to School Study Community Meeting #1 Summary

Kimley »Horn

<u>Homestead Road Safe Routes to School Study</u> County Safe Routes to School Meeting (2/9/2018)

The County of Santa Clara hosted a community meeting on February 9, 2018 to discuss and present concerns regarding Foothill Expressway, Grant Road, and sections of Homestead Road. Some comments received from this meeting are within the study area of the Homestead Road Safe Routes to School Study and have been included in the table below.

Number	County Safe Routes to School Meeting
	Received at Community Meeting, February 9, 2019
	long Grant Road (Homestead Rd/Foothill Expy & Grant Rd)
1	Southbound bike lane ends and becomes a sharrow (Class 3)
2	Students travel on wrong side of the road
3	Crossing El Sereno from the unexpected way with limited visibility
4	The class 1 path has pros and cons
5	The Triple Pass (Southbound bikes through 1. Stop and cross through traffic
	2. Yield and cross through traffic
	3. Cross through traffic into bike lane
6	Heavily congested intersection
7	Vehicles drive in bike lane
8	Cyclists are not visible on corner of Foothill
9	Younger cyclists use crosswalk and then "jump" back to lane
Traveling to	o/from Vineyard Dr (Vineyard Dr/Homestead Rd & Foothill Expy)
10	Shoulder striping disappears on Vineyard – cyclists are in no man's land
11	No ADA ramps at the intersection
12	Students don't know how to use the bicycle sensor at the intersection
13	No signs/striping guiding drivers/cyclists
14	Narrow Road
15	No ADA curb ramps for use by cyclists
16	No signs to alert drivers/uncontrolled + favorite U turn spot
17	No Shoulder stripping near expressway intersection – starts later
Corner of F	oothill and Homestead
18	Drivers cut the corner and drive in the shoulder where the bike lane starts
Homestead	l Road Commercial Driveways
19	6 service entryways
20	Vehicles blocking the bike lane
21	No signs and guidance

<u>Homestead Road Safe Routes to School Study</u> County Safe Routes to School Meeting (2/9/2018)

22	Exits from commercial area allow left turns with limited visibility that risk students who are heading to class 1 path
23	Currently it is allowed to take left turns from El Sereno to Homestead endangering the cyclists

D. Community Meeting #2 Summary

Homestead Road Safe Routes to School Study Community Meeting #2 Summary

The County of Santa Clara hosted Community Meeting #2 on February 25, 2019, from 6:00-8:00PM to discuss and present conceptual designs of potential improvements to the Homestead Road corridor to better connect West Valley Elementary School, Cupertino Middle School, and Homestead High School. The meeting was held at the Homestead High School Auditorium.

Approximately sixty (60) community members attended the meeting. The County of Santa Clara was represented by Kristine Zanardi, Ananth Prasad, and Thien Pham. Representatives from all partner agencies were present.

The Project Team was represented by Ananth Prasad (County of Santa Clara), Thien Pham (County of Santa Clara), Adam Dankberg (Kimley-Horn), Brian Sowers (Kimley-Horn), Tyler Wacker (Kimley-Horn), and Anthony Nuti (Kimley-Horn).

This was the second community outreach meeting with members of the public for the Homestead Road Safe Routes to School Study. The purpose of the meeting was to provide an update to the community on the study status, present proposed concepts, receive community feedback on the proposed concepts that have been developed, and review next steps.

The meeting started just past 6:00 PM and included an introduction by Kristine Zanardi. Adam Dankberg, the Kimley-Horn project manager, then provided an update of which stage the Study is in and used a PowerPoint presentation to explain select proposed improvements. In addition, the Project Manager covered the schedule for the Study and opportunities for additional input from the public including comment cards and the project email. The meeting included a 'Question and Answer' portion where there was an opportunity for many questions from the public to be answered by the Project Team.

The second half of the meeting was an open house format and attendees were asked to go to a station to give input on the proposed improvements. Attendees used colored dots to express support (green), uncertainty/need more info (yellow), or do not support (red). Sticky notes were also provided to write down comments and place them on the proposed improvement posters. Attendees were free to leave the meeting whenever they chose during the open house session. The meeting ended at 8:00 PM and the information received from Community Meeting #2 is documented below.

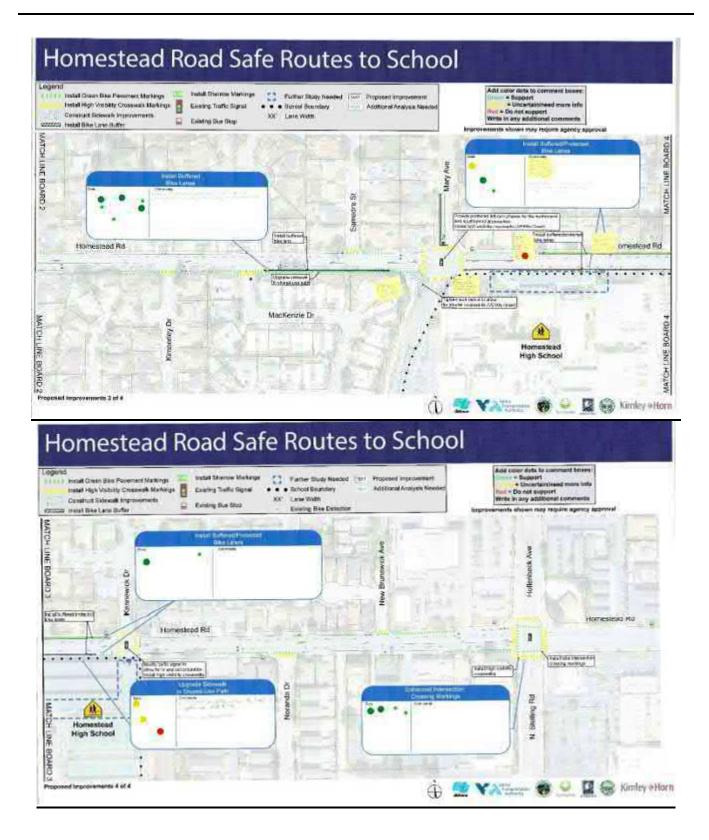




Homestead Road Safe Routes to School Study Community Meeting #2 Summary

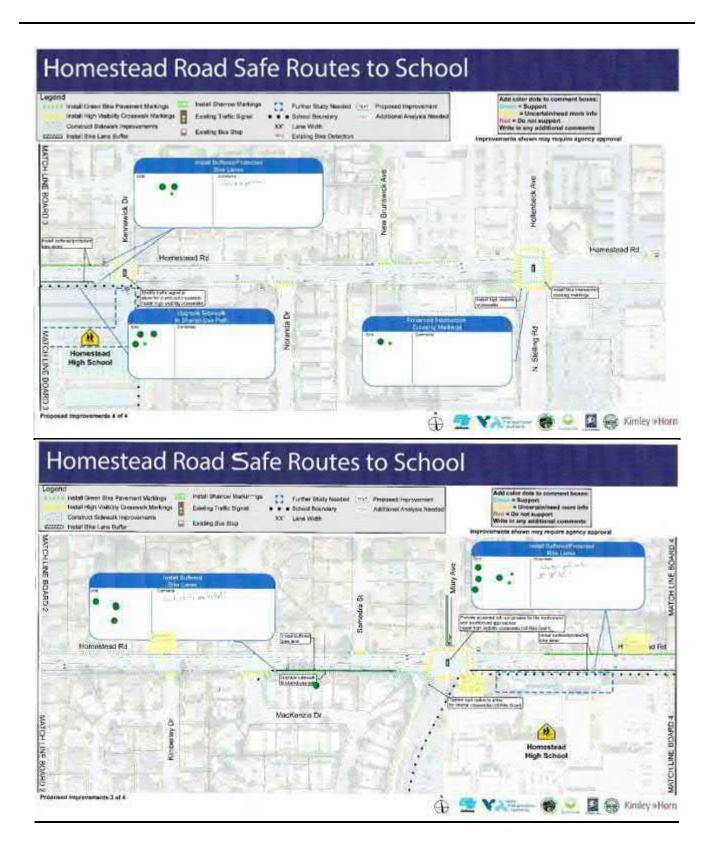
The following maps display the results of the meeting.

Corridor Maps (all comments summarized below)

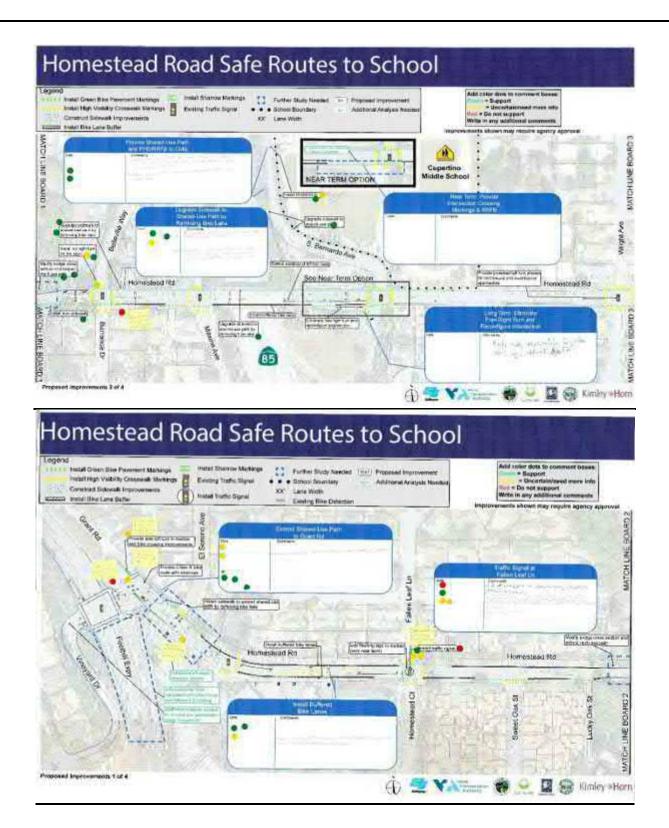


Homestead Road Safe Routes To School

Homestead Road Safe Routes to School Study Community Meeting #2 Summary



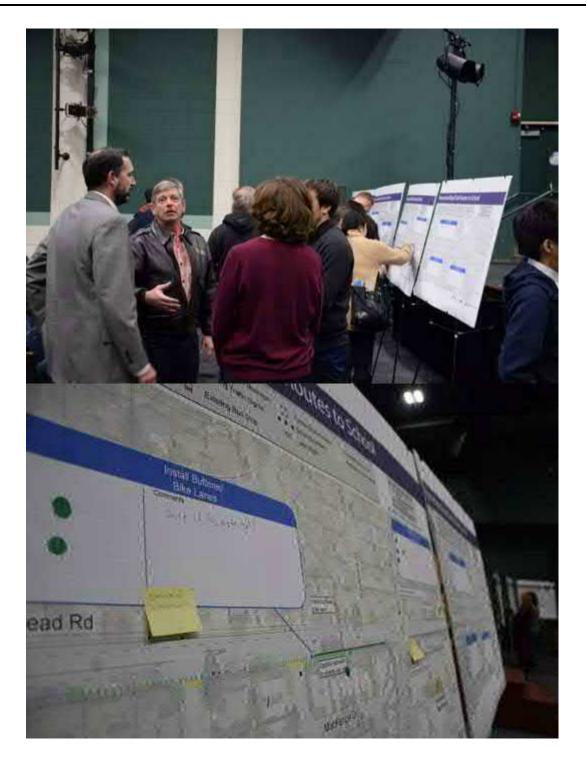
Homestead Road Safe Routes To School


Homestead Road Safe Routes to School Study Community Meeting #2 Summary

Homestead Road Safe Routes to School Study Community Meeting #2 Summary

Homestead Road Safe Routes to School Study Community Meeting #2 Summary

The following photos were taken at the public meeting.



Homestead Road Safe Routes To School

Homestead Road Safe Routes to School Study Community Meeting #2 Summary

The attached table summarizes the feedback received at Community Meeting #2 via the open house or comment card. Feedback that was emailed to the project email after the meeting are also included.

Number	Homestead Road Safe Routes to School				Project Team Res	00059
Number	Public Comments as of 4/3/2019	Referred to Partner Agency	Will be Considered in Study	Out of Study Scope	Comment Noted (No Action)	Additional Remarks
Comments	Received at Community Meeting #2, Feb 25, 2019		study		(No Fiction)	
Extend Sha	ared-Use Path to Grant Road					
1	I don't use multi-path because I get stuck behind peds and slow bikes. I ride to school. I ride in the bike lane going home. Not the multi-use path.				•	
2	Sharrows in this area dangerous. Yes, extend shared use path.				•	
3	Need crossing guard between Foothill pork chops & guard use extension.	٠				
Intersectio	n of Grant Rd, Homestead Rd, Foothill Expy & El Sereno Ave		-			Bike lane striping at the intersection will be analyzed in
4	Will you add bike lane striping (at the intersection)? How to get EB bikes to Homestead?		•			revised concept plans. Bike lane striping at the intersection will be analyzed in revised concept plans.
6	Access to median at Grant Road unsafe for kids in backed up traffic suggest another way such as guiding with green to crosswalk.		•		•	Bike lane striping at the intersection will be analyzed in revised concept plans.
	Don't slow down Homestead to Foothill because no peds/bikes. tation South Across the Street from El Sereno Ave				•	
R 8	Possible extend buffered bike lane to gas station exits?		•			Buffered bike lane will be analyzed in revised concept plans.
nstall Buf	fered Bike Lanes Between El Sereno and Fallen Leaf Ln					
9 10	Additional queuing Extend back toward Foothill past gas station? Especially the gas station exit that allows left turns or through movements to El		•		•	Buffered bike lane will be analyzed in revised concept plans.
	Sereno		-			
Traffic Sig 11	nal at Fallen Leaf Ln		•			The proposed traffic signal will be coordinated with the
12	Install traffic signal.		•			existing traffic signals on the corridor. The proposed traffic signal will be coordinated with the
12	So needed but light timing critical.		•		-	existing traffic signals on the corridor.
13	We do not need another stop light. The timing of lights already causing problems. So critical to put in a light here for safety. Cars wait so long to get out they do incredibly dangerous high speed turns to get into openings on Homestead regardless of Biko/Ped. However, light liming worther series of lights between Foothill & Believille will				•	
45	be essential to thruput. The traffic signals need to all sync up on Homestead for this light to work. Also lights need to be traffic shaped for school					The proposed traffic signal will be coordinated with the
15	commute/heavy traffic.	-	•			existing traffic signals on the corridor. The proposed traffic signal will be coordinated with the
16	For safety, the light is great. But it must be synced with all lights along the corridor		•			existing traffic signals on the corridor.
Provide Sh	ared-Use Path and Pedestrian Hybrid Beacon/Rectangular Rapid Flashing Beacon (PHB/RRFB) to Cupertino Middle School (CN		•			
17	Extend Cross walk to allow cars into lot.	٠				Cars currently allowed in parking lot. Not enough room or ROW for walking at existing crosswalk to
18	How about a walking bridge instead? Yes, but don't put the RRFB at the existing intersection! Create a new"stop" during school commute time, the rest of the time			•		CMS
19	(23 hrs day) traffic will flow naturally.		•			The proposed PHB/RRFB is placed at the exsting crosswalk based on partner agency input.
20	I second that, (comment 19) time for school hours/student presence. Push button to cross.		•			The proposed PHB/RRFB is placed at the existing crosswalk based on partner agency input.
21	Need to do something to address bikers & walkers on crowded multi-use path W. Valley babies walking & CMS/HS kids biking.		•			Widening the shared-use path will be analyzed in revised concept plans.
22	Yes! Path extension all the way to CMS and added safety for kids to get to CMS				•	
Upgrade S	idewalk to Shared-Use Path by Removing Bike Lane					
					•	The shared-use path is the preferred option since removal of vehicular lanes to provide a multimodal facility on the north side of Homestead Road is not feasible per partner agency.
23	Do not remove bike lanes please!				•	side of nomestead road is not reason per partier agency.
24 25	Shared use may slow flow traffic				•	
25	Like shared use-path/mutil-use good as long as enough space Yes! Path extension all the way to CMS key for safety and getting kids out of car traffic				•	
27	Suggest no right on red during school hours (SB Belleville Way).		•			No right turn on red will be anlayzed in revised concept plans.
		•				
28 ntersectio	The kids jay walk. Can you put a crossing guard here (Homestead @ Belleville Way/Barranca Dr)? Lengthen time for crossing n of Belleville Way, Homestead Rd & Barranca Dr	-				
Intersectio	n u belleville waý, numesteau ku a banalika bi					The study is focused on bicycle and pedestrian improvements.
29	Should eliminate the let turn lane eastbound and give right turn	•		•		Vehicular improvements will not be assessed in the study.
30	Upgrade sidewalk to shared-use path by removing bike lane				•	
31	Install no right turn on red sign		•			No right turn on red will be anlayzed in revised concept plans.
32	Modify bridge cross section and extend multi-use path	٠			•	
33	Install new sidewalk (West of Barranca)		•			New sidewalk proposed to close existing sidewalk gap west of Barranca Drive.
ast of Ma	xine Ave & Homestead Rd					
34	Upgrade sidewalk to shared-use path by removing bike lane				•	
Vear Term	: Provide Intersection Crossing Markings & RRFB					The proposed PHB/RRFB is placed at the exsting crosswalk
			•			based on partner agency input. The study will evaluate the impacts of the proposed
35	Consider putting the crosswalk/RRFB away from the intersection, create a dedicated bike/ped stop only an hour a day					me staay will evaluate the impacts of the proposed
	Consider putting the crosswalk/RRFB away from the intersection, create a dedicated bike/ped stop only an hour a day Like the lights, but may cause huge flow impact at the traffic lights		•			improvements.
35 36			•			
35 36	Like the lights, but may cause huge flow impact at the traffic lights		•			The study is not recommending to degrade bicycle conditions.
35 36 ong Term	Like the lights, but may cause huge flow impact at the traffic lights Eliminate Free Right Turn and Reconfigure Intersection					The study is not recommending to degrade bicycle conditions The study will evaluate the impacts of the proposed improvements.
35 36 ong Term 37	Like the lights, but may cause huge flow impact at the traffic lights <i>Eliminate Free Right Turn and Reconfigure Intersection</i> Make sure passability for bikers does not get reduced Back up Into roadway Will definitely hinder flow of traffic		•			The study is not recommending to degrade bicycle conditions. The study will evaluate the impacts of the proposed
35 36 ong Term 37 38	Like the lights, but may cause huge flow impact at the traffic lights Eliminate Free Right Turn and Reconfigure Intersection Make sure passability for bikers does not get reduced Back up into roadway		•			The study is not recommending to degrade bicycle conditions The study will evaluate the impacts of the proposed improvements. The study will evaluate the impacts of the proposed
35 36 ong Term 37 38 39	Like the lights, but may cause huge flow impact at the traffic lights Eliminate Free Right Turn and Reconfigure Intersection Make sure passability for bikers does not get reduced Back up Into roadway Will definitely hinder flow of traffic Is there something like a light that stops the flow of the right turning cars to protect the bike traffic? This is where you want		•			The study is not recommending to degrade bicycle conditions The study will evaluate the impacts of the proposed improvements. The study will evaluate the impacts of the proposed improvements.
35 36 ong Term 37 38 39 40 41	Like the lights, but may cause huge flow impact at the traffic lights Eliminate Free Right Turn and Reconfigure Intersection Make sure passability for bikers does not get reduced Back up Into roadway Will definitely hinder flow of traffic S there something like a light that stops the flow of the right turning cars to protect the bike traffic? This is where you want this		•		•	The study is not recommending to degrade bicycle conditions The study will evaluate the impacts of the proposed improvements. The study will evaluate the impacts of the proposed improvements. Bike signals are not appropriate for the proposed design.
35 36 ong Term 37 38 39 40 41	Like the lights, but may cause huge flow impact at the traffic lights <i>Eliminate Free Right Turn and Reconfigure Intersection</i> Make sure passability for bikers does not get reduced Back up Into roadway Will definitely hinder flow of traffic. Is there something like a light that stops the flow of the right turning cars to protect the bike traffic? This is where you want this Does not look like the suggested improvement will improve any saftey concerns		•		•	The study is not recommending to degrade bicycle conditions The study will evaluate the impacts of the proposed improvements. The study will evaluate the impacts of the proposed improvements.
35 36 ong Term 37 38 39 40 41 supertino	Like the lights, but may cause huge flow impact at the traffic lights <i>Eliminate Free Right Turn and Reconfigure Intersection</i> Make sure passability for bikers does not get reduced Back up Into roadway Will definitely hinder flow of traffic Is there something like a light that stops the flow of the right turning cars to protect the bike traffic? This is where you want this Does not look like the suggested improvement will improve any saftey concerns Middle School		•		•	The study is not recommending to degrade bloyde conditions. The study will evaluate the impacts of the proposed improvements. The study will evaluate the impacts of the proposed improvements. Bike signals are not appropriate for the proposed design. The study will evaluate the impacts of the proposed
35 36 37 37 38 39 40 41 Cupertino 42 43	Like the lights, but may cause huge flow impact at the traffic lights <i>Eliminate Free Right Turn and Reconfigure Intersection</i> Make sure passability for bikers does not get reduced Back up into roadway Will definitely hinder flow of traffic Is there something like a light that stops the flow of the right turning cars to protect the bike traffic? This is where you want this Does not look like the suggested improvement will improve any safley concerns Wildie School How will you ensure that traffic keeps flowing with installation of PHB/RRFB?		•			The study is not recommending to degrade bicycle conditions. The study will evaluate the impacts of the proposed improvements. The study will evaluate the impacts of the proposed design. Bike signals are not appropriate for the proposed design. The study will evaluate the impacts of the proposed improvements.
35 36 37 37 38 39 40 41 Cupertino 42 43	Like the lights, but may cause huge flow impact at the traffic lights Eliminate Free Right Turn and Reconfigure Intersection Make sure passability for bikers does not get reduced Back up into roadway Will definitely hinder flow of traffic Is there something like a light that stops the flow of the right turning cars to protect the bike traffic? This is where you want this Does not look like the suggested improvement will improve any saftey concerns Middle School How will you ensure that traffic keeps flowing with installation of PHB/RRF8? Upgrade sidewalk to shared-use path		•			The study is not recommending to degrade bicycle conditions. The study will evaluate the impacts of the proposed improvements. The study will evaluate the impacts of the proposed improvements. Bike signals are not appropriate for the proposed design. The study will evaluate the impacts of the proposed

Number of	Dots at Community (if applicable)	Meeting #2
Green	Yellow	Red
(Support)	(Uncertain / Need More Info)	(Do Not Support)
6	4	0
0	1	0
0	0	1
0	1	0
5	2	0
6	7	5
6	2	0
4	2	2
4	2	Z
0	0	1
v	J	
2	0	0
1	1	0
2	0	0
1	0	0
1	0	0
3	1	0
1	3	2
I	3	2
1	1	0
1	0	0
9	0	0

Number	Homestead Road Safe Routes to School Public Comments as of 4/3/2019	Referred to Partner Agency	Will be Considered in	Out of Study Scope	Project Team Res Comment Noted	ponse Additional Remarks
		Faither Agency	Study	Scope	(No Action)	
	n of Homestead Rd & Mary Ave	•	•			The study is focused on bicycle and pedestrian improvements. Vehicular improvements will not be assessed in the study.
46	Widen street (EB approach) and allow right turn on red		•			The study recommends high-visibility crosswalks at all
47	Please make crosswalk more visible to cars leaving parking lot		•			crosswalks. The study is focused on bicycle and pedestrian improvements.
48	Left turn into horseshoe	•		•		Vehicular improvements will not be assessed in the study. Crosswalks are standard width. The study recommends high-
49	Make crosswalk wider so cars from lot will see bikes	•	•			visibility crosswalks at all crosswalks.
Install Buf	fered/Protected Bike Lanes East of Mary Ave			-		The study analyzed ways enhance bicyclist and pedestrian
50	Please keep all bike/ped movement off Homestead and Horseshoe	•				saftey A bulb-out and tighter curb radius will be analzyed in the
51	Widen the curb from Homestead to Mary to slow down cars taking this turn to fast. (i.e. make corner tighter)		•			Protected bike lanes will be analyzed in the revised concept
52	Protected bike lane preferred		•			plans.
	East of Mary Ave	-	-	-		
53	Eliminate all on-street parking 24/7 along Homestead Road	•		-		
	ered/Protected Bike Lanes West of Kennewick		•			Protected bike lanes will be analyzed in the revised concept
54	Protected bike lane preferred		•	-		plans.
	idewalk to Shared-Use Path in front of Homestead High School Parking Lot		•			Shared-use paths are intended to work for both bicycilsts and
55	You need better description of how the shared-use paths are intented to work May slow the flow of traffic		•		•	pedestrians.
56 Extended	May slow the new of tranic				•	
-	Received By Comment Cards at Community Meeting #2, Feb 25, 2019					
56	More protected bike lanes would be prefered		•			Protected bike lanes will be analyzed in the revised concept plans.
57	Hwy 85 on/off ramps, Caltrans has plans for Hwy 85 @ Homestead improvements planned for 2020. How are they taken into account with relation to this study and its recommendations/plans?		•			The project team has been coordinating with the Caltrans
57			•			project. The study recommended reducing lane widths to 11' where
	Reduce speed on roadways by narrowing lanes or road diets		•			feasible. Protected bike lanes will be analyzed in the revised concept
57	Use as many protected bike lanes as possible	•	•	-		plans.
	Address bus stop in bike lane at Mary/Homestead Work with Homestead High School to connect/integrate bike lanes with interior routes to the bike racks	•				
		-	•			Widening the shared-use path will be analyzed in revised
58	Multi-Use pathways are great but maybe separate bike and ped areas of path I object to any futher restriction of parking on Homestead. It is an infringement on my priviledge to have visitors.	•				concept plans.
Comments	Received By Email After Community Meeting #2, March 12, 2019					
59	Kudos to San. Similian for bringing much-needed attention to these important safety issues. I am generally very pleased with the effort that has gone into addressing them, and my comments are directed toward the few (but significant) exceptions which hope you will work to mitigate to the greatest externt possible. First, it was a major disappointment to hear that extending the Multi-Use Path on the west side of the corridor will be achieved by eliminating the existing bike lane. Contrary to the wishful thinking of most traffic planners and others. MUPs are not a substitute for bike lanes. MUPs require cyclists to become rolling pedestrians, which does not serve the needs of commuters and others. MUPs are not a substitute for bike lanes. MUPs require cyclists to become rolling pedestrians, which does not serve the needs of commuters and others. MUPs are not a substitute for bike lanes. MUPs require cyclists to become rolling pedestrians, which does not serve the needs of commuters and other utility cyclists. And those who predictably rofuse to submit to this unreasonable restriction will result in endless conflict (which will be biamed entirely on the cyclists, of coursel). In the absence of evidence to the contrary, I accept your assertion that there is not enough room for both a bike lane and MUP in this segment. So if the MUP is installed, it is clear that the remaining travel lane width on the roadway will not be sufficient for a bicycle and vehicle to share side dovely. In order to minimize the damage from this condition, this segment should prominently display "filke symbol May Use Full Lane "signs (MUTCD R4-11), and paint Sharrows in the middle of the lane. This is by no means a solution to the problem, it is rurently used for a bike lane ean be so easily eliminated for what is perceived to be the greater good, then what is reventing the street space on other segments of this corridor, which is carrently disclasted to car parking for the vast majority of the time, from being referected to	•	•			Sharrows and signage will be analyzed in the revised concept plans.
60	First off I've lived in Cupertino since 1963 and have seen a lot of change around town. As a kid we road our bikes to schools and everywhere. Now a days it seems like every kid is driven to school. I'm not sure when that started but all the cars around the schools have in my mind created a dangerous situation not to mention the traffic jams associated with all those cars. We need to make driving cars hard and riding bikes easy. I truly believe protected bike lanes on Homestead road would promote more bike riders. I believe parents are afraid to let their kids ride bikes because of the traffic. Everyday I see cars in bike lanes waiting to make right turns fording the bikes into the path of raffic.		•			Protected bike lanes will be analyzed in the revised concept plans.

Green	(if applicable) Yellow	Red
(Support)	Yellow (Uncertain / Need More Info)	(Do No Suppor
	wore milloy	Juppor
0	0	1
8	1	0
F	0	^
5	0	0
4	2	1
4	2	
6	0	0
-		
	1	

Number	Homestead Road Safe Routes to School Public Comments as of 4/3/2019				Project Team Res	ponse	Number of	Dots at Community (if applicable)	Meeting #2
	Public Comments as of 4/3/2019	Referred to Partner Agency	Will be Considered in	Out of Study Scope	Comment Noted	Additional Remarks	Green (Support)	Yellow (Uncertain / Need	Red (Do Not
	I want to thank the Homestead Corridor Safe Routes Study project team for the opportunity the community had to hear about your proposed plans and provide feedback at the community meeting on Monday evening. Thank you. And, thank you for the multi-agency collaborative work you are doing for this project. I understand the feedback window is open for the next couple of weeks and I hope you will continue to receive valuable feedback from the community.	rai tha rigenay	Study	00000	(No Action)		(oupport)	More Info)	Support)
	I did want to take the time today to add one more thing to the top-level list of feedback I previously shared. Here's the addition:								
	- School Zone speed limits on the Homestead Road corridor should be consistently implemented across jurisdictions according to the speed laws of the vehicle code and the ability to establish lower school zone speed limits (Tsmph, Zsmph in 500 ft and 1000 ft radius of schools). In other words, implement the 15mph & 25mph school speed zones near the schools on the Homestead Road Corridor consistently throughout the corridor. Today, it appears there is inconsistent implementation. For example, near Cupertino Middle School (CMS):								
	The 15mph school speed zone has not yet been implemented on Bernardo Ave - although I understand Sunnyvale has plans to implement the 15mph zone on Bernardo Ave. (When will the implementation be done?).								
61	The 25mph school speed zone is posted on the west side of Homestead Road near Barrancha Dr./Acadia Way. However, a 35mph speed limit is posted on the west side of Homestead Road near Bernardo Ave, and I did not note an end of 25mph school speed zone sign on the west side (did I mist wigh?). For the east side of Homestead Road near CMS, I do not see any 25mph school speed zone posted (did I mist a sign?).	•							
	The Homestead Road corridor project should identify the full segments on both sides of Homestead Road (by CMS and Homestead High School (HHS)) that qualify for the 15mph/25mph school speed zones and implement it in the near term.								
	C Ca Legislative Information Division 11. RULES OF THE ROAD Chapter 7. Speed Laws - https://leginfo.legislature.ca.gov/faces/codes_displaySection.xhtmt?tawCode-VEH§ionNum=22358.4								
	City of Sunnyvale Legislative Public Meetings - Adopt a Resolution to Establish 15 MPH Speed Zones at 35 Locations Adjacent to 16 Public Schools in Sunnyvale - https://sunnyvaleca.legistar.com/LegislationDetail.aspx?ID-3710676&GUID-6238B814-1E75-46C1-8EFD- 148928FEA40482011Text-1								
	Mercury News - Sunnyvale to Drop Speed Limit Near Schools - https://www.mercurynews.com/2018/11/09/sunnyvale-to-drop-speed-limit-near-schools/								
	Import www.intercurpress.com/zore/interversional/generative/aropspeed-inter-teal-schools/ On Homestead Rd. at the Chevron station, can the unprotected left turn be restricted between 7:30-9 am? Please add signs to alert drivers to watch for cyclists.	•							
62	What are the instruction and safety measures for cyclist heading from the multi-use-path towards Vineyard? Please coordinate signal timing at Homestead & Bernardo and the conflicts between cyclists/vehicles at Homestead/Bernardo		•			Additional considerations will be analyzed in revised concept plans.			
	gas station ingress/egress and intersection of Homestead/Bernardo. A traffic light at Fallen Leaf and Homestead, active only at specific rush hour times, would be a great safety improvement. That	•	•		•				
	Intersection is currently dangerous for drivers and pedestrians. A quick note to say how very encouraged I am by the project plans thus far.		•		•				
	The proposed signalized intersection at Homestead and Fallen Leaf will be welcome for all of us in the Fallen Leaf neighborhood trying to get children to school or just walk or bike across Homestead safely. The question is whether all of the signalized intersections in dose proximity can be interconnected and timed to avoid further exacerbating jams during AM and PM peak periods.		•			The proposed traffic signal will be coordinated with the existing traffic signals on the corridor.			
63	As you know, during the AM peak, traffic going from Homestead to Foothill backs up often past Belleville. The only way to exit Fallen Leaf to Homestead is if someone lets you in the queue or a pedestrian pushes the signal to cross Homestead creating a traffic break.				•				
	In the afternoon, it can take 3 or more signal cycles to make the turn from Foothill onto Homestead because of the signal by Trader loes that does not allow traffic from Foothill to clear the turn onto Homestead. Often, Homestead is backed up all the way down to the Schietersection for reasons I don't understand. It is a traffic engineers nightmare. The effect of the AM and PM dog is traffic cutting through the neighborhood to exit onto Foothill by the Lucky Supermarket.	•			•				
	Obtaining funding will yet another challenge. And so it goes. I attended the Homestead Road Safe Routes to School Community Meeting on Monday, February 25. I want to convey				•				
	additional safety issues at the corner of Sweet Oak St and Homestead Rd that I brough to the City of Los Altos attention back in December 2018 in the following post to the online system. I have also included the reply from Aruna Bodduna referring me to the study. I spoke to Mayor Lynette Lee Eng at the meeting about this as well. The No L-turn sign at this corner is very frequently disregarded causing danger to people and property as indicated in my email	•			•				
64	below. Wy suggestion is to install a raised island that extends farther toward sweet Dak with a larger No Li-Turn sign. I also suggest that whichever public entity is responsible for patrolling this part of the roadway do so more frequently to reduce the illegal U-Turns.	•			•				
	There have been at least two accidents involving cars and bikes at this intersection as well. I am also concerned about the traffic backup from Foothill Expressway to Mary Avenue each evening due to lack of	•			•				
	coordination in timing of the traffic lights down Homestead during peak commute hours. Thank you for considering many of the comments that the Homestead HS team sent on the first round of suggestions and adding many more safety measures to the suggested improvements plan. I had a few question, suggestions, and comments that you may want to consider in the design phase for both the VERBS and the corridor projects. Please see below and let me know if any of the points require further clarifications.	•			•				
	 Sidewalk bulb-out on Mary Ave. should include a designated solution for cyclists to enter the bike lane around campus when heading from Mary Ave. to Campus, and a clear way to get to northbound bike lanes on Mary when leaving campus. The current design puts the cyclist on the curb that is congested with pedestrians. 		•			Additional ramps will be considered in revised concept plans.			
	 The bike lane on Homestead at the corner of Mary and at the entrance to the Student parking lot should be buffered (with physical barrier) all the way to the intersection as it is at Graham MS in Mountain View. This solution provides a clear and safe 		•			Protected bike lanes will be analyzed in the revised concept plans			
	blike lane. • The sidewalk along the students parking lot is converted to a multi-use path, Where would that path end? Students should not be encouraged to blike against traffic towards the horseshoe. (It is cut between the boards so not clear)		•			The shared-use path would be between the middle of Homestead High School driveway and Kennewick Drive.			
65	 At the corner of Bernardo and Homestead; Students biking westbound - how should cyclist enter the multi-use-path? Through the curb with the pedestrians? A portion of the bike lane between Kennewick and Stelling seem to be too narrow to comply with the requirements. Could 		•			Wider/additional ramps will be considered in the revised concept plans. Widening the bike lane will be considered in the revised			
	you please check and consider accordingly? • Canceling the bike lane eastbound from Bernardo and converting it to two ways multi-use path will create a heavily traveled		•			concept plans.			
	path with both ways traffic Cyclists might decide to share the road with cars when the path is congested. Appropriate signs and sharrows should be present to alert drivers to this option. This is not a good solution for students. • On Homestead Rd. at the Chevron station - can the unprotected left turn be restricted between 7:30-9 an? Additionally, can				•				
	signs be added to alert drivers to watch for cyclists be added?	•	•			Additional considerations will be analyzed in revised concept			
	What are the instruction and safety measures for cyclist heading from the multi-use-path towards Vineyard? What are the instructions and safety measures for cyclists heading from Grant Rd. to Homestead Rd. eastbound?		•			plans. Additional considerations will be analyzed in revised concept plans.			
	- General question: where should trash cans be positioned on trash collection day so it does not block the bike lane? Same question along the multi-use-path? I took a look at the document being circulated about the changes to Homestead Road for the Safe Routes to School. I also saw	٠							
66	a document about changes to bus routes. I would like to see an increase in public buses servicing Homestead High School as part of the solution to faffic congestion and unsafe driving. My daughter takes the bus, but says it is very conside on the bus, It would help to have buses come by more frequently to make taking public transit more palatable to students. Also, It was very difficult for me to find information about bus routes, bus fares, etc. on the school website. It would be helpful if that information was included on the school website and also a publis was made on campus, during parent orientation, to encourage the solution.	•							
	public transit. I am submitting feedback on the draft #2 plans presented during the community meeting at Homestead High School on 2/25/19. Please see attached pdf.								
67	Thank you to the county engineering team / staff and the consultants for working in such tight schedules. In hopes of helping the project team, I have gathered parent input and added details in the attached document.				•				
	And, please understand that we are very appreciative of the project team and if more parents were able to attend, more green dots would ve been added during the 2nd community meeting.								
	If any of our feedback is unclear or if you have any questions, the other SRTS parent leads and I are available to meet and discuss further. Just let us know.								

	Homestead Road Safe Routes to School				Dec. 1	
ber	Public Comments as of 4/3/2019	Referred to	Will be Considered in	Out of Study	Project Team Re Comment Noted	Additional Remarks
	SENERAL FEEDBACK TO TASK FORCE ON THE ENTIRE PROJECT	Partner Agency	Study	Scope	(No Action)	
H	Ve like the protected bike lanes in the plans throughout Homestead Road.				•	
- H	We like the green bike paint used throughout the Homestead Road Corridor.				•	
	We like the plano key crosswalks throughout the Homestead Corridor.				•	The proposed shared-use path is wider than the existing
	Can we expect the shared-use path in your proposed plans, to be similar to the current multiuser path on Homestead? (Are hese interchangeable terms, or are you proposing something different?) trans cans on trans collection day are other net in the modified on the black lance causing a safety hazard throughout Homestead				•	facility. Construction material will be determine in the design stage of the project.
	bad. Question where should the trash/recycle bins be placed on collection day, and where placed differ collection by the waste management company? Where do the recognized so with respect to the multituse path? Can instructions be published, incouraged and enforced so the receptacles are not a safety hazard to cyclists/pedestrians?	•				
	The timing of all the traffic signals along Homestead Road need to be coordinated (especially the signals on Homestead Road from Foothill Expressway to Bernardo).	•				
	What is the limeline for the implementation of the Homestead Corridor plans? At the first community meeting in November 2018, Supervisor Similian mentioned approximately 2.5 years to realization of project. 2RIORITY FEEEDBACK IN LOS ALTOS		•			The timeline for implementation will depend on when grant funding can be secured.
	In account of the second of th		•			Additional considerations will be analyzed in revised concept plans.
h	ow can children returning from school get safely from the pathway, over to the expressway and across to Vineyard? Please provide detailed plans for this.		•			Additional considerations will be analyzed in revised concept plans.
-	We are concerned that the bike sharrows on the roadway on Homestead between El Sereno and Grant imply to students that hey should bike in the roadway. This is not very safe for students. Is there a way to flow and direct the students onto the utilities path in this location? Could a sign be placed on Homestead before the El Sereno Intersection directing [student] cyclists to use the multiuse path thread sign and have and homestead before the El Sereno Intersection directing [student] cyclists to use the multiuse pathway? (And, in addition to the sharrows, is a sign alerting drivers that cyclists on on the roadway needed?)		•			prais. Additional signage will be analyzed in revised concept plans.
ł	,					
	What is the proposed width of the paved portion of the multiuser path between EI Sereno and Grant? Will It be wide enough o accommodate the volume of 2-way bike and ped traffic expected on this pathway during school route hours? The intersection of NB Footmill at Homestead was not addressed in the Homestead Corridor Sate Notes project. The Measure 2 orcitect being loaned for 2807 corbin with a Homestead auxiliar Viane immast the safet you to the school route and safe		•			The proposed width is 12', the industry standard for enhance shared-use paths.
	g project being planned for 200/ softhill with a Homestead auxiliary lane impacts the safety on the school route and safe outes to school needs to be a priority component of that project. The traffic light at Homestead and Fallen Leaf is a great improvement. The timing of the signal needs to be coordinated along with the limiting of all the signals on thomestead Read from Foothil Expressive to Beardon's Acrossing guest also needed at				•	
	ni n	•	•			
H	Can a sign be added in the middle of the EI Sereno crosswalk that says yield/stop for pedestrians in crosswalk?	•				
	On Homestead at the Chevron station can the unprotected left turn be restricted so it is not allowed 7:30-9 am? In addition to the painted stop and stop bars on the asphalt that are part of the project plans,) can signs be added alerting	•				
Ī	threns to watch for cyclists at the Chevron/TU/Starbucks/Peet's shopping complex ingress/egress driveways? an signs be added near the intersection of Homestead Noad and the Chevron station and Li Sereno alerting drivers to watch- or cyclists? (Including to alert traffic turning left from Homestead onto El Sereno.)	•				
	can a sign be added on El Sereno before the Homestead intersection alerting drivers of 2-way bicycle traffic on the multi-use aathway on Homestead Road? Please add signs to alert drivers coming from El Sereno to the 2-way cyclist traffic.	•				
	Can the free right hand turn from Homestead Road onto NB Foothill be changed to a standard/squared-off (not free) right urn?	•				
	are a green blike lane painted (and signs be added?) to warn drivers taking the free right hand turn from Homestead onto NB Foothill to be careful for pedestrians/cyclists? This is a conflict area between vehicles making free-right turns and students who rer trying to cross the expressway to reach Vineyard.		•			Green conflict zone striping in included in the concept plans a the northbound right turn lane. Additional signage considerations will be anlayzed in the revised concept plans.
	Can the green bike lane that is proposed on Homestead in front of the gas station the started earlier so that it runs all the way round the curve on Homestead, along and in front of the gas station? The curve is also a conflict spot for cyclists who cross sver to Homestead from the Vineyard side of the expry, as they have to deal with traffic that is entering Homestead (especially he traffic that has just entered Homestead from NB expressway that takes the curve tightly and often drives in the bike lane oday).		•			Green bike lane striping will be added around the curb in the revised concept plans.
	Can you explain the plans for the intersection of the right turn from Vineyard onto SB Foothill? (Including with respect to the crosswalk across the current free right hand turn.) We don't fully understand the plans presented at the community meeting.				•	
	Will all ramps at the intersection of Homestead and Foothill, and Vineyard and Foothill be made ADA compliant? In the Jagarams from the second community meeting, it appears non-ADA compliant ramps are not marked for change/upgrade		•			Additional considerations will be analyzed in revised concept plans.
ŀ	We like the extension of the multi-user pathway from where it currently ends to Belleville. What is the proposed width of the					
	aved area of this pathway extension? Will it be wide enough to accommodate the high volume of two-way bike and edestrain traffic expected on this portion of the pathway during school route hours? (Making it the same width as the existing aved pathway, will not be wide enough in this area. It needs to be wider.)		•			The proposed width is 14' which is wider than the existing 8' shared-use path.
	We are concerned that the proposed multi-user path on Homestead between Belleville and Bernardo is too narrow. What is the proposed width of the paved area? Given the close proximity to Cupertino Middle School, and the nearness of West Valley Elementary School, this is a heavily traveled area with students headed in both directions (two-way bike & ped traffic) based on					Widening the existing shared-use path will be analyzed in revised concept plans.
	what school they attend. Also given the proximity to the schools, there is a heavy mix of both cyclists and pedestrians at every age level and ability (Including parents returning from walking/cycling hildren to school) that need to use the multi-user pathway at the same time. We are also concerned that high school students and adult cyclists who pass through here during the same time.					Additional signage will be analzyed in the revised concept plans.
	elementary and middle school route hours, often at high speed, will be significantly impacted by the absence of the bike lane. We are concerned that these cycliss, including high school students, will decide to ride within the roadway (without a bike ane) when the path is congested and that this will be dangerous. (At minimum, could drivers be alerted, with signage, to watch for cyclist's). Is there a way to flow and direct the student cyclist con the multi-user path especially between Bernardo		•			Wider ramps included in the concept plans. Additonal bike ramps will be analzyed in the revised concept plans.
l	and Belleville where the proposed plans eliminate the bike lane? For this location, with respect to cyclicity/dedestrian safely we verfer the plans presented at the second task force meeting, that provide a wider pathway, and an on-road bike lane. To schwer this, it was proposed that the merge on westbound Homestead take place before 85 (for lafter Belleville where it takes place today). While we understand Sunnyaele may be concerned about such change causing vehicle back-up on Homestead, we equest that a study be done to determine the actual impacts expected.					The shared-use path is the preferred option since removal of vehicular lanes to provide a multimodal facility on the north side of Homestead Road is not feasible per City of Sunnyvale.
	Consistent 25mph/15mph school zone speed limits should be implemented on Homestead Road and on Bernardo Ave near Cuperlino Middle School (CMS). Today on Homestead Road near CMS the 25mph school speed zone is inconsistently melemented arccsis puridicitions and the zone appears to only exist for a short duration on one side of the road (the outh/west side from near Acacia Way to Bernardo Ave. for east bound traffic). The normal speed on Homestead is posted as 35mph. Also, the 15mph zone for Bernardo has not yet been implemented. (When will that be implemented?) Mats it he suggested route to Cupertino Middle School for students after they have crossed Bs? Some of our more specific	•				
ł	Will the access path continue to run between the gas station and 85?				•	Yes. The access path is owned by the City of Cupertino and they do not have plans to close it.
1	s there enough space on the sound wall side of Bernardo to add a shared-user path as the proposed plans indicate? With the proposed NRH B intractators on Bernardo (right by the school), will vehicles have enough opportunity to proceed on Bernardo Ave or will the RRF be frequently activated (given the high volume of students using this crosswalls today), causing vehicle congestion during school start/end hours? Will a crossing guard be deployed in this location to control when the button spushed to also give vehicles during busy drop-off/picku-p hours an opportunity to drive trough? A crossing guard is needed there today. It is a busy dangerous crossing JA nRFB is a velcome addition in this dangerous crossing, but It would need to be perated by a crossing guard furingeshool start/end things who can hold students and also give vehicles a chinace to drive	•			•	Yes. The shared-use path will be constructed by repurposing excess width of the existing roadway.
	Through the crosswalk or students to go to the intersection of Homestead/Bernardo (instead of cut behind the gas station), now will you address the cyclist control twith the ingress/agress from the gas station in both morning and afternoon? The gas tation does not have many customers during school route hours (especially in the morning), but parents use it as a drop-off pot and a cut-through to Bernardo Aw (the latter is frequently done in the morning the intersection of Homestead/Bernardo is so busy and drivers have to wait through multiple green lights to get a chance to turn left onto Jernardo). This is very dangerous for cyclists.		•			Conflict zone striping is recommended to be provided at the assistation driveways.

Number of	Dots at Community (if applicable)	Meeting #2
Green (Support)	Yellow (Uncertain / Need More Info)	Red (Do Not Support)
		-

umber	Homestead Road Safe Routes to School Public Comments as of 4/3/2019				Project Team Res	sponse
		Referred to Partner Agency	Will be Considered in Study	Out of Study Scope	Comment Noted (No Action)	Additional Remarks
	If the suggested route is for sludents to go to the intersection of Homistead/Bernardo (instead of cut behind the gas station), how will you deal with the conflict between cyclists crossing Bernard oa Homisstad in the morning and vehicles turning right from vestbound Homisstad onto Bernardo? Could the vehicles be given a green right turn signal/arrow so they have a chance to turn (and maybe a no turn on red, so they are not turning when the vehicles from eastbound Homestead have a green signal to turn (and maybe a no turn on red, so they are not turning when the vehicles from eastbound Homestead have a green signal to turn (into Bernardo)?				•	To provide a protected turn phase, a turn lane must be provided. Since one does not exist, the roadway would have to be widened, which is not feasible.
	Especially if the suggested route is for students to go to the intersection of Homestead/Bernardo (instead of cut behind the gas station), a crossing guard at this location should be provided.	•				
	How wide are you proposing for the paved portion of the shared-use path on Bernardo Ave (school side)? Note, given the proximity to the school the path will be heavily used by both cyclists and pedestrians and needs to be wide enough.		•			The proposed width is 14'.
	How will cyclists returning from Homestead High School enter the multi-user path? (Will the path be aligned/straight ahead from where the bike lane ends? And do they enter via a curb?)		•			The bike lane aligns with the shared-use path and a wider ramp is provided in the concept plans.
67	Homestead High School (HHS) parents park/wait in their vehicles on Homestead Road near the school to pick up their children in the afternoon. Unfortunately, on a daily basis, drivers/vehicles are blocking the eastbound bike lane from way before the HHS staff to land studen tot. This impacts Cuperiton Wildlie School (CMS) student cyclist who return home set HHS. (CMS) test dismissed slightly earlier than HHS). CMS students are not able to use the eastbound bike lane as they approach HHS in the afternoon because the waiting wehicles are blocking in to so they approach HHS in the afternoon because the waiting wehicles are blocking in to so they approach HHS in the afternoon because the waiting wehicles are blocking in to so they are not be other side of the road (going the 'vrong way'), on the sidewalk. (Could something like buffered/protected bike lanes like the ones used by Graham Middle School in Mountain View, be used on Homestead Road on the HHS side of the road from McKenzie Dr. to the end of IHHS property (across from Kennewick Dr. 7)		•			Protected bike lanes will be analyzed in the revised concept plans.
	ADDITIONAL FEEDBACK IN SUNNYVALE AND CUPERTINO					
	How will cyclists returning from Homestead High School enter the multi-user path? (Will the path be aligned/straight ahead from where the bike lane ends? And do they enter via a curb?)		•			The bike lane aligns with the shared-use path and a wider ramp is provided in the concept plans.
	We like the proposed plans to complete the sidewalk on Homestead in the small area that is somewhere between Lucky Oak and Barranca Dr where the sidewalk is missing today.				•	
	We like the no right turn on red sign on Belleville (for turns onto Homestead). Could a crossing guard also be added at the Homestead and Belleville intersection?	•				
	We like the elimination of the free right hand turn from Homestead onto NB 85, as it will provide safety protections to student cyclists. Can you define an approximate timeline for these long-term plans?				•	Further coordination with Caltrans is necessary to determine the timeline for this long-term project.
	For the 58 B5 off ramp at Homestead, is the work Califarias is planning for the near-term AUA project, aligned with the proposed multi-user path for this location? (In other words, do ped/cyclists enter a multi-user pathway the same way they enter a sidewalk?)		•			The concept plans have recommendations beyond the scope of the Caltrans ADA project. Wider ramps will be provided for the shared-use path.
	The work Carran's is planning for the near-term AUA project, at the NB 85 on-ramp across the tree-right turn does not appear to be aligned with the plans for the Homestead Corridor Safe Routes project. Is all the other work Caltrans planning in the near-term ADA project at this location, aligned with the plans for the Homestead Corridor Safe Routes?		•			The concept plans have recommendations beyond the scope of the Caltrans ADA project.

5

Number of	Dots at Community (if applicable)	Meeting #2
Green (Support)	Yellow (Uncertain / Need More Info)	Red (Do Not Support)

E. Collected Traffic Count Data

Location: Foothill Expy & Homestead Rd City: Los Altos Control: Signalized

Project ID: 18-08664-101 Date: 12/11/2018

_								10	tai								
NS/EW Streets:		Foothill	Ехру		Foothill Expy				Homestead Rd				Homestead Rd				
		NORTH	BOUND		SOUTHBOUND				EASTBOUND				WESTBOUND				
AM	1	2	1	0	1	2	1	0	0	1	1	0	1.5	0.5	1	0	
7 (1 • 1	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
7:00 AM	1	228	36	0	7	53	0	0	3	2	4	0	44	0	54	0	432
7:15 AM	2	286	33	0	14	68	1	0	3	7	7	0	63	0	64	0	548
7:30 AM	1	291	54	0	69	114	7	0	3	26	6	0	82	4	98	0	755
7:45 AM	8	352	41	0	41	144	5	1	4	9	9	0	105	6	90	0	815
8:00 AM	2	250	66	1	40	135	3	0	6	8	8	0	125	9	140	0	793
8:15 AM	1	247	73	1	48	152	3	0	2	5	9	0	113	1	126	0	781
8:30 AM	1	267	71	2	55	183	2	0	4	5	7	0	107	3	96	0	803
8:45 AM	4	255	94	0	26	115	0	0	1	6	8	0	101	3	112	0	725
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
TOTAL VOLUMES :	20	2176	468	4	300	964	21	1	26	68	58	0	740	26	780	0	5652
APPROACH % 's :	0.75%	81.56%	17.54%	0.15%	23.33%	74.96%	1.63%	0.08%	17.11%	44.74%	38.16%	0.00%	47.87%	1.68%	50.45%	0.00%	
PEAK HR :	()7:45 AM -	08:45 AM														TOTAL
PEAK HR VOL :	12	1116	251	4	184	614	13	1	16	27	33	0	450	19	452	0	3192
PEAK HR FACTOR :	0.375	0.793	0.860	0.500	0.836	0.839	0.650	0.250	0.667	0.750	0.917	0.000	0.900	0.528	0.807	0.000	0.979
		0.86	52			0.84	46			0.86	54		0.840				0.979

Total

Location: Foothill Expy & Homestead Rd City: Los Altos Control: Signalized

Project ID: 18-08664-101 Date: 12/11/2018

_								DIN	(C3								
NS/EW Streets:		Foothill	Ехру		Foothill Expy				Homestead Rd				Homestead Rd				
		NORTH	BOUND		SOUTHBOUND				EASTB	OUND			WESTB	OUND			
AM	1	2	1	0	1	2	1	0	0	1	1	0	1.5	0.5	1	0	
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
7:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	0	2
7:15 AM	0	1	0	0	0	1	0	0	0	1	0	0	1	0	4	0	8
7:30 AM	0	2	0	0	1	0	0	0	0	7	0	0	0	0	1	0	11
7:45 AM	0	4	1	0	0	0	0	0	0	15	0	0	0	0	3	0	23
8:00 AM	0	2	1	0	3	1	0	0	0	1	0	0	0	1	1	0	10
8:15 AM	0	3	2	0	3	1	0	0	0	0	0	0	0	0	1	0	10
8:30 AM	0	1	0	0	2	0	0	0	0	0	0	0	2	0	1	0	6
8:45 AM	0	2	0	0	0	0	0	0	0	0	0	0	0	0	2	0	4
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
TOTAL VOLUMES :	0	15	4	0	9	3	0	0	0	24	0	0	3	1	15	0	74
APPROACH % 's :	0.00%	78.95%	21.05%	0.00%	75.00%	25.00%	0.00%	0.00%	0.00%	100.00%	0.00%	0.00%	15.79%	5.26%	78.95%	0.00%	
PEAK HR :	С	7:45 AM -	08:45 AM														TOTAL
PEAK HR VOL :	0	10	4	0	8	2	0	0	0	16	0	0	2	1	6	0	49
PEAK HR FACTOR :	0.000	0.625	0.500	0.000	0.667	0.500	0.000	0.000	0.000	0.267	0.000	0.000	0.250	0.250	0.500	0.000	0.533
		0.70	00			0.62	25			0.26	57			0.75	50		0.000

Bikes

Location: Foothill Expy & Homestead Rd

Project ID: 18-08664-101 Date: 12/11/2018

City: Los Altos

NS/EW Streets:	15		Foothill Expy		Homestead Rd		Homestead Rd		
AM		TH LEG	SOUTH LEG		EAST LEG		WES		
	EB	WB	EB	WB	NB	SB	NB	SB	TOTAL
7:00 AM	0	0	0	0	0	0	0	0	0
7:15 AM	0	0	0	0	0	0	0	0	0
7:30 AM	0	0	1	0	0	0	0	0	1
7:45 AM	0	0	0	0	0	0	0	0	0
8:00 AM	0	2	0	0	0	0	0	0	2
8:15 AM	0	0	2	0	0	0	0	0	2
8:30 AM	0	0	0	0	0	0	0	0	0
8:45 AM	0	2	1	0	0	0	0	0	3
	EB	WB	EB	WB	NB	SB	NB	SB	TOTAL
TOTAL VOLUMES :	0	4	4	0	0	0	0	0	8
APPROACH %'s :	0.00%	100.00%	100.00%	0.00%					
PEAK HR :	07:45 AM	- 08:45 AM	07:45 884						TOTAL
PEAK HR VOL :	0	2	2	0	0	0	0	0	4
PEAK HR FACTOR :		0.250	0.250						0.500
	0.	250	0.2	50					0.500

7:00 AM	99	17	0	0	0	5	3	0	0	0	49	0	0	0	0	0	1/3
7:15 AM	137	22	0	0	0	12	5	0	0	0	55	0	0	0	0	0	231
7:30 AM	179	25	0	0	0	13	7	0	0	0	65	0	0	0	0	0	289
7:45 AM	226	24	0	0	0	16	4	0	0	0	69	0	0	0	0	0	339
8:00 AM	237	23	0	0	0	17	6	0	0	0	108	0	0	0	0	0	391
8:15 AM	253	27	0	0	0	12	3	0	0	0	100	0	0	0	0	0	395
8:30 AM	215	29	0	0	0	26	4	0	0	0	150	0	0	0	0	0	424
8:45 AM	229	29	0	0	0	14	4	0	0	0	161	0	0	0	0	0	437
									-				-				
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
TOTAL VOLUMES :	1575	196	0	0	0	115	36	0	0	0	757	0	0	0	0	0	2679
APPROACH %'s :	88.93%	11.07%	0.00%	0.00%	0.00%	76.16%	23.84%	0.00%	0.00%	0.00%	100.00%	0.00%					
PEAK HR :		- MA 00:80							0.8:45.4.94								TOTAL
PEAK HR VOL :	934	108	0	0	0	69	17	0	0	0	519	0	0	0	0	0	1647
PEAK HR FACTOR :	0.923	0.931	0.000	0.000	0.000	0.663	0.708	0.000	0.000	0.000	0.806	0.000	0.000	0.000	0.000	0.000	0.942
		0.93	30			0.7	17			0.8	06						01712
		NODT	DOLIND			0011711	DOLUND			FACT				14/507	DOLIND		1
	4.5	NORTH		•		SOUTH		•	0	EASTE		•	•		BOUND	•	
PM	1.5	0.5	0	0	0	1	1	0	0	0	1	0	0	0	0	0	TOTAL
2.00 PM	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
2:00 PM	111	29	0	0	0	18	8	0	0	0	94	0	0	0	0	0	260
2:15 PM	125	29	0	0	0	14	8 6	0	0	0	76	0	0	0	0	0	252
2:30 PM 2:45 PM	93 135	51 16	0 0	0	0	20 29	6 9	0 0	0	0 0	96 123	0	0	0	0	0	266 312
3:00 PM	135	26	0	0	0	29	6	0	0	0	123	0	0	0	0	0	305
3:15 PM	113	20	0	0	0	24 40	12	0	0	0	175	0	0	0	0	0	305
3:30 PM	134	36	0	0	0	37	7	0	0	0	145	0	0	0	0	0	359
3:45 PM	117	30	0	0	0	33	4	0	0	0	143	0	0	0	0	0	344
4:00 PM	101	25	0	0	0	28	8	0	0	0	178	0	0	0	0	0	340
4:15 PM	103	28	Ő	Ő	0	34	10	0	0	Ő	173	Ő	0	Ő	Ő	Ő	348
4:30 PM	95	31	0	0	0	35	11	0	0	0	193	0	0	0	0	0	365
4:45 PM	122	22	Ő	õ	0	27	5	0	0	Ő	210	Ő	0	õ	Ő	Ő	386
5:00 PM	80	21	0	0	0	20	6	0	0	0	206	0	0	0	0	0	333
5:15 PM	126	28	Ő	õ	0	27	4	Ő	0	Ő	187	Ő	0	õ	Ő	Ő	372
5:30 PM	120	31	Ő	0	0	27	6	0	0	Ő	171	0	0	Ő	Ő	Ő	355
5:45 PM	118	28	Ő	Ő	0	24	5	0	0	Ő	193	0	0	Ő	Ő	Ő	368
2.1011			-	-	-		-	-	-	-		-	-	-	-	-	
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
TOTAL VOLUMES :	1806	458	0	0	0	437	115	0	0	0	2516	0	0	0	0	0	5332
APPROACH %'s :	79.77%	20.23%	0.00%	0.00%	0.00%	79.17%	20.83%	0.00%	0.00%	0.00%	100.00%	0.00%					
PEAK HR :	(04:30 PM -	05:30 PM		0.4:30 [8]				04:45 PM								TOTAL
PEAK HR VOL :	423	102	0	0	0	109	26	0	0	0	796	0	0	0	0	0	1456
PEAK HR FACTOR :	0.839	0.823	0.000	0.000	0.000	0.779	0.591	0.000	0.000	0.000	0.948	0.000	0.000	0.000	0.000	0.000	0.943
		0.8	52			0.73	34			0.9	48						0.943

Total

EL

SU

Homestead Rd

ΕT

EASTBOUND

ER

55 65

Grant Rd

ST

SL

NU

SOUTHBOUND

SR

Location: Grant Rd & Homestead Rd City: Los Altos Control: 1-Way Stop(SB)

1.5

NL

Grant Rd

NORTHBOUND

NR

0.5

NT

NS/EW Streets:

7:00 AM

AM

Project ID: 18-08549-101 Date: 10/24/2018

Homestead Rd

WESTBOUND

WR

WT

WU

TOTAL

WL

EU

		NORTH	BOUND			SOUTH	BOUND			EASTE	BOUND			WEST	BOUND		
AM	1.5	0.5	0	0	0	1	1	0	0	0	1	0	0	0	0	0	
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
7:00 AM	1	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	2
7:15 AM	3	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	4
7:30 AM	0	1	0	0	0	0	0	0	0	0	2	0	0	0	0	0	3
7:45 AM	4	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	5
8:00 AM	3	3	0	0	0	0	0	0	0	0	3	0	0	0	0	0	9
8:15 AM	3	0	0	0	0	0	0	0	0	0	5	0	0	0	0	0	8
8:30 AM	6	0	0	0	0	16	0	0	0	0	15	0	0	0	0	0	37
8:45 AM	1	3	0	0	0	19	0	0	0	0	6	0	0	0	0	0	29
						07											TOTAL
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
TOTAL VOLUMES :	21	7	0	0	0	35	0	0	0	0	34	0	0	0	0	0	97
APPROACH %'s :	75.00%		0.00%	0.00%	0.00%	100.00%	0.00%	0.00%	0.00%	0.00%	100.00%	0.00%					TOTAL
PEAK HR :		08:00 AM -															TOTAL
PEAK HR VOL :	13	6	0	0	0	35	0	0	0	0	29	0	0	0	0	0	83
PEAK HR FACTOR :	0.542	0.500	0.000	0.000	0.000	0.461	0.000	0.000	0.000	0.000	0.483	0.000	0.000	0.000	0.000	0.000	0.561
		0.79	72			0.46	51			0.4	83						
		NODTU				COLITI				FACT					DOUND	1	
	4.5	NORTH		•	0	SOUTH	BOUND	•			BOUND	•	•		BOUND	•	
PM	1.5	0.5	0	0	0	1	1	0	0	0	1	0	0	0	0	0	TOTAL
2:00 PM	NL	NT 3	NR 0	NU 0	<u>SL</u>	ST 0	SR 0	SU	EL 0	<u>ET</u>	ER 4	<u>EU</u>	WL 0	<u>WT</u>	WR	<u></u>	TOTAL
2:00 PM 2:15 PM	0	3 1		-	0	2	0	0	0	0	4	0	0	0	0 0	0	5
2:15 PM 2:30 PM	0	0	0 0	0 0	0	2	3	0	0	0	1	0	0	0	0	0	6
2:45 PM	0	0	0	0	0	2	0	0	0	0	0	0	0	0	0	0	3
3:00 PM	9	32	0	0	0	0	0	0	0	0	0	0	0	0	0	0	41
3:15 PM	7	32	0	0	0	0	0	0	0	0	2	0	0	0	0	0	6
3:30 PM	4	9	0	0	0	0	0	0	0	0	5	0	0	0	0	0	18
3:45 PM	1	9	0	0	0	2	0	0	0	0	1	0	0	0	0	0	16
4:00 PM	2	9	0	0	0	0	0	0	0	0	1	0	0	0	0	0	10
4:15 PM	2	2	Ő	0	Ő	1	0	õ	Ő	0	3	Ő	0	ő	Ő	Ő	8
4:30 PM	2	3	Ő	0	Ő	0	0	õ	Ő	Ő	Ő	0	0	õ	Ő	Ő	5
4:45 PM	3	3	Ő	0	0	3	0	Ő	0	0	1	0	0	Ő	Ő	Ő	10
5:00 PM	2	3	0	0	0	3	0	0	0	0	4	0	0	0	0	0	12
5:15 PM	5	2	Õ	0	0	1	0	Ő	0	0	2	0	0	Õ	0	0	10
5:30 PM	5	1	0	0	0	2	0	0	0	0	3	0	0	0	0	0	11
5:45 PM	5	0	0	0	0	2	0	0	0	0	3	0	0	0	0	0	10
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
TOTAL VOLUMES :	45	80	0	0	0	21	3	0	0	0	31	0	0	0	0	0	180
APPROACH % 's :	36.00%	64.00%	0.00%	0.00%	0.00%	87.50%	12.50%	0.00%	0.00%	0.00%	100.00%	0.00%					
PEAK HR :		04:30 PM -	05:30 PM		04:30 [84]												TOTAL
PEAK HR VOL :	12	11	0	0	0	7	0	0	0	0	7	0	0	0	0	0	37
PEAK HR FACTOR :	0.60	0.917	0.000	0.000	0.000	0.583	0.000	0.000	0.000	0.000	0.438	0.000	0.000	0.000	0.000	0.000	0.771
		0.07				0.50					20						

0.583

0.438

Bikes

Homestead Rd

Grant Rd

Project ID: 18-08549-101 Date: 10/24/2018

Homestead Rd

Location: Grant Rd & Homestead Rd City: Los Altos Control: 1-Way Stop(SB)

0.821

Grant Rd

NS/EW Streets:

Location: Grant Rd & Homestead Rd City: Los Altos Project ID: 18-08549-101 Date: 10/24/2018

			Peue	estrians	(0000000	aiks)			_
NS/EW Streets:	Grar	nt Rd	Grai	nt Rd	Homes	tead Rd	Homest	tead Rd	
AM	NORT	H LEG	SOUT	TH LEG	EAST	T LEG	WEST	Г LEG	
AIVI	EB	WB	EB	WB	NB	SB	NB	SB	TOTAL
7:00 AM	1	0	0	0	1	0	0	0	2
7:15 AM	0	0	0	0	0	1	0	0	1
7:30 AM	0	0	0	0	1	2	0	0	3
7:45 AM	0	1	0	0	1	2	0	0	4
8:00 AM	0	0	0	0	2	1	0	0	3
8:15 AM	2	2	0	0	6	3	0	0	13
8:30 AM	0	0	0	0	2	2	0	0	4
8:45 AM	0	0	0	0	0	0	0	0	0
	EB	WB	EB	WB	NB	SB	NB	SB	TOTAL
TOTAL VOLUMES :	3	3	0	0	13	11	0	0	30
APPROACH %'s :	50.00%	50.00%			54.17%	45.83%			
PEAK HR :	08:00 AM	- 09:00 AM	08:00 414						TOTAL
PEAK HR VOL :	2	2	0	0	10	6	0	0	20
PEAK HR FACTOR :	0.250	0.250			0.417	0.500			0.295
	0.2	250			0.4	144			0.385

PM	NOR	ΓΗ LEG	SOUT	H LEG	EAS	Г LEG	WEST	Г LEG	
PIVI	EB	WB	EB	WB	NB	SB	NB	SB	TOTAL
2:00 PM	0	0	0	0	0	0	0	0	0
2:15 PM	0	0	0	0	0	0	0	0	0
2:30 PM	0	0	0	0	0	0	0	0	0
2:45 PM	0	0	0	0	0	0	0	0	0
3:00 PM	0	0	0	0	3	0	0	0	3
3:15 PM	0	1	0	0	3	1	0	0	5
3:30 PM	0	0	0	0	2	0	0	0	2
3:45 PM	0	0	0	0	1	0	0	0	1
4:00 PM	0	1	0	0	2	2	0	0	5
4:15 PM	0	0	0	0	3	0	0	0	3
4:30 PM	0	1	0	0	2	0	0	0	3
4:45 PM	0	2	0	0	2	1	0	0	5
5:00 PM	0	0	0	0	2	1	0	0	3
5:15 PM	0	0	0	0	0	0	0	0	0
5:30 PM	0	0	0	0	2	0	0	0	2
5:45 PM	0	1	0	0	3	4	0	0	8
	EB	WB	EB	WB	NB	SB	NB	SB	TOTAL
TOTAL VOLUMES :	0	6	0	0	25	9	0	0	40
APPROACH %'s :	0.00%	100.00%			73.53%	26.47%			
PEAK HR :	04:30 PM	- 05:30 PM	04:30 PM						TOTAL
PEAK HR VOL :	0	3	0	0	6	2	0	0	11
PEAK HR FACTOR :		0.375			0.750	0.500			0.550
	0.	375			0.0	667			0.550

Location: Grant Rd/Homestead Rd & Homestead Rd City: Los Altos Control: 1-Way Stop (SB)

Project ID: 18-08664-001 Date: 12/11/2018

NS/EW Streets:	Gr	rant Rd/Hon	nestead Rd		Gr	ant Rd/Hor	mestead Ro	l		Homest	ead Rd			Homes	tead Rd		
		NORTH	BOUND			SOUTH	BOUND			EASTI	BOUND			WEST	BOUND	0 WU 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
AM	1.5	0.5	0	0	0	1	1	0	0	1	0	0	0	0	0	0	
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
7:00 AM	89	11	0	0	0	9	5	0	0	0	45	0	0	0	0	0	159
7:15 AM	124	24	0	0	0	12	5	0	0	0	59	0	0	0	0	0	224
7:30 AM	173	34	0	0	0	29	5	0	0	0	142	0	0	0	0	0	383
7:45 AM	196	36	0	0	0	21	10	0	0	0	95	0	0	0	0	0	358
8:00 AM	259	31	0	0	0	19	7	0	0	0	114	0	0	0	0	0	430
8:15 AM	239	22	0	0	0	12	7	0	0	0	129	0	0	0	0	0	409
8:30 AM	206	26	0	0	0	19	3	0	0	0	129	0	0	0	0	0	383
8:45 AM	212	28	0	0	0	19	6	0	0	0	123	0	0	0	0	0	388
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR		TOTAL
TOTAL VOLUMES :	1498	212	0	0	0	140	48	0	0	0	836	0	0	0	0	0	2734
APPROACH %'s :	87.60%	12.40%	0.00%	0.00%	0.00%	74.47%	25.53%	0.00%	0.00%	0.00%	100.00%	0.00%					
PEAK HR :	(- MA 00:80	09:00 AM						108500 AM								TOTAL
PEAK HR VOL :	916	107	0	0	0	69	23	0	0	0	495	0	0	0	0	0	1610
PEAK HR FACTOR :	0.884	0.863	0.000	0.000	0.000	0.908	0.821	0.000	0.000	0.000	0.959	0.000	0.000	0.000	0.000	0.000	0.936
		0.88	32			0.88	35			0.9	59						0.730

Total

Location: Grant Rd/Homestead Rd & Homestead Rd City: Los Altos Control: 1-Way Stop (SB)

Project ID: 18-08664-001 Date: 12/11/2018

-									(05								
NS/EW Streets:	Gr	ant Rd/Hor	mestead Rd		G	rant Rd/Hor	mestead Rd			Homeste	ead Rd			Homes	tead Rd		
		NORTH	BOUND			SOUTH	BOUND			EASTE	OUND			WEST	BOUND	0 WU 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
AM	1.5	0.5	0	0	0	1	1	0	0	1	0	0	0	0	0	0	
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
7:00 AM	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2
7:15 AM	5	0	0	0	0	1	0	0	1	0	0	0	0	0	0	0	7
7:30 AM	1	0	0	0	0	19	0	0	0	0	9	0	0	0	0	0	29
7:45 AM	4	0	0	0	0	27	0	0	0	0	12	0	0	0	0	0	43
8:00 AM	2	0	0	0	0	3	0	0	0	0	5	0	0	0	0	0	10
8:15 AM	2	0	0	0	0	0	0	0	0	0	5	0	0	0	0	0	7
8:30 AM	3	1	0	0	0	1	0	0	0	0	2	0	0	0	0	0	7
8:45 AM	1	1	0	0	0	2	0	0	0	0	0	0	0	0	0	0	4
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	\\// I	TOTAL
TOTAL VOLUMES :	20	2	0	0	0	53	0	0	1	0	33	0	0	0	0		109
APPROACH %'s :	90.91%	9.09%	0.00%	0.00%	0	100.00%	0.00%	0.00%	2.94%	0.00%	97.06%	0.00%	Ū	0	0	0	107
PEAK HR :		- MA 00:80															TOTAL
PEAK HR VOL :	8	2	0	0	0	6	0	0	0	0	12	0	0	0	0	0	28
PEAK HR FACTOR :	0.667	0.500	0.000	0.000	0.000	0.500	0.000	0.000	0.000	0.000	0.600	0.000	0.000	0.000	0.000	0.000	
		0.62				0.50				0.6							0.700

Bikes

Location: Grant Rd/Homestead Rd & Homestead Rd City: Los Altos

Project ID: 18-08664-001 Date: 12/11/2018

NS/EW Streets:	Grant Rd/Ho	omestead Rd	Grant Rd/H	omestead Rd	Homest	tead Rd	Homest	ead Rd	
AM	NORT	'H LEG	SOUT	TH LEG	EAST	LEG	WEST	LEG	
AIVI	EB	WB	EB	WB	NB	SB	NB	SB	TOTAL
7:00 AM	0	0	0	0	1	0	0	0	1
7:15 AM	0	0	0	0	0	0	0	0	0
7:30 AM	0	0	0	0	1	2	0	0	3
7:45 AM	2	0	0	0	1	2	0	0	5
8:00 AM	0	2	0	0	2	2	0	0	6
8:15 AM	0	0	0	0	1	2	0	0	3
8:30 AM	0	0	0	0	2	0	0	0	2
8:45 AM	0	2	0	0	3	0	1	0	6
	EB	WB	EB	WB	NB	SB	NB	SB	TOTAL
TOTAL VOLUMES :	2	4	0	0	11	8	1	0	26
APPROACH %'s :	33.33%	66.67%			57.89%	42.11%	100.00%	0.00%	
PEAK HR :	08:00 AM	- 09:00 AM	08:00 AM						TOTAL
PEAK HR VOL :	0	4	0	0	8	4	1	0	17
PEAK HR FACTOR :		0.500			0.667	0.500	0.250		0.700
	0.5	500			0.7	750	0.2	50	0.708

7:15 AM 7:30 AM 7:45 AM 8:00 AM 8:15 AM	4 4 9 4 3	273 360 287 284 247	38 41 40 66 58	0 0 1 1 1	10 20 24 31 43	59 111 <u>146</u> 134 112	3 3 0 1 2	0 1 0 0	3 1 2 4 5	6 6 7 9 8	5 7 4 6 9	0 0 0 0	68 92 <u>124</u> 118 127	1 1 6 5 4	69 94 97 114 131	0 0 0 0 0	539 741 747 777 750
8:30 AM 8:45 AM	7 8	190 236	54 78	1 1	65 64	157 139	11 12	0 0	1 1	33 12	10 4	0 0	97 120	2 8	112 112	0 0	740 795
TOTAL VOLUMES : APPROACH %'s :	NL 41 1.59%	NT 2123 82.35%	NR 409 15.87%	NU 5 0.19%	SL 269 21.89%	ST 927 75.43%	SR 32 2.60%	SU 1 0.08%	EL 19 12.58%	ET 82 54.30%	ER 50 33.11%	EU 0 0.00%	WL 789 49.19%	WT 27 1.68%	WR 788 49.13%	WU 0 0.00%	TOTAL 5562
 PEAK HR : PEAK HR VOL : PEAK HR FACTOR :	22 0.688	08:00 AM - 957 0.842 0.8	09:00 AM 256 0.821 73	4 1.000	203 0.781	542 0.863 0.8	26 0.542 27	0 0.000	11 0.550	62 0.470 0.58	29 0.725 30	0 0.000	462 0.909	19 0.594 0.90	469 0.895 06	0 0.000	TOTAL 3062 0.963
		NORTH	BOUND			SOUTH	BOUND			EASTB	OUND			WESTE	BOUND		
PM	1 NL	2 NT	1 NR	0 NU	1 SL	2 ST	1 SR	0 SU	<mark>0</mark> EL	1 ET	1 ER	<mark>0</mark> EU	1.5 WL	0.5 WT	1 WR	0 WU	TOTAL
2:00 PM 2:15 PM	5 3	124 170	45 45	0 0	40 35	115 128	1 2	1 2	0 0	4 2	6 5	0 0	75 77	3 2	46 46	0 0	465 517
2:30 PM 2:45 PM	8 5	133 162	37 38	1 0	50 80	140 240	2 1	0 0	2 2	1 4	3 6	0 0	67 91	1 1	37 49	0 0	482 679
3:00 PM 3:15 PM	2 5	133 129	58 68	0 0	65 103	226 251	3 5	1 1	1 3	3 4	5 4	0 0	77 81	4 3	45 34	0 0	623 691
3:30 PM 3:45 PM	2 8	116 106	62 62	0	85 84	300 270	2 6	1 0	2 0	4 10	1 3	0 0	80 70	12 3	47 48	0 0	714 670
4:00 PM 4:15 PM 4:30 PM	4	83 107 123	67 61 68	0 2 1	115 110 125	298 288 299	4 2 3	0	2 0	5 8 5	1 4	0 0 0	67 84 67	4 10 5	36 28 26	0 0 0	686 706 731
4:45 PM 5:00 PM	4 4 1	123 105 124	59 74	0	125 143 130	299 288 308	3 1 3	0	2	8 7	2 3	0	86 71	8 4	40 19	0	746
5:15 PM 5:30 PM	8	124 124 121	67 66	0	119 99	327 317	3 2	0	0	6 8	3 7	0	99 75	5	25 37	0	786 744
5:45 PM	3	133	64	1	115	286	4	0	2	5	7	0	78	6	40	0	744
TOTAL VOLUMES : APPROACH %'s :	NL 68 2.26%	NT 1993 66.28%	NR 941 31.29%	NU 5 0.17%	SL 1498 26.60%	ST 4081 72.47%	SR 44 0.78%	SU 8 0.14%	EL 20 11.98%	ET 84 50.30%	ER 63 37.72%	EU 0 0.00%	WL 1245 64.68%	WT 77 4.00%	WR 603 31.32%	WU 0 0.00%	TOTAL 10730
 PEAK HR : PEAK HR VOL : PEAK HR FACTOR :	17 0.531	04:45 PM - 474 0.956 0.9!	05:45 PM 266 0.899 51	0 0.000	491 0.858	1240 0.948 0.9	9 0.750 69	1 0.250	5 0.625	29 0.906 0.76	15 0.536 66	0 0.000	331 0.836	23 0.719 0.88	121 0.756 36	0 0.000	TOTAL 3022 0.961

Total

0

EL

2

0

SU

0

Homestead Rd

1

ΕT

1

EASTBOUND

1

ER

5

0

EU

0

1.5

WL

43

Foothill Expy

2

ST

69

SOUTHBOUND

1

SR

0

Location: Foothill Expy & Homestead Rd City: Los Altos Control: Signalized

1

NL

2

NS/EW Streets:

7:00 AM

AM

Foothill Expy

2

NT

246

NORTHBOUND

1

NR

34

0

NU

0

1

SL

12

Project ID: 18-08549-001 Date: 10/24/2018

Homestead Rd

WESTBOUND

1

WR

59

0.5

WT

0

0

WU

0

TOTAL

473

		NORTH	BOUND			SOUTH	BOUND			EASTB	OUND			WESTE	WESTBOUND			
AM	1	2	1	0	1	2	1	0	0	1	1	0	1.5	0.5	1	0		
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL	
7:00 AM	0	1	0	0	2	0	0	0	0	0	0	0	0	0	1	0	4	
7:15 AM	0	2	0	0	0	0	0	0	0	0	0	0	0	0	3	0	5	
7:30 AM	0	3	1	0	1	2	0	0	0	0	0	0	0	0	0	0	7	
7:45 AM	0	4	0	0	1	0	0	0	0	1	0	0	0	0	4	0	10	
8:00 AM	0	3	2	0	0	0	0	0	1	0	0	0	0	1	3	0	10	
8:15 AM 8:30 AM	0	3 3	1 2	0 0	3 2	4 1	0	0 0	0 0	2 10	0	0	0	0	4	0	17 22	
8:30 AM 8:45 AM	0	3 1	2	0	2	0	1	0	0	3	0	0	0	0	2 2	0 0	10	
0.45 AW	0	1	U	0	3	U		0	U	3	U	0	0	U	2	0	10	
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL	
TOTAL VOLUMES :	0	20	6	0	12	7	2	0	1	16	0	0	1	1	19	0	85	
APPROACH %'s :	0.00%	76.92%	23.08%	0.00%	57.14%	33.33%	9.52%	0.00%	5.88%	94.12%	0.00%	0.00%	4.76%	4.76%	90.48%	0.00%		
PEAK HR :		08:00 AM -			03:00.434												TOTAL	
PEAK HR VOL :	0	10	5	0	8	5	2	0	1	15	0	0	1	1	11	0	59	
PEAK HR FACTOR :	0.000	0.833	0.625	0.000	0.667	0.313	0.500	0.000	0.250	0.375	0.000	0.000	0.250	0.250	0.688	0.000	0.670	
		0.7	50			0.53	36			0.40	00			0.8	13			
		NORTH	BOUND			SOUTH	BOUND			EASTB				WESTE				
PM	1	2	1	0	1	2	1	0	0	1	1	0	1.5	0.5	1	0		
1 1 1 1	NL	NT	NR	NU	SL	ST	SR	SU	EL	ĒT	ER	EU	WL	WT	WR	wu	TOTAL	
2:00 PM	0	1	1	0	0	1	0	0	0	2	0	0	1	0	0	0	6	
2:15 PM	0	0	2	0	0	0	0	0	0	0	0	0	0	0	0	0	2	
2:30 PM	0	1	0	0	1	1	0	0	0	0	0	0	1	2	0	0	6	
2:45 PM	0	1	0	0	0	1	0	0	0	0	0	0	0	0	0	0	2	
3:00 PM	0	1	0	0	0	2	0	0	0	0	0	0	0	9	0	0	12	
3:15 PM	0	0	1	0	0	1	0	0	0	1	0	0	0	0	1	0	4	
3:30 PM	0	0	1	0	4	1	0	0	0	0	0	0	0	3	2	0	11	
3:45 PM	0	1	0	0	0	1	0	0	0	1	0	0	0	0	3	0	6	
4:00 PM	0	1	1	0	0	2	0	0	0	0	0	0	0	2	0	0	6	
4:15 PM	0	3	0	0	1	4 5	0	0	0	2	0	0	0	1 0	0	0	12	
4:30 PM 4:45 PM	0	0	0 0	0 0	0 0	5	0	0	0	U 1	0	0	0	U 1	3	0 0	8 6	
5:00 PM	0	2	0	0	3	<u> </u>	0	0	0	1	0	0	0	0	2	0	9	
5:15 PM	0	1	0	0	1	6	0	0	0	1	0	0	0	1	2	0	12	
5:30 PM	Ő	5	Ő	Ő	2	2	1	Ő	Ő	1	Ő	0	1	0	3	0	15	
5:45 PM	0	1	0	0	1	3	1	0	0	2	0	0	7	0	1	0	16	
		NT	ND		0	0 T	00	011	-		50				14/5		TOTAL	
	NL	NT 19	NR	NU O	SL 13	ST 33	SR	SU 0	EL O	ET 12	ER	EU 0	WL	WT 19	WR	WU 0	TOTAL 133	
TOTAL VOLUMES : APPROACH %'s :	0 0.00%	76.00%	6 24.00%	0.00%	13 27.08%	33 68.75%	2 4.17%	0.00%	0.00%	12	0 0.00%	0.00%	11 22.92%	19 39.58%	18 37.50%	0 0.00%	133	
PEAK HR :		04:45 PM -		0.00%	21.00%	00.7576	4.1770	0.00%	0.00%	100.00%	0.00%	0.00%	22.7270	37.00%	37.30%	0.00%	TOTAL	
PEAK HR VOL :	0	9 9	05.45 Pivi	0	6	11	1	0	0	4	0	0	1	2	8	0	42	
PEAK HR FACTOR :	0.00	0.450	0.000	0.000	0.500	0.458	0.250	0.000	0.000	1.000	0.000	0.000	0.250	0.500	0.667	0.000		
. EXICTING FOR .	0.00	0.430		0.000	0.000	0.450		0.000	0.000	1.000		0.000	0.200	0.500		0.000	0.700	
		5.1				5.0								5.0				

Bikes

Homestead Rd

Foothill Expy

Location: Foothill Expy & Homestead Rd City: Los Altos Control: Signalized

Foothill Expy

NS/EW Streets:

Project ID: 18-08549-001 Date: 10/24/2018

Homestead Rd

Location: Foothill Expy & Homestead Rd City: Los Altos

Project ID: 18-08549-001 Date: 10/24/2018

			Pede	estrians	(Crosswa	alks)			_
NS/EW Streets:	Footh	ill Expy	Foothil	I Ехру	Homes	tead Rd	Homest	ead Rd	
AM	NOR	TH LEG	SOUTI	H LEG	EAST	LEG	WES	T LEG	
AIVI	EB	WB	EB	WB	NB	SB	NB	SB	TOTAL
7:00 AM	0	0	0	0	0	0	0	0	0
7:15 AM	0	0	0	0	0	0	0	0	0
7:30 AM	0	0	0	0	0	0	0	0	0
7:45 AM	0	0	0	0	0	0	0	0	0
8:00 AM	0	0	0	0	0	0	0	0	0
8:15 AM	0	1	1	0	0	0	0	0	2
8:30 AM	0	0	1	0	0	0	0	0	1
8:45 AM	0	0	0	0	0	0	0	0	0
	EB	WB	EB	WB	NB	SB	NB	SB	TOTAL
TOTAL VOLUMES :	0	1	2	0	0	0	0	0	3
APPROACH %'s :	0.00%	100.00%	100.00%	0.00%					
PEAK HR :	08:00 AM	- 09:00 AM	08:00 484						TOTAL
PEAK HR VOL :	0	1	2	0	0	0	0	0	3
PEAK HR FACTOR :		0.250	0.500						0.375
	0.	250	0.5	00					0.375

PM	NORT	TH LEG	SOUT	H LEG	EAST	T LEG	WEST	T LEG	
PIVI	EB	WB	EB	WB	NB	SB	NB	SB	TOTAL
2:00 PM	0	0	0	1	0	0	1	0	2
2:15 PM	0	0	0	0	0	0	0	0	0
2:30 PM	0	0	0	0	0	0	0	0	0
2:45 PM	0	0	0	0	0	0	0	0	0
3:00 PM	0	0	0	0	0	0	0	0	0
3:15 PM	0	2	1	0	0	0	0	0	3
3:30 PM	0	0	0	0	0	0	0	0	0
3:45 PM	0	0	1	0	0	0	0	0	1
4:00 PM	0	0	2	1	0	0	0	0	3
4:15 PM	0	0	0	0	0	0	0	1	1
4:30 PM	0	0	3	5	0	0	0	0	8
4:45 PM	0	0	0	1	0	0	1	0	2
5:00 PM	0	0	1	2	0	0	0	0	3
5:15 PM	0	0	1	0	0	0	0	0	1
5:30 PM	0	0	1	1	0	0	0	0	2
5:45 PM	0	0	1	1	0	0	0	0	2
	EB	WB	EB	WB	NB	SB	NB	SB	TOTAL
TOTAL VOLUMES :	0	2	11	12	0	0	2	1	28
APPROACH %'s :	0.00%	100.00%	47.83%	52.17%			66.67%	33.33%	
PEAK HR :	04:45 PM	- 05:45 PM	0.04545.034						TOTAL
PEAK HR VOL :	0	0	3	4	0	0	1	0	8
PEAK HR FACTOR :			0.750	0.500			0.250		0.667
			0.5	583			0.2	50	0.007

Location: Homestead Ct/Fallen Leaf Ln & Homestead Rd City: Cupertino Control: Signalized

Project ID: 18-08664-002 Date: 12/11/2018

NS/EW Streets:	Hom	nestead Ct/I	Fallen Leaf	Ln	Hom	estead Ct/	Fallen Leaf	Ln		Homeste	ead Rd			Homeste	ead Rd		
		NORTH	BOUND			SOUTH	BOUND			EASTB	OUND			WESTE	OUND		
AM	1	2	1	0	1	2	1	0	0	1	1	0	1.5	0.5	1	0	
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
7:00 AM	5	0	5	0	0	0	6	0	0	41	2	0	0	71	1	0	131
7:15 AM	8	0	7	0	2	0	9	0	4	5 9	1	0	7	105	3	0	205
7:30 AM	12	0	9	0	20	0	14	0	5	149	1	0	3	161	3	0	377
7:45 AM	1	2	20	0	13	0	13	0	6	109	5	0	3	191	8	0	371
8:00 AM	7	0	11	0	8	0	11	0	10	114	2	0	5	244	17	0	429
8:15 AM	6	1	9	0	9	0	13	0	5	136	2	0	2	232	5	0	420
8:30 AM	7	0	9	0	4	1	9	0	6	131	1	0	0	190	5	0	363
8:45 AM	6	0	5	0	3	1	5	0	4	125	5	0	0	205	5	0	364
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
TOTAL VOLUMES :	52	3	75	0	59	2	80	0	40	864	19	0	20	1399	47	0	2660
APPROACH % 's :	40.00%	2.31%	57.69%	0.00%	41.84%	1.42%	56.74%	0.00%	4.33%	93.61%	2.06%	0.00%	1.36%	95.43%	3.21%	0.00%	
PEAK HR :	C)7:30 AM -	08:30 AM						03:00 8:8								TOTAL
PEAK HR VOL :	26	3	49	0	50	0	51	0	26	508	10	0	13	828	33	0	1597
PEAK HR FACTOR :	0.542	0.375	0.613	0.000	0.625	0.000	0.911	0.000	0.650	0.852	0.500	0.000	0.650	0.848	0.485	0.000	0.931
		0.84	48							0.8	77			0.82	21		0.931

Total

Location: Homestead Ct/Fallen Leaf Ln & Homestead Rd City: Cupertino Control: Signalized

Project ID: 18-08664-002 Date: 12/11/2018

-																	1
NS/EW Streets:	Hom	estead Ct/F	Fallen Leaf	Ln	Hom	estead Ct/	Fallen Leaf	Ln		Homeste	ead Rd			Homeste	ead Rd		
		NORTH	BOUND			SOUTH	BOUND			EASTB	OUND			WESTE	BOUND		
AM	1	2	1	0	1	2	1	0	0	1	1	0	1.5	0.5	1	0	
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
7:00 AM	0	0	0	0	0	0	1	0	0	0	0	0	0	2	0	0	3
7:15 AM	1	0	0	0	1	0	0	0	0	2	0	0	0	4	0	0	8
7:30 AM	0	0	2	0	4	0	0	0	0	20	0	0	0	1	0	0	27
7:45 AM	1	0	2	0	7	0	0	0	1	51	1	0	0	4	0	0	67
8:00 AM	0	0	3	0	0	0	0	0	0	6	0	0	0	2	1	0	12
8:15 AM	0	0	0	0	0	0	0	0	1	7	0	0	0	2	1	0	11
8:30 AM	0	0	1	0	0	0	1	0	0	3	0	0	0	3	0	0	8
8:45 AM	0	0	0	0	1	0	0	0	0	2	0	0	0	1	0	0	4
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
TOTAL VOLUMES :	2	0	8	0	13	0	2	0	2	91	1	0	0	19	2	0	140
APPROACH %'s :	20.00%	0.00%	80.00%	0.00%	86.67%	0.00%	13.33%	0.00%	2.13%	96.81%	1.06%	0.00%	0.00%	90.48%	9.52%	0.00%	
PEAK HR :	C	7:30 AM -	08:30 AM		07:30 884												TOTAL
PEAK HR VOL :	1	0	7	0	11	0	0	0	2	84	1	0	0	9	2	0	117
PEAK HR FACTOR :	0.250	0.000	0.583	0.000	0.393	0.000	0.000	0.000	0.500	0.412	0.250	0.000	0.000	0.563	0.500	0.000	0.437
		0.66	67			.393 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000				0.4	10			0.68	38		0.437

Bikes

Location: Homestead Ct/Fallen Leaf Ln & Homestead Rd City: Cupertino

Project ID: 18-08664-002 Date: 12/11/2018

NS/EW Streets:		Ct/Fallen Leaf .n		Ct/Fallen Leaf n	Homes	tead Rd	Homest	ead Rd	
AM	NORT	'H LEG	SOUT	H LEG	EAST	「 LEG	WEST	LEG	
AIVI	EB	WB	EB	WB	NB	SB	NB	SB	TOTAL
7:00 AM	0	0	0	0	0	3	0	0	3
7:15 AM	1	0	0	0	0	2	0	0	3
7:30 AM	0	1	2	0	6	4	1	0	14
7:45 AM	0	0	8	1	13	0	0	0	22
8:00 AM	1	1	1	15	0	10	0	0	28
8:15 AM	3	2	4	1	2	3	0	0	15
8:30 AM	0	1	0	1	0	2	0	0	4
8:45 AM	0	2	3	2	2	3	0	0	12
	EB	WB	EB	WB	NB	SB	NB	SB	TOTAL
TOTAL VOLUMES :	5	7	18	20	23	27	1	0	101
APPROACH %'s :	41.67%	58.33%	47.37%	52.63%	46.00%	54.00%	100.00%	0.00%	
PEAK HR :	07:30 AM	- 08:30 AM							TOTAL
PEAK HR VOL :	4	4	15	17	21	17	1	0	79
PEAK HR FACTOR :	0.333	0.500	0.469	0.283	0.404	0.425	0.250		0.705
	0.4	400	0.5	500	0.7	731	0.2	50	0.705

	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
TOTAL VOLUMES :	59	3	64	0	50	2	77	0	45	754	9	0	24	1422	38	0	2547
APPROACH %'s :	46.83%	2.38%	50.79%	0.00%	38.76%	1.55%	59.69%	0.00%	5.57%	93.32%	1.11%	0.00%	1.62%	95.82%	2.56%	0.00%	
PEAK HR :	(- MA 00:80	09:00 AM														TOTAL
PEAK HR VOL :	30	3	39	0	36	2	46	0	28	531	6	0	11	889	29	0	1650
PEAK HR FACTOR :	0.750	0.750	0.886	0.000	0.600	0.250	0.767	0.000	0.778	0.846	0.750	0.000	0.688	0.942	0.483	0.000	
		0.8	18			0.80	08			0.84	1			0.96	0		0.946
		NORTH	BOUND			SOUTH	BOUND			EASTB	OUND			WESTB	OUND		
PM	0	1	0	0	0	1	0	0	1	1	0	0	1	1	0	0	
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
2:00 PM	3	0	6	0	7	0	11	0	5	101	3	0	6	110	6	0	258
2:15 PM	6	0	6	0	2	0	9	0	2	77	2	0	4	93	9	0	210
2:30 PM	3	0	5	0	5	0	4	0	6	107	2	0	7	102	2	0	243
2:45 PM	4	0	5	0	6	0	7	0	6	124	1	0	3	93	6	0	255
3:00 PM	2	1	4	0	5	0	8	0	11	131	3	0	3	107	8	0	283
3:15 PM	4	0	3	0	11	0	5	0	5	180	4	0	3	108	9	0	332
3:30 PM	1	0	5	0	10	0	8	0	7	163	5	0	3	124	18	0	344
3:45 PM	2	0	5	0	10	0	3	0	3	181	8	0	10	110	14	0	346
4:00 PM	2	0	6	0	2	0	9	0	11	196	5	0	4	95	8	0	338
4:15 PM	5	0	3	0	7	0	7	0	4	206	6	0	5	73	7	0	323
4:30 PM	0	0	2	0	6	0	9	0	10	214	4	0	7	78	12	0	342
4:45 PM	3	1	3	0	6	1	5	0	10	208	8	0	5	110	10	0	370
5:00 PM	1	1	4	0	7	0	7	0	5	207	11	0	3	93	10	0	349
5:15 PM	0	0	2	0	4	0	3	0	8	212	8	0	6	88	7	0	338
5:30 PM	4	0	5	0	5	0	6	0	5	182	10	0	3	114	12	0	346
5:45 PM	4	0	2	0	5	0	12	0	6	193	11	0	2	101	5	0	341
						07						=					
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
TOTAL VOLUMES :	44	3	66	0	98	1	113	0	104	2682	91	0	74	1599	143	0	5018
APPROACH % 's :	38.94%	2.65%	58.41%	0.00%	46.23%	0.47%	53.30%	0.00%	3.61%	93.22%	3.16%	0.00%	4.07%	88.05%	7.87%	0.00%	
PEAK HR :			05:45 PM														TOTAL
PEAK HR VOL :	8	2	14	0	22	1	21	0	28	809	37	0	17	405	39	0	1403
PEAK HR FACTOR :	0.500	0.500	0.700	0.000	0.786	0.250	0.750	0.000	0.700	0.954	0.841	0.000	0.708	0.888	0.813	0.000	0.948
		0.66	5/			0.78	36			0.95	8			0.89	13		

NS/EW Streets: Homestead Ct/Fallen Leaf Ln Homestead Ct/Fallen Leaf Ln Homestead Rd Homestead Rd EASTBOUND NORTHBOUND SOUTHBOUND WESTBOUND AM SL SU WU NL NT NR NU ST SR EL ΕT ER EU WL WT WR TOTAL 7:00 AM 7:15 AM 7:30 AM 7:45 AM 8:00 AM 8:15 AM 8:30 AM 8:45 AM

Total

Location: Homestead Ct/Fallen Leaf Ln & Homestead Rd City: Los Altos Control: 2-Way Stop(NB/SB)

Project ID: 18-08549-002 Date: 10/24/2018

APPROACH %'s 0.00% 0.00% 100.00% 0.00% 90.91% 0.00% 9.09% 0.00% 2.94% 97.06% 0.00% 0.00% 10.81% 89.19% 0.00% 0.00% PEAK HR 08:00 AM - 09:00 AM TOTAL PEAK HR VOL 0.000 0.000 0.000 0.438 0.000 0.250 0.000 0.250 0.462 0.000 0.250 0.958 0.000 0.000 PEAK HR FACTOR 0.333 0.000 0.508 0.470 0.333 0.408 0.750 NORTHBOUND SOUTHBOUND EASTBOUND WESTBOUND ΡM NL NT NR NU SL ST SR SU EL ΕT ER EU WL WT WR WU TOTAL 2:00 PM 2:15 PM 2:30 PM 2:45 PN 3:00 PN 3:15 PN 3:30 PN 3:45 PN 4:00 PN 4:15 PM 4:30 PM 4:45 PN 5:00 PN 5:15 PM 5:30 PM 5:45 PM NL NT NR NU SL ST SR SU EL ET ER EU WL WT WR WU TOTAL TOTAL VOLUMES 87.50% APPROACH %'s 0.00% 0.00% 66.67% 33.33% 22.22% 16.67% 55.56% 5.56% 8.33% 4.17% 0.00% 7.02% 69.59% 23.39% 0.00% PEAK HR 04:45 PM 05:45 PM TOTAL PEAK HR VOL PEAK HR FACTOR 0.000 0.000 0.000 0.250 0.250 0.000 0.000 0.500 0.708 0.000 0.000 0.500 0.850 0.313 0.000 0.00 0.821 0.375 0.679 0.750

NS/EW Streets Homestead Ct/Fallen Leaf Ln Homestead Ct/Fallen Leaf Ln Homestead Rd Homestead Rd NORTHBOUND SOUTHBOUND EASTBOUND WESTBOUND AM NL NT NR NU SL ST SR SU EL ΕT ER EU WL WT WR WU TOTAL 7:00 AM 7:15 AM 7:30 AM 7:45 AM 8:00 AM 8:15 AM 8:30 AM 8:45 AM NT NR NU ST SR SU EU WL WT WR WU TOTAL NL SL EL EΤ ER TOTAL VOLUMES

Bikes

Location: Homestead Ct/Fallen Leaf Ln & Homestead Rd City: Los Altos Control: 2-Way Stop(NB/SB)

Project ID: 18-08549-002 Date: 10/24/2018 Location: Homestead Ct/Fallen Leaf Ln & Homestead Rd City: Los Altos Project ID: 18-08549-002 Date: 10/24/2018

			Peue	251110115	(000000	aiks)			_
NS/EW Streets:		Ct/Fallen Leaf n		Ct/Fallen Leaf .n	Homes	tead Rd	Homest	ead Rd	
	NORT	H LEG	SOUT	H LEG	EAS	Г LEG	WES	Г LEG	
AM	EB	WB	EB	WB	NB	SB	NB	SB	TOTAL
7:00 AM	0	1	1	2	1	4	0	0	9
7:15 AM	0	0	0	0	3	0	0	0	3
7:30 AM	0	0	1	0	4	2	0	0	7
7:45 AM	3	0	9	0	11	0	0	0	23
8:00 AM	0	1	2	4	2	6	0	0	15
8:15 AM	0	2	2	5	3	5	0	0	17
8:30 AM	5	2	7	3	7	7	0	0	31
8:45 AM	1	0	17	6	12	6	0	0	42
	EB	WB	EB	WB	NB	SB	NB	SB	TOTAL
TOTAL VOLUMES :	9	6	39	20	43	30	0	0	147
APPROACH %'s :	60.00%	40.00%	66.10%	33.90%	58.90%	41.10%			
PEAK HR :	08:00 AM	- 09:00 AM	08:00.484						TOTAL
PEAK HR VOL :	6	5	28	18	24	24	0	0	105
PEAK HR FACTOR :	0.300	0.625	0.412	0.750	0.500	0.857			0.625
	0.3	393	0.5	500	0.0	667			0.025

PM	NORT	TH LEG	SOUT	H LEG	EAST	T LEG	WEST	T LEG	
PIVI	EB	WB	EB	WB	NB	SB	NB	SB	TOTAL
2:00 PM	0	0	0	1	0	0	0	0	1
2:15 PM	0	0	3	4	0	0	0	0	7
2:30 PM	0	0	0	0	0	0	0	0	0
2:45 PM	2	0	1	6	0	1	0	0	10
3:00 PM	0	3	1	9	0	1	0	0	14
3:15 PM	0	3	0	3	0	2	0	0	8
3:30 PM	0	0	2	3	2	1	0	0	8
3:45 PM	0	1	3	7	2	0	0	0	13
4:00 PM	1	0	0	4	0	2	0	0	7
4:15 PM	0	0	4	3	3	0	0	0	10
4:30 PM	0	0	3	2	1	0	0	0	6
4:45 PM	0	0	0	4	0	4	0	0	8
5:00 PM	0	0	2	4	0	0	0	0	6
5:15 PM	0	0	5	3	3	1	0	0	12
5:30 PM	1	0	1	3	0	0	0	0	5
5:45 PM	3	2	0	4	0	0	0	0	9
	EB	WB	EB	WB	NB	SB	NB	SB	TOTAL
TOTAL VOLUMES :	7	9	25	60	11	12	0	0	124
APPROACH % 's :	43.75%	56.25%	29.41%	70.59%	47.83%	52.17%			
PEAK HR :	04:45 PM	- 05:45 PM	04:45:134						TOTAL
PEAK HR VOL :	1	0	8	14	3	5	0	0	31
PEAK HR FACTOR :	0.250		0.400	0.875	0.250	0.313			0.444
	0.	250	0.6	588	0.5	500			0.646

Location: Barranca Dr/Bellville Way & Homestead Rd City: Cupertino Control: 2-Way Stop (NB/SB)

0.566

Project ID: 18-08664-003 Date: 12/11/2018

0.742

_								10	tui										
NS/EW Streets:	Ba	irranca Dr/I	Bellville Way	,	Ba	rranca Dr/E	Bellville Way	y		Homeste	ead Rd			Homeste	ead Rd	UND 0 0 WR WU 6 0 12 0 37 0 128 0 17 0 12 0 18 0 14 0			
		NORTH	IBOUND			SOUTH	BOUND			EASTB	OUND			WESTE	BOUND				
AM	0	1	0	0	0	1	0	0	1	1	0	0	1	1	0	0			
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL		
7:00 AM	3	0	0	0	4	0	7	0	6	35	1	0	0	64	6	0	126		
7:15 AM	4	0	0	0	6	0	6	0	6	59	2	0	1	97	12	0	193		
7:30 AM	6	2	1	0	18	0	17	0	14	156	0	0	0	145	37	0	396		
7:45 AM	7	8	4	0	23	3	21	0	25	138	0	0	1	204	128	0	562		
8:00 AM	6	0	1	0	64	6	32	0	8	125	1	0	0	229	17	0	489		
8:15 AM	3	1	4	0	9	0	12	0	18	132	2	0	1	215	12	0	409		
8:30 AM	5	1	3	0	5	0	14	0	13	140	2	0	4	177	18	0	382		
8:45 AM	3	2	1	0	10	0	6	0	8	129	0	0	0	201	14	0	374		
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL		
TOTAL VOLUMES :	37	14	14	0	139	9	115	0	98	914	8	0	7	1332	244	0	2931		
APPROACH % 's :	56.92%	21.54%	21.54%	0.00%	52.85%	3.42%	43.73%	0.00%	9.61%	89.61%	0.78%	0.00%	0.44%	84.14%	15.41%	0.00%			
PEAK HR :	(07:30 AM -	08:30 AM														TOTAL		
PEAK HR VOL :	22	11	10	0	114	9	82	0	65	551	3	0	2	793	194	0	1856		
PEAK HR FACTOR :	0.786	0.344	0.625	0.000	0.445	0.375	0.641	0.000	0.650	0.883	0.375	0.000	0.500	0.866	0.379	0.000	0.826		
		0.5	66			0.5	12			0.9	10			0.7	42		0.020		

0.910

0.502

Total

Location: Barranca Dr/Bellville Way & Homestead Rd City: Cupertino Control: 2-Way Stop (NB/SB)

Project ID: 18-08664-003 Date: 12/11/2018

NS/EW Streets:	Ba	rranca Dr/I	Bellville Way	,	Ba	rranca Dr/E	Bellville Way	/		Homeste	ead Rd			Homeste	ead Rd		
		NORTH	IBOUND			SOUTH	BOUND			EASTE	OUND			WESTE	BOUND		
AM	0	1	0	0	0	1	0	0	1	1	0	0	1	1	0	0	
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
7:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	2	0	0	2
7:15 AM	0	0	0	0	0	0	0	0	0	3	0	0	0	4	0	0	7
7:30 AM	0	0	0	0	2	0	0	0	1	20	0	0	0	1	0	0	24
7:45 AM	0	0	3	0	4	0	0	0	3	65	0	0	0	4	1	0	80
8:00 AM	0	0	0	0	1	0	1	0	1	15	0	0	0	2	0	0	20
8:15 AM	0	0	0	0	0	0	0	0	0	6	0	0	0	2	0	0	8
8:30 AM	0	0	0	0	1	0	0	0	0	6	0	0	0	4	0	0	11
8:45 AM	0	0	0	0	0	0	0	0	0	3	0	0	0	1	1	0	5
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ΕT	ER	EU	WL	WT	WR	WU	TOTAL
TOTAL VOLUMES :	0	0	3	0	8	0	1	0	5	118	0	0	0	20	2	0	157
APPROACH %'s :	0.00%	0.00%	100.00%	0.00%	88.89%	0.00%	11.11%	0.00%	4.07%	95.93%	0.00%	0.00%	0.00%	90.91%	9.09%	0.00%	
PEAK HR :	()7:30 AM -	08:30 AM														TOTAL
PEAK HR VOL :	0	0	3	0	7	0	1	0	5	106	0	0	0	9	1	0	132
PEAK HR FACTOR :	0.000	0.000	0.250	0.000	0.438	0.000	0.250	0.000	0.417	0.408	0.000	0.000	0.000	0.563	0.250	0.000	0.413
		0.2	50			438 0.000 0.250 0.000 0 0.500				0.4	08			0.50	00		0.413

Location: Barranca Dr/Bellville Way & Homestead Rd City: Cupertino

Project ID: 18-08664-003 Date: 12/11/2018

NS/EW Streets:	Barranca Dr	/Bellville Way	Barranca Dr	'Bellville Way	Homest	tead Rd	Homest	tead Rd	
AM	NORT	TH LEG	SOUT	H LEG	EAST	T LEG	WES	t leg	
AIVI	EB	WB	EB	WB	NB	SB	NB	SB	TOTAL
7:00 AM	0	0	0	0	0	0	0	0	0
7:15 AM	0	0	0	0	0	0	0	0	0
7:30 AM	2	1	4	0	1	3	2	0	13
7:45 AM	13	4	6	3	3	0	24	2	55
8:00 AM	7	2	1	3	1	5	0	13	32
8:15 AM	2	0	0	0	0	0	3	1	6
8:30 AM	0	0	1	0	0	0	0	1	2
8:45 AM	0	0	1	1	0	0	2	0	4
	EB	WB	EB	WB	NB	SB	NB	SB	TOTAL
TOTAL VOLUMES :	24	7	13	7	5	8	31	17	112
APPROACH %'s :	77.42%	22.58%	65.00%	35.00%	38.46%	61.54%	64.58%	35.42%	
PEAK HR :	07:30 AM	- 08:30 AM							TOTAL
PEAK HR VOL :	24	7	11	6	5	8	29	16	106
PEAK HR FACTOR :	0.462	0.438	0.458	0.500	0.417	0.400	0.302	0.308	0.400
	0.4	456	0.4	172	0.5	542	0.4	133	0.482

Location: Barranca Dr/Belleville Way & Homestead Rd City: Cupertino Control: Signalized

Barranca Dr/Belleville Way

NS/EW Streets:

Project I D: 18-08549-003 Date: 10/24/2018

Homestead Rd

	Du		chevine via	<i>y</i>	Du		chevine ma	y		nomeste				Homest			
		NORTH	BOUND			SOUTH	BOUND			EASTB	OUND			WESTE	BOUND		
AM	0	1	0	0	0	1	0	0	1	1	0	0	1	2	0	0	
/ \ V	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	ŴT	WR	WU	TOTAL
7:00 414		0	0		3L 4	0	8	0	8	35	0	0					-
7:00 AM	1			0							•	-	0	62	6	0	124
7:15 AM	5	1	0	0	3	0	7	0	5	55	0	0	0	9 5	16	0	187
7:30 AM	5	1	1	0	15	0	16	0	12	63	1	0	1	149	48	0	312
7:45 AM	4	10	1	0	44	1	33	0	24	63	2	0	0	181	111	0	474
8:00 AM	6	1	1	0	53	6	31	0	7	127	2	0	2	217	9	0	462
8:15 AM	3	0	0	0	10	0	18	0	6	124	0	0	0	199	12	0	372
8:30 AM	5	1	2	0	21	0	11	0	7	158	1	0	0	203	8	0	417
8:45 AM	2	0	2	0	17	Õ	10	0	16	157	1	0	4	227	14	0	450
0.45 AM	2	U	2	U		U	10	v	10	137		v	-	221	14	v	430
	NII	NT	NR	NU	SL	ST	SR	SU	E 1	ET	ER	EU	WL	WT	WR	WU	TOTAL
	NL								EL			-					
TOTAL VOLUMES :	31	14	7	0	167	7	134	0	85	782	7	0	7	1333	224	0	2798
APPROACH % 's :	59.62%	26.92%	13.46%	0.00%	54.22%	2.27%	43.51%	0.00%	9.73%	89.47%	0.80%	0.00%	0.45%	85.23%	14.32%	0.00%	
PEAK HR :		07:45 AM -	08:45 AM														TOTAL
PEAK HR VOL :	18	12	4	0	128	7	93	0	44	472	5	0	2	800	140	0	1725
PEAK HR FACTOR :	0.750	0.300	0.500	0.000	0.604	0.292	0.705	0.000	0.458	0.747	0.625	0.000	0.250	0.922	0.315	0.000	0.010
		0.5	67			0.6	33			0.78	85			0.80	07		0.910
		NORTH	BOUND			SOUTH	BOUND			EASTB				WESTE	BOUND		1
PM	0	1	0	0	0	1	0	0	1	1	0	0	1	2	0	0	
1 1 1 1	NL	NT	NR	NU	SL	ST	SR		EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
						51		SU			ER	-				-	
2:00 PM	0	0	3	0	35	1	15	0	18	95	1	0	2	110	25	0	305
2:15 PM	1	0	0	0	18	2	8	0	7	71	7	0	2	86	14	0	216
2:30 PM	7	2	0	0	28	1	18	0	7	107	5	0	2	96	19	0	292
2:45 PM	3	0	1	0	21	1	9	0	10	122	4	0	1	81	7	0	260
3:00 PM	1	0	2	0	11	1	15	0	11	134	4	0	1	112	10	0	302
3:15 PM	2	0	0	0	17	0	16	0	17	170	5	0	1	96	13	0	337
3:30 PM	2	0	1	0	22	0	11	0	14	160	2	0	0	145	25	0	382
3:45 PM	3	1	2	0	21	0	10	0	9	182	4	0	0	109	7	0	348
4:00 PM	3	0	3	0	12	0	7	0	18	187	2	0	0	95	4	0	331
4:15 PM	2	1	Ő	0 0	11	1	10	0	6	193	3	0	0	76	15	0	318
4:13 PM	1	1	0	0	10	0	6	0	15	212	1	0	1	96	11	0	354
4:45 PM	1	0	1	0	10	0	10	0	13	195	4	0	0	108	10	0	354
5:00 PM	3	0	2	0	12	0	14	0	13	180	3	0	2	93	18	0	340
5:15 PM	1	0	1	0	7	0	11	0	15	193	3	0	0	96	18	0	345
5:30 PM	2	0	1	0	13	0	9	0	11	173	4	0	2	114	19	0	348
5:45 PM	5	0	2	0	4	1	8	0	10	184	5	0	0	105	14	0	338
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
TOTAL VOLUMES :	37	5	19	0	252	8	177	0	195	2558	57	0	14	1618	229	0	5169
APPROACH %'s :	60.66%	8.20%	31.15%	0.00%	57.67%	1.83%	40.50%	0.00%	6.94%	91.03%	2.03%	0.00%	0.75%	86.94%	12.31%	0.00%	
PEAK HR :		03:15 PM -															TOTAL
									= 0		10	0		4.45			1398
	10	1	6	0	72	0	11	0	60	600						0	
PEAK HR VOL :	10	1	6	0	72	0	44	0	58	699	13	0	1	445	49	0	
PEAK HR VOL : PEAK HR FACTOR :	10 0.833	1 0.250 0.7(0.500	0 0.000	72 0.818	0 0.000 0.8	0.688	0 0.000	58 0.806	699 0.934 0.93	0.650	0.000	0.250	445 0.767 0.72	0.490	0 0.000	0.915

Total

Homestead Rd

Barranca Dr/Belleville Way

Location: Barranca Dr/Belleville Way & Homestead Rd City: Cupertino Control: Signalized

NT

NR

NU

SL

ST

SR

NL

NL

NS/EW Streets:

7:00 AM

7:15 AM

7:30 AM

7:45 AM

8:00 AM

8:15 AM

8:30 AM

8:45 AM

TOTAL VOLUMES :

AM

Project ID:	18-08549-003
Date:	10/24/2018

WU

WU

TOTAL

TOTAL

zed													Date:	10/24/20
							Bil	kes						
В	arranca Dr/E	Bikes Bikes Barranca Dr/Belleville Way Homestead Rd NORTHBOUND EASTBOUND I 0 0 0 0 0 0 0 0 0 NORTHBOUND EASTBOUND I 1 0 0 1 0 0 1 0 0 1 NT NR NU SL ST SR SU EL ET ER EU WL 0				Homes	tead Rd							
	NORTH	IBOUND			Barranca Dr/Belleville Way SOUTHBOUND 0 1 0 0 1		EAST	BOUND			WEST	BOUND		
	1	0	0	0	1	0	0	1	1	0	0	1	2	0
	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR
	0	0	0	0	0	0	0	0	3	0	0	0	1	0
	0	0	0	0	0	0	0	0	0	0	0	0	3	0
	0	0	0	0	0	0	0	0	2	0	0	0	1	0
	1	0	0	0	0	0	0	2	2	1	0	0	7	1
	0	0	0	1	0	2	0	0	0	0	0	0	3	0

EL

ΕT

ER

EU

WL

WT

WR

SU

TOTAL VOLUNES :			0	0	0	0	2	0	2	90		0	0	30		0	150
 APPROACH %'s :	50.00%	50.00%	0.00%	0.00%	80.00%	0.00%	20.00%	0.00%	1.98%	97.03%	0.99%	0.00%	0.00%	97.30%	2.70%	0.00%	
PEAK HR :		07:45 AM -															TOTAL
PEAK HR VOL :	0	1	0	0	3	0	2	0	2	40	1	0	0	25	1	0	75
PEAK HR FACTOR :	0.000	0.250	0.000	0.000	0.750	0.000	0.250	0.000	0.250	0.313	0.250	0.000	0.000	0.694	0.250	0.000	0.481
		0.25	50			0.4	17			0.3	36			0.7	22		0.401
		NORTH	BOUND			SOUTH	BOUND			EASTE	OUND			WESTE	BOUND		
PM	0	1	0	0	0	1	0	0	1	1	0	0	1	2	0	0	
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
2:00 PM	0	0	0	0	0	0	1	0	1	2	0	0	0	3	1	0	8
2:15 PM	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	1
2:30 PM	0	0	0	0	0	0	1	0	1	2	0	0	0	0	0	0	4
2:45 PM	0	0	0	0	0	0	0	0	0	2	0	0	0	8	1	0	11
3:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	62	8	0	70
3:15 PM	0	0	0	0	1	0	0	0	0	1	0	0	0	6	0	0	8
3:30 PM	0	0	0	0	0	0	1	0	1	6	0	0	1	28	4	0	41
3:45 PM	0	0	0	0	0	0	0	0	1	0	0	0	0	16	5	0	22
4:00 PM	0	0	0	0	0	0	0	0	0	1	0	0	0	9	0	0	10
4:15 PM	0	0	0	0	0	0	0	0	1	3	0	0	0	4	0	0	8
4:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	8	0	0	8
4:45 PM	0	0	0	0	0	0	0	0	0	4	0	0	0	6	0	0	10
5:00 PM	0	0	0	0	0	0	0	0	0	5	0	0	0	7	2	0	14
5:15 PM	0	0	0	0	0	0	0	0	0	3	0	0	0	7	0	0	10
5:30 PM	0	0	0	0	1	0	0	0	0	5	0	0	0	4	1	0	11
5:45 PM	0	0	0	0	0	0	0	0	2	2	0	0	0	5	0	0	9
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
TOTAL VOLUMES :	0	0	0	0	2	0	3	0	8	36	0	0	1	173	22	0	245
APPROACH %'s :					40.00%	0.00%	60.00%	0.00%	18.18%	81.82%	0.00%	0.00%	0.51%	88.27%	11.22%	0.00%	
PEAK HR :		03:15 PM -	04:15 PM		03:15 8:11												TOTAL
PEAK HR VOL :	0	0	0	0	1	0	1	0	2	8	0	0	1	59	9	0	81
PEAK HR FACTOR :	0.00	0.000	0.000	0.000	0.250	0.000	0.250	0.000	0.500	0.333	0.000	0.000	0.250	0.527	0.450	0.000	0.494
						0.50	00			0.3	57			0.5	23		0.494

Location: Barranca Dr/Belleville Way & Homestead Rd City: Cupertino Project ID: 18-08549-003 Date: 10/24/2018

			T Cut	Strians	(0103311	uiksj			
NS/EW Streets:	Barranca Dr/	Belleville Way	Barranca Dr/	Belleville Way	Homes	tead Rd	Homes	tead Rd	
ΛΝΛ	NORT	'H LEG	SOUT	H LEG	EAS	T LEG	WES	T LEG	
AM	EB	WB	EB	WB	NB	SB	NB	SB	TOTAL
7:00 AM	0	2	0	0	0	0	0	0	2
7:15 AM	0	1	0	1	0	0	0	0	2
7:30 AM	1	0	1	0	0	0	2	1	5
7:45 AM	0	6	0	7	5	0	31	0	49
8:00 AM	6	1	3	1	0	0	0	18	29
8:15 AM	3	2	3	1	0	1	0	0	10
8:30 AM	4	3	4	0	1	1	0	3	16
8:45 AM	17	1	6	0	0	0	0	1	25
	EB	WB	EB	WB	NB	SB	NB	SB	TOTAL
TOTAL VOLUMES :	31	16	17	10	6	2	33	23	138
APPROACH %'s :	65.96%	34.04%	62.96%	37.04%	75.00%	25.00%	58.93%	41.07%	
PEAK HR :	07:45 AM	- 08:45 AM	0.0145.004						TOTAL
PEAK HR VOL :	13	12	10	9	6	2	31	21	104
PEAK HR FACTOR :	0.542	0.500	0.625	0.321	0.300	0.500	0.250	0.292	0 5 2 1
	0.8	393	0.0	579	0.4	400	0.4	119	0.531

PM	NORTH LEG EB WB		SOUT	H LEG	EAST	Г LEG	WEST	Г LEG	
FIVI	EB	WB	EB	WB	NB	SB	NB	SB	TOTAL
2:00 PM	0	0	0	2	1	0	2	6	11
2:15 PM	0	0	0	0	0	0	0	9	9
2:30 PM	1	0	1	2	0	1	0	0	5
2:45 PM	4	0	3	1	0	1	0	6	15
3:00 PM	0	28	0	0	0	1	0	1	30
3:15 PM	0	2	0	1	0	0	0	0	3
3:30 PM	0	1	0	9	3	0	1	0	14
3:45 PM	0	0	2	3	0	0	2	4	11
4:00 PM	1	1	0	1	0	0	0	0	3
4:15 PM	1	0	0	3	0	2	3	0	9
4:30 PM	0	1	1	1	0	0	0	0	3
4:45 PM	0	1	0	2	0	0	0	0	3
5:00 PM	2	0	1	2	0	0	0	0	5
5:15 PM	0	1	0	0	0	0	0	0	1
5:30 PM	1	1	0	2	0	0	0	0	4
5:45 PM	0	2	2	0	0	0	0	2	6
	EB	WB	EB	WB	NB	SB	NB	SB	TOTAL
TOTAL VOLUMES :	10	38	10	29	4	5	8	28	132
APPROACH %'s :	20.83%	79.17%	25.64%	74.36%	44.44%	55.56%	22.22%	77.78%	
PEAK HR :	03:15 PM	- 04:15 PM	03:15 PM						TOTAL
PEAK HR VOL :	1	4	2	14	3	0	3	4	31
PEAK HR FACTOR :	0.250	0.500	0.250	0.389	0.250		0.375	0.250	0 554
	0.0	625	0.4	44	0.2	250	0.2	92	0.554

Location: SR-85 Off-ramp/Maxine Ave & Homestead Rd City: Cupertino Control: Signalized

Project ID: 18-08664-004 Date: 12/11/2018

-																	1
NS/EW Streets:	SR-	85 Off-ram	o/Maxine Av	/e	SR-8	85 Off-ram	p/Maxine A	ve		Homeste	ead Rd			Homeste	ad Rd		
		NORTH	BOUND			SOUTH	BOUND			EASTE	OUND			WESTB	OUND		
AM	0	1	0	0	1	0.5	0.5	0	0	1	0	0	1	2	0	0	
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
7:00 AM	1	0	2	0	18	0	5	0	0	38	0	0	0	67	0	0	131
7:15 AM	1	0	3	0	9	0	18	0	0	66	0	0	1	93	0	0	191
7:30 AM	1	0	8	0	37	0	17	0	0	161	2	0	1	158	0	0	385
7:45 AM	2	0	12	0	55	0	36	0	0	179	0	0	5	301	0	0	590
8:00 AM	0	0	2	0	16	0	32	0	0	186	1	0	3	227	0	0	467
8:15 AM	1	0	6	0	28	2	48	0	0	142	0	0	0	164	0	0	391
8:30 AM	1	0	6	0	18	1	24	0	0	152	1	0	4	171	0	0	378
8:45 AM	3	0	9	0	14	3	21	0	0	135	1	0	4	186	0	0	376
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
TOTAL VOLUMES :	10	0	48	0	195	6	201	0	0	1059	5	0	18	1367	0	0	2909
APPROACH % 's :	17.24%	0.00%	82.76%	0.00%	48.51%	1.49%	50.00%	0.00%	0.00%	99.53%	0.47%	0.00%	1.30%	98.70%	0.00%	0.00%	
PEAK HR :	07:30 AM - 08:30 AM								1070415 4884								TOTAL
PEAK HR VOL :	4	0	28	0	136	2	133	0	0	668	3	0	9	850	0	0	1833
PEAK HR FACTOR :	0.500	0.000	0.583	0.000	0.618	0.250	0.693	0.000	0.000	0.898	0.375	0.000	0.450	0.706	0.000	0.000	0.777
		0.57	71			0.74	45			0.8	97			0.70)2		0.777

Total

Location: SR-85 Off-ramp/Maxine Ave & Homestead Rd City: Cupertino Control: Signalized

Project ID: 18-08664-004 Date: 12/11/2018

NS/EW Streets:	SR-	85 Off-ram	p/Maxine Av	/e	SR	-85 Off-ram	np/Maxine A	lve		Homeste	ead Rd			Homeste	ead Rd		
		NORTH	IBOUND			SOUTH	IBOUND			EASTB	OUND			WESTE	BOUND		
AM	0	1	0	0	1	0.5	0.5	0	0	1	0	0	1	2	0	0	
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
7:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	2	0	0	2
7:15 AM	0	0	0	0	0	0	0	0	0	3	0	0	0	4	0	0	7
7:30 AM	0	0	0	0	0	0	0	0	0	25	0	0	0	2	0	0	27
7:45 AM	0	0	0	0	0	0	0	0	0	76	0	0	0	5	0	0	81
8:00 AM	0	0	1	0	0	0	0	0	0	20	0	0	0	1	0	0	22
8:15 AM	0	0	0	0	0	0	0	0	0	6	0	0	0	2	0	0	8
8:30 AM	0	0	0	0	0	0	0	0	0	6	0	0	0	4	0	0	10
8:45 AM	0	0	0	0	0	0	0	0	0	3	0	0	0	3	0	0	6
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
TOTAL VOLUMES :	0	0	1	0	0	0	0	0	0	139	0	0	0	23	0	0	163
APPROACH %'s :	0.00%	0.00%	100.00%	0.00%					0.00%	100.00%	0.00%	0.00%	0.00%	100.00%	0.00%	0.00%	
PEAK HR :	07:30 AM - 08:30 AM				07:30 AM												TOTAL
PEAK HR VOL :	0	0	1	0	0	0	0	0	0	127	0	0	0	10	0	0	138
PEAK HR FACTOR :	0.000	0.000	0.250	0.000	0.000	0.000	0.000	0.000	0.000	0.418	0.000	0.000	0.000	0.500	0.000	0.000	0.426
		0.2	50							0.4	18			0.50	00		0.420

Bikes

Location: SR-85 Off-ramp/Maxine Ave & Homestead Rd City: Cupertino

Project ID: 18-08664-004 Date: 12/11/2018

NS/EW Streets:		amp/Maxine ve		amp/Maxine ve	Homest	tead Rd	Homes	tead Rd	
AM	NORT	H LEG	SOUT	H LEG	EAST	LEG	WES	ΓLEG	
AIVI	EB	WB	EB	WB	NB	SB	NB	SB	TOTAL
7:00 AM	0	0	0	0	0	0	0	0	0
7:15 AM	1	0	1	0	0	0	0	1	3
7:30 AM	3	2	6	0	0	0	1	0	12
7:45 AM	23	3	4	4	0	0	5	0	39
8:00 AM	10	5	2	0	0	0	2	1	20
8:15 AM	2	0	0	0	0	0	0	0	2
8:30 AM	0	0	1	0	0	0	0	0	1
8:45 AM	0	0	1	1	0	0	0	0	2
	EB	WB	EB	WB	NB	SB	NB	SB	TOTAL
TOTAL VOLUMES :	39	10	15	5	0	0	8	2	79
APPROACH %'s :	79.59%	20.41%	75.00%	25.00%			80.00%	20.00%	
PEAK HR :	07:30 AM - 08:30 AM								TOTAL
PEAK HR VOL :	38	10	12	4	0	0	8	1	73
PEAK HR FACTOR :	0.413	0.500	0.500	0.250			0.400	0.250	0.4/0
	0.4	162	0.5	500			0.4	150	0.468

WESTBOUND NORTHBOUND SOUTHBOUND EASTBOUND ΡM 0.5 0.5 ΕT ER WT WR WU TOTAL NL NT NR NU SL ST SR SU EL EU WL 2:00 PM 2:15 PM 2:30 PM 2:45 PM 3:00 PM 3:15 PM 3:30 PM 3:45 PM 4:00 PM 4:15 PM 4:30 PM 4:45 PM 5:00 PM 5:15 PM 5 5:30 PM 5:45 PM NL NT NR NU ST SU ER EU WL WT WR WU TOTAL SR EL ΕT SL TOTAL VOLUMES APPROACH %'s 14.71% 0.00% 85.29% 0.00% 64.61% 2.58% 32.81% 0.00% 0.00% 99.29% 0.71% 0.00% 3.70% 96.30% 0.00% 0.00% PEAK HR 05:00 PM - 06:00 PM TOTAL PEAK HR VOL PEAK HR FACTOR 0.417 0.000 0.472 0.000 0.756 0.600 0.856 0.000 0.000 0.961 0.583 0.000 0.781 0.909 0.000 0.000 0.917 0.611 0.771 0.956 0.908

NS/EW Streets:	SR-	85 Off-ram	o/Maxine Av	e	SR-8	35 Off-ram	o/Maxine Av	/e		Homeste	ead Rd			Homeste	ad Rd		
		NORTH	BOUND			SOUTH	BOUND			EASTB	OUND			WESTB	OUND		
AM	0	1	0	0	1	0.5	0.5	0	0	1	0	0	1	2	0	0	
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
7:00 AM	0	0	3	0	8	0	11	0	0	37	0	0	0	56	0	0	115
7:15 AM	0	0	2	0	9	0	10	0	0	60	0	0	0	102	0	0	183
7:30 AM	0	0	2	0	20	0	35	0	0	82	0	0	0	171	0	0	310
7:45 AM	0	0	6	0	24	1	56	0	0	110	1	0	3	227	0	0	428
8:00 AM	0	0	3	0	20	1	60	0	0	185	1	0	1	170	0	0	441
8:15 AM	2	0	7	0	28	1	44	0	0	130	1	0	0	163	0	0	376
8:30 AM	1	0	12	0	33	3	19	0	0	178	1	0	1	193	0	0	441
8:45 AM	5	0	13	0	45	2	16	0	0	169	3	0	3	222	0	0	478
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
TOTAL VOLUMES :	8	0	48	0	187	8	251	0	0	951	7	0	8	1304	0	0	2772
APPROACH %'s :	14.29%	0.00%	85.71%	0.00%	41.93%	1.79%	56.28%	0.00%	0.00%	99.27%	0.73%	0.00%	0.61%	99.39%	0.00%	0.00%	
PEAK HR :	(- MA 00:80	09:00 AM						0.8545 2.84								TOTAL
PEAK HR VOL :	8	0	35	0	126	7	139	0	0	662	6	0	5	748	0	0	1736
PEAK HR FACTOR :	0.400	0.000	0.673	0.000	0.700	0.583	0.579	0.000	0.000	0.895	0.500	0.000	0.417	0.842	0.000	0.000	0.908
		0.59	97			0.84	40			0.89	98			0.83	37		0.908

Total

Location: SR-85 Off-ramp/Maxine Ave & Homestead Rd City: Cupertino Control: Signalized

Project ID: 18-08549-004 Date: 10/24/2018

Location: SR-85 Off-ramp/Maxine Ave & Homestead Rd City: Cupertino Control: Signalized

Project ID:	18-08549-004
Date:	10/24/2018

-								Bił	kes								
NS/EW Streets:	SR-	85 Off-ram	p/Maxine Av	ve	SR	-85 Off-ran	np/Maxine A	ve		Homeste	ead Rd			Homeste	ead Rd		
		NORTH	IBOUND			SOUTI	HBOUND			EASTE	OUND			WESTE	BOUND		
AM	0	1	0	0	1	0.5	0.5	0	0	1	0	0	1	2	0	0	
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTA
7:00 AM	0	0	0	0	0	0	0	0	0	3	0	0	0	1	0	0	4
7:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	4	0	0	4
7:30 AM	0	0	0	0	0	0	0	0	0	2	0	0	0	1	0	0	3
7:45 AM	0	0	0	0	0	0	0	0	0	2	0	0	0	8	0	0	10
8:00 AM	0	0	0	0	0	0	0	0	0	1	0	0	0	3	0	0	4
8:15 AM		0	0	0	0	0	0	0	0	8	0	0	0	9	0	0	17
8:30 AM	0	0	1	0	0	0	0	0	0	27	0	0	0	6	0	0	34
8:45 AM	0	0	1	0	0	0	0	0	0	64	0	0	0	6	0	0	71
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	тот
TOTAL VOLUMES :	0	0	2	0	0	0	0	0	0	107	0	0	0	38	0	0	14
APPROACH %'s :	0.00%	0.00%	100.00%	0.00%					0.00%	100.00%	0.00%	0.00%	0.00%	100.00%	0.00%	0.00%	
PEAK HR :		08:00 AM -	09:00 AM		08:00.414												TOT
PEAK HR VOL :	0	0	2	0	0	0	0	0	0	100	0	0	0	24	0	0	126
PEAK HR FACTOR :	0.000	0.000	0.500	0.000	0.000	0.000	0.000	0.000	0.000	0.391	0.000	0.000	0.000	0.667	0.000	0.000	0.44
		0.5	00							0.3	91			0.6	57		0.44
		NORTH	IBOUND			SOUTI	HBOUND			EASTE	OUND			WESTE	BOUND		
PM	0	1	0	0	1	0.5	0.5	0	0	1	0	0	1	2	0	0	
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOT
2:00 PM	0	0	0	0	0	0	0	0	0	2	0	0	0	4	0	0	6
2:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2:30 PM	0	0	0	0	0	0	0	0	0	2	0	0	0	0	0	0	2

Bikes

		NODT	IDOUND			COLITU	DOLUND			FACTO				MEGTO		1	
	•	NORTH	HBOUND	•			BOUND	•	0	EASTB		•		WESTB			
PM	0	1	0	0	1	0.5	0.5	0	0	1	0	0	1	2	0	0	TOTAL
0.00 PM	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
2:00 PM	0	0	0	0	0	0	0	0	0	2	0	0	0	4	0	0	6
2:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2:30 PM	0	0	0	0	0	0	0	0	0	2	0	0	0	0	0	0	2
2:45 PM	0	0	0	0	0	0	0	0	0	2	0	0	0	10	0	0	12
3:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	1	65	0	0	66
3:15 PM	0	0	0	0	0	0	0	0	0	3	0	0	0	6	0	0	9
3:30 PM	0	0	0	0	0	0	0	0	0	8	0	0	2	36	0	0	46
3:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	18	0	0	18
4:00 PM	0	0	0	0	0	0	0	0	0	1	0	0	0	9	0	0	10
4:15 PM	0	0	0	0	0	0	0	0	0	2	0	0	0	4	0	0	6
4:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	8	0	0	8
4:45 PM	0	0	0	0	0	0	1	0	0	4	0	0	0	5	0	0	10
5:00 PM	0	0	0	0	0	0	0	0	0	4	0	0	0	9	0	0	13
5:15 PM	0	0	0	0	0	0	0	0	0	4	0	0	0	8	0	0	12
5:30 PM	0	0	0	0	0	0	0	0	0	7	0	0	0	5	0	0	12
5:45 PM	0	0	0	0	0	0	0	0	0	2	0	0	0	5	0	0	7
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
TOTAL VOLUMES :	0	0	0	0	0	0	1	0	0	41	0	0	3	192	0	0	237
APPROACH %'s :					0.00%	0.00%	100.00%	0.00%	0.00%	100.00%	0.00%	0.00%	1.54%	98.46%	0.00%	0.00%	
PEAK HR :		05:00 PM	- 06:00 PM														TOTAL
PEAK HR VOL :	0	0	0	0	0	0	0	0	0	17	0	0	0	27	0	0	44
PEAK HR FACTOR :	0.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.607	0.000	0.000	0.000	0.750	0.000	0.000	
										0.60				0.75			0.846
										5.00	-			0.70	-		

Location: SR-85 Off-ramp/Maxine Ave & Homestead Rd City: Cupertino Project ID: 18-08549-004 Date: 10/24/2018

									_
NS/EW Streets:	SR-85 Off-ramp/Maxine Ave		SR-85 Off-ramp/Maxine Ave		Homestead Rd		Homestead Rd		
	NORTH LEG		SOUTH LEG		EAST LEG		WEST LEG		
AM	EB	WB	EB	WB	NB	SB	NB	SB	TOTAL
7:00 AM	0	2	0	0	0	0	0	0	2
7:15 AM	1	1	0	1	0	0	0	0	3
7:30 AM	0	3	1	2	0	0	0	0	6
7:45 AM	1	6	1	8	0	0	0	0	16
8:00 AM	7	0	2	1	0	0	0	1	11
8:15 AM	0	2	4	0	0	0	0	0	6
8:30 AM	6	2	10	0	0	0	0	2	20
8:45 AM	17	0	4	0	0	0	3	0	24
	EB	WB	EB	WB	NB	SB	NB	SB	TOTAL
TOTAL VOLUMES :	32	16	22	12	0	0	3	3	88
APPROACH %'s :	66.67%	33.33%	64.71%	35.29%			50.00%	50.00%	
PEAK HR :	08:00 AM - 09:00 AM		03:00.484						TOTAL
PEAK HR VOL :	30	4	20	1	0	0	3	3	61
PEAK HR FACTOR :	0.441	0.500	0.500	0.250			0.250	0.375	0.635
	0.500		0.525				0.500		0.035

PM	NORTH LEG		SOUTH LEG		EAST LEG		WEST LEG		
FIVI	EB	WB	EB	WB	NB	SB	NB	SB	TOTAL
2:00 PM	0	0	0	2	0	0	0	0	2
2:15 PM	0	1	0	0	0	0	0	0	1
2:30 PM	0	0	1	2	0	0	0	0	3
2:45 PM	3	3	3	0	0	0	0	0	9
3:00 PM	0	41	0	0	0	0	0	5	46
3:15 PM	0	2	0	1	0	0	0	0	3
3:30 PM	0	3	0	19	0	0	0	0	22
3:45 PM	0	1	2	5	0	0	0	0	8
4:00 PM	1	1	2	1	0	0	0	0	5
4:15 PM	1	2	0	1	0	0	0	0	4
4:30 PM	0	1	1	1	0	0	0	0	3
4:45 PM	0	1	0	2	0	0	0	0	3
5:00 PM	0	2	0	0	0	0	0	1	3
5:15 PM	0	1	2	0	0	0	0	0	3
5:30 PM	1	1	1	3	0	0	1	0	7
5:45 PM	0	2	0	0	0	0	0	0	2
	EB	WB	EB	WB	NB	SB	NB	SB	TOTAL
TOTAL VOLUMES :	6	62	12	37	0	0	1	6	124
APPROACH %'s :	8.82%	91.18%	24.49%	75.51%			14.29%	85.71%	
PEAK HR :	05:00 PM - 06:00 PM		05:00 84						TOTAL
PEAK HR VOL :	1	6	3	3	0	0	1	1	15
PEAK HR FACTOR :	0.250	0.750	0.375	0.250			0.250	0.250	0.536
	0.875		0.375				0.5	500	

Location: SR-85 On-ramp/Bernardo Ave & Homestead Rd City: Cupertino Control: Signalized

Project ID: 18-08664-005 Date: 12/11/2018

NS/EW Streets:	SR-	85 On-ramp	o/Bernardo /	Ave	SR-8	5 On-ramp	/Bernardo A	Ave		Homeste	ead Rd			Homeste	ead Rd		
		NORTH	HBOUND			SOUTH	BOUND			EASTB	OUND			WESTE	OUND		
AM	0	0	0	0	1	1	1	0	1	1	1	0	0	1	1	0	
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
7:00 AM	0	0	0	0	1	0	1	0	3	39	19	0	19	65	4	0	151
7:15 AM	0	0	0	0	2	0	9	0	9	36	27	0	31	81	11	0	206
7:30 AM	0	0	0	0	21	2	17	0	16	143	28	0	28	151	43	0	449
7:45 AM	0	0	0	0	39	5	43	0	49	170	29	0	36	253	106	0	730
8:00 AM	0	0	0	0	34	4	23	0	27	137	39	0	44	208	83	0	599
8:15 AM	0	0	0	0	5	0	15	0	11	111	48	0	25	137	14	0	366
8:30 AM	0	0	0	0	0	0	7	0	19	116	46	0	31	169	17	0	405
8:45 AM	0	0	0	0	4	2	8	0	24	102	30	1	24	184	31	0	410
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
TOTAL VOLUMES :	0	0	0	0	106	13	123	0	158	854	266	1	238	1248	309	0	3316
APPROACH % 's :					43.80%	5.37%	50.83%	0.00%	12.35%	66.77%	20.80%	0.08%	13.26%	69.53%	17.21%	0.00%	
PEAK HR :		07:30 AM	- 08:30 AM						07:45.814								TOTAL
PEAK HR VOL :	0	0	0	0	99	11	98	0	103	561	144	0	133	749	246	0	2144
PEAK HR FACTOR :	0.000	0.000	0.000	0.000	0.635	0.550	0.570	0.000	0.526	0.825	0.750	0.000	0.756	0.740	0.580	0.000	0 724
						0.59	98			0.8	15			0.71	14		0.734

Total

Location: SR-85 On-ramp/Bernardo Ave & Homestead Rd City: Cupertino Control: Signalized

Project ID: 18-08664-005 Date: 12/11/2018

E																	
NS/EW Streets:	SR-	85 On-ramp	o/Bernardo /	Ave	SR-8	5 On-ramp	/Bernardo A	lve		Homeste	ead Rd			Homeste	ead Rd		
		NORTH	HBOUND			SOUTH	BOUND			EASTB	OUND			WESTE	BOUND		
AM	0	0	0	0	1	1	1	0	1	1	1	0	0	1	1	0	
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
7:00 AM	0	0	0	0	1	0	0	0	0	0	0	0	0	2	0	0	3
7:15 AM	0	0	0	0	0	0	0	0	0	2	0	0	0	4	0	0	6
7:30 AM	0	0	0	0	0	0	0	0	0	19	0	0	0	3	0	0	22
7:45 AM	0	0	0	0	0	0	0	0	5	33	0	0	0	4	3	0	45
8:00 AM	0	0	0	0	0	0	1	0	3	3	1	0	0	1	1	0	10
8:15 AM	0	0	0	0	0	0	0	0	0	6	0	0	0	2	0	0	8
8:30 AM	0	0	0	0	0	0	0	0	0	7	1	0	0	4	0	0	12
8:45 AM	0	0	0	0	1	0	0	0	0	3	0	0	0	3	0	0	7
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
TOTAL VOLUMES :	0	0	0	0	2	0	1	0	8	73	2	0	0	23	4	0	113
APPROACH % 's :					66.67%	0.00%	33.33%	0.00%	9.64%	87.95%	2.41%	0.00%	0.00%	85.19%	14.81%	0.00%	
PEAK HR :		07:30 AM	- 08:30 AM		0.2530.4454												TOTAL
PEAK HR VOL :	0	0	0	0	0	0	1	0	8	61	1	0	0	10	4	0	85
PEAK HR FACTOR :	0.000	0.000	0.000	0.000	0.000	0.000	0.250	0.000	0.400	0.462	0.250	0.000	0.000	0.625	0.333	0.000	0.472
						0.2	50			0.40	51			0.50	00		0.472

Bikes

Location: SR-85 On-ramp/Bernardo Ave & Homestead Rd City: Cupertino

Project ID: 18-08664-005 Date: 12/11/2018

NS/EW Streets:		mp/Bernardo ve		mp/Bernardo ve	Homest	ead Rd	Homest	ead Rd	
AM	NORT	'H LEG	SOUT	H LEG	EAST	LEG	WEST	T LEG	
	EB	WB	EB	WB	NB	SB	NB	SB	TOTAL
7:00 AM	0	0	0	0	0	0	0	0	0
7:15 AM	1	0	1	0	0	0	0	0	2
7:30 AM	0	5	7	5	0	0	0	0	17
7:45 AM	0	4	9	1	1	0	0	0	15
8:00 AM	2	2	3	0	0	0	0	0	7
8:15 AM	2	0	0	0	0	0	0	0	2
8:30 AM	0	0	0	0	0	0	0	0	0
8:45 AM	0	0	1	1	0	0	0	0	2
	EB	WB	EB	WB	NB	SB	NB	SB	TOTAL
TOTAL VOLUMES :	5	11	21	7	1	0	0	0	45
APPROACH % 's :	31.25%	68.75%	75.00%	25.00%	100.00%	0.00%			
PEAK HR :	07:30 AM	- 08:30 AM	0230.884						TOTAL
PEAK HR VOL :	4	11	19	6	1	0	0	0	41
PEAK HR FACTOR :	0.500	0.550	0.528	0.300	0.250				0 (0 2
	0.7	750	0.5	521	0.2	50			0.603

WESTBOUND NORTHBOUND SOUTHBOUND EASTBOUND ΡM ST ΕT ER WT WR WU TOTAL NL NT NR NU SL SR SU EL EU WL 2:00 PM 2:15 PM 2:30 PM 2:45 PM 3:00 PM 3:15 PM 3:30 PM 3:45 PM 4:00 PM 4:15 PM 4:30 PM 4:45 PM 5:00 PM 5:15 PM 5:30 PM 5:45 PM NL NT NR NU ST SR SU ER EU WT WR WU TOTAL SL EL ΕT WL TOTAL VOLUMES APPROACH %'s 53.13% 3.37% 43.51% 0.00% 5.18% 85.81% 8.83% 0.18% 14.77% 74.28% 10.95% 0.00% PEAK HR : 05:00 PM - 06:00 PM TOTAL PEAK HR VOL PEAK HR FACTOR 0.000 0.000 0.000 0.000 0.859 0.313 0.691 0.000 0.667 0.938 0.806 0.250 0.842 0.890 0.512 0.000 0.943 0.863 0.946 0.911

NS/EW Streets:	SR	-85 On-ram	o/Bernardo A	ve	SR-8	5 On-ramp	/Bernardo A	ve		Homeste	ead Rd			Homeste	ad Rd		
		NORTI	HBOUND			SOUTH	BOUND			EASTB	OUND			WESTB	OUND		
AM	0	0	0	0	0	2	0	0	1	1	1	0	1	2	0	0	
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
7:00 AM	0	0	0	0	1	1	1	0	2	30	18	0	13	68	3	0	137
7:15 AM	0	0	0	0	1	0	5	0	8	41	19	0	30	99	14	0	217
7:30 AM	0	0	0	0	0	1	23	0	13	56	33	0	20	157	17	0	320
7:45 AM	0	0	0	0	1	0	20	0	8	9 5	36	0	26	190	16	0	392
8:00 AM	0	0	0	0	4	0	6	0	13	145	48	0	30	169	14	0	429
8:15 AM	0	0	0	0	5	1	15	0	17	96	52	0	32	155	11	0	384
8:30 AM	0	0	0	0	9	1	9	0	12	181	29	0	26	197	26	0	490
8:45 AM	0	0	0	0	38	0	13	0	18	180	28	0	35	215	33	0	560
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
TOTAL VOLUMES :		0	0	0	59	31	эк 92	0	91	824	263	0	212	1250	134	0	2929
APPROACH %'s :	0	0	0	0	38.06%	2.58%	59.35%	0.00%		69.95%	203	0.00%	13.28%	78.32%	8.40%	0.00%	
PEAK HR :		00.00 AM	00.00 414		30.0076	2.3070	39.3376	0.0078	1.1270	09.9376	22.3370	0.0076	13.2070	10.3270	0.4076	0.0076	TOTAL
	0		- 09:00 AM	0	F (40	0	(0)	(00	457	0	100	70/	~ 1	0	
PEAK HR VOL :	0	0	0	0	56	2	43	0	60	602	157	0	123	736	84	0	1863
PEAK HR FACTOR :	0.000	0.000	0.000	0.000	0.368	0.500	0.717	0.000	0.833	0.831	0.755	0.000	0.879	0.856	0.636	0.000	0.832
						0.49	15			0.90	76			0.83	53		

Total

Location: SR-85 On-ramp/Bernardo Ave & Homestead Rd City: Cupertino Control: Signalized

Project ID: 18-08549-005 Date: 10/24/2018

Location: SR-85 On-ramp/Bernardo Ave & Homestead Rd City: Cupertino Control: Signalized

Project ID:	18-08549-005
Date:	10/24/2018

								les	Bik								r
		ad Rd	Homeste			ad Rd	Homeste		ve	'Bernardo A	5 On-ramp	SR-8	Ave)/Bernardo /	85 On-ramp	SR-	NS/EW Streets:
		OUND	WESTB			OUND	EASTB			BOUND	SOUTH			IBOUND	NORTH		
	0	0	2	1	0	1	1	1	0	0	2	0	0	0	0	0	AM
TOTA	WU	WR	WT	WL	EU	ER	ET	EL	SU	SR	ST	SL	NU	NR	NT	NL	
4	0	0	1	0	0	0	3	0	0	0	0	0	0	0	0	0	7:00 AM
4	0	0	4	0	0	0	0	0	0	0	0	0	0	0	0	0	7:15 AM
3	0	0	1	0	0	0	2	0	0	0	0	0	0	0	0	0	7:30 AM
10	0	1	7	0	0	0	2	0	0	0	0	0	0	0	0	0	7:45 AM
5	0	2	2	0	0	1	0	0	0	0	0	0	0	0	0	0	8:00 AM
17	0	0	7	0	0	0	7	0	0	0	0	3	0	0	0	0	8:15 AM
31	0	1	4	0	0	0	26	0	0	0	0	0	0	0	0	0	8:30 AM
63	0	4	2	0	0	0	57	0	0	0	0	0	0	0	0	0	8:45 AM
TOTA	WU	WR	WT	WL	EU	ER	ET	EL	SU	SR	ST	SL	NU	NR	NT	NL	
137	0	8	28	0	0	1	97	0	0	0	0	3	0	0	0	0	TOTAL VOLUMES :
	0.00%	22.22%	77.78%	0.00%	0.00%	1.02%	98.98%	0.00%	0.00%	0.00%	0.00%	100.00%					APPROACH %'s :
TOTA														- 09:00 AM	08:00 AM ·		PEAK HR :
116	0	7	15	0	0	1	90	0	0	0	0	3	0	0	0	0	PEAK HR VOL :
0.1/0	0.000	0.438	0.536	0.000	0.000	0.250	0.395	0.000	0.000	0.000	0.000	0.250	0.000	0.000	0.000	0.000	PEAK HR FACTOR :
0.460		36	0.78			99	0.39			50	0.2						
			WESTB				EASTB				SOUTH			HBOUND	NODTH		

		NORTI	HBOUND			SOUTH	BOUND			EASTE	BOUND			WEST	BOUND		
PM	0	0	0	0	0	2	0	0	1	1	1	0	1	2	0	0	
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
2:00 PM	0	0	0	0	0	0	0	0	0	2	0	0	0	4	0	0	6
2:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1
2:30 PM	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1
2:45 PM	0	0	0	0	6	0	2	0	0	1	0	0	0	0	0	0	9
3:00 PM	0	0	0	0	4	0	0	0	0	0	0	0	0	2	0	0	6
3:15 PM	0	0	0	0	1	0	0	0	0	2	0	0	0	4	0	0	7
3:30 PM	0	0	0	0	0	0	1	0	1	5	0	0	0	44	3	0	54
3:45 PM	0	0	0	0	3	0	1	0	0	0	0	0	1	9	2	0	16
4:00 PM	0	0	0	0	0	0	1	0	0	1	0	0	0	7	1	0	10
4:15 PM	0	0	0	0	0	0	1	0	0	2	0	0	0	3	0	0	6
4:30 PM	0	0	0	0	1	0	1	0	0	0	0	0	0	6	0	0	8
4:45 PM	0	0	0	0	2	0	0	0	0	4	0	0	0	6	1	0	13
5:00 PM	0	0	0	0	2	0	0	0	0	4	0	0	0	5	0	0	11
5:15 PM	0	0	0	0	1	0	0	0	0	3	0	0	0	6	2	0	12
5:30 PM	0	0	0	0	0	0	0	0	1	4	0	0	0	5	0	0	10
5:45 PM	0	0	0	0	0	0	0	0	0	2	0	0	0	5	0	0	7
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
TOTAL VOLUMES :	0	0	0	0	20	0	7	0	2	31	0	0	1	106	10	0	177
APPROACH %'s :					74.07%	0.00%	25.93%	0.00%	6.06%	93.94%	0.00%	0.00%	0.85%	90.60%	8.55%	0.00%	
PEAK HR :		05:00 PM	- 06:00 PM														TOTAL
PEAK HR VOL :	0	0	0	0	3	0	0	0	1	13	0	0	0	21	2	0	40
PEAK HR FACTOR :	0.00	0.000	0.000	0.000	0.375	0.000	0.000	0.000	0.250	0.813	0.000	0.000	0.000	0.875	0.250	0.000	0.833
						0.3	75			0.7	00			0.7	19		0.033

Location: SR-85 On-ramp/Bernardo Ave & Homestead Rd City: Cupertino Project ID: 18-08549-005 Date: 10/24/2018

			I Cut	Striums	(0103300	unxsy			_
NS/EW Streets:		mp/Bernardo ve		mp/Bernardo ve	Homes	tead Rd	Homest	ead Rd	
	NORT	'H LEG	SOUT	H LEG	EAST	Г LEG	WEST	LEG	
AM	EB	WB	EB	WB	NB	SB	NB	SB	TOTAL
7:00 AM	1	1	0	1	0	0	0	0	3
7:15 AM	1	1	0	0	0	0	0	0	2
7:30 AM	0	6	1	4	0	0	1	0	12
7:45 AM	1	2	1	4	0	0	0	0	8
8:00 AM	6	2	2	1	0	0	0	0	11
8:15 AM	1	0	2	1	0	0	0	0	4
8:30 AM	1	1	12	0	0	0	0	0	14
8:45 AM	1	3	3	1	0	0	0	0	8
	EB	WB	EB	WB	NB	SB	NB	SB	TOTAL
TOTAL VOLUMES :	12	16	21	12	0	0	1	0	62
APPROACH %'s :	42.86%	57.14%	63.64%	36.36%			100.00%	0.00%	
PEAK HR :	08:00 AM	- 09:00 AM	08:00.454						TOTAL
PEAK HR VOL :	9	6	19	3	0	0	0	0	37
PEAK HR FACTOR :	0.375	0.500	0.396	0.750					0.441
	0.4	469	0.4	458					0.661

PM	NORT	TH LEG	SOUT	H LEG	EAST	T LEG	WEST	Г LEG	
FIVI	EB	WB	EB	WB	NB	SB	NB	SB	TOTAL
2:00 PM	0	0	0	3	0	0	0	0	3
2:15 PM	0	1	0	0	0	0	0	0	1
2:30 PM	0	0	3	2	0	0	0	0	5
2:45 PM	2	0	3	0	0	0	0	2	7
3:00 PM	3	0	0	0	0	4	0	0	7
3:15 PM	0	0	0	1	0	1	0	0	2
3:30 PM	1	2	0	26	0	0	0	0	29
3:45 PM	0	1	2	3	0	0	0	0	6
4:00 PM	0	0	2	2	0	0	1	0	5
4:15 PM	0	3	1	2	0	0	0	0	6
4:30 PM	0	0	1	1	0	0	0	0	2
4:45 PM	0	1	0	2	0	0	0	0	3
5:00 PM	0	1	0	0	0	0	0	0	1
5:15 PM	2	1	2	2	2	0	0	0	9
5:30 PM	1	3	0	0	0	0	0	0	4
5:45 PM	0	0	1	0	0	0	0	0	1
	EB	WB	EB	WB	NB	SB	NB	SB	TOTAL
TOTAL VOLUMES :	9	13	15	44	2	5	1	2	91
APPROACH % 's :	40.91%	59.09%	25.42%	74.58%	28.57%	71.43%	33.33%	66.67%	
PEAK HR :	05:00 PM	- 06:00 PM	0.5:00 1984						TOTAL
PEAK HR VOL :	3	5	3	2	2	0	0	0	15
PEAK HR FACTOR :	0.375	0.417	0.375	0.250	0.250				0 417
	0.	500	0.3	313	0.2	250			0.417

Location: Wright Ave & Homestead Rd City: Cupertino Control: Signalized

Project ID: 18-08664-006 Date: 12/11/2018

=								10	tui								
NS/EW Streets:		Wright	Ave			Wright	Ave			Homeste	ead Rd			Homeste	ad Rd		
		NORTH	BOUND			SOUTH	BOUND			EASTE	OUND			WESTB	OUND		
AM	0	1	1	0	0	1	1	0	1	2	0	0	1	2	0	0	
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
7:00 AM	2	0	1	0	2	1	9	0	3	36	2	0	1	81	1	0	139
7:15 AM	2	1	2	0	3	0	11	0	1	37	1	0	2	116	7	0	183
7:30 AM	12	1	3	0	15	0	22	0	2	159	1	0	1	203	23	0	442
7:45 AM	27	0	10	0	72	3	54	0	5	204	5	0	0	311	59	0	750
8:00 AM	11	2	3	0	57	0	43	0	15	150	9	0	1	253	25	0	569
8:15 AM	9	1	2	0	11	0	6	0	4	108	2	0	0	163	10	0	316
8:30 AM	3	3	5	0	17	1	12	0	6	105	4	0	1	208	14	0	379
8:45 AM	7	1	6	0	9	1	19	0	5	102	0	0	1	221	12	0	384
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
TOTAL VOLUMES :	73	9	32	0	186	6	176	0	41	901	24	0	7	1556	151	0	3162
APPROACH % 's :	64.04%	7.89%	28.07%	0.00%	50.54%	1.63%	47.83%	0.00%	4.24%	93.27%	2.48%	0.00%	0.41%	90.78%	8.81%	0.00%	
PEAK HR :	C	7:30 AM -	08:30 AM														TOTAL
PEAK HR VOL :	59	4	18	0	155	3	125	0	26	621	17	0	2	930	117	0	2077
PEAK HR FACTOR :	0.546	0.500	0.450	0.000	0.538	0.250	0.579	0.000	0.433	0.761	0.472	0.000	0.500	0.748	0.496	0.000	0.692
		0.54	47			0.54	18			0.7	76			0.70)9		0.092

Total

Location: Wright Ave & Homestead Rd City: Cupertino Control: Signalized

Project ID: 18-08664-006 Date: 12/11/2018

_								DIN	103								
NS/EW Streets:		Wright	Ave			Wright	t Ave			Homeste	ead Rd			Homeste	ead Rd		
		NORTH	BOUND			SOUTH	BOUND			EASTE	OUND			WESTE	BOUND		
AM	0	1	1	0	0	1	1	0	1	2	0	0	1	2	0	0	
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
7:00 AM	0	0	0	0	0	0	0	0	0	1	0	0	0	2	0	0	3
7:15 AM	0	2	1	0	0	0	0	0	0	2	0	0	0	5	1	0	11
7:30 AM	0	1	0	0	1	0	0	0	0	19	0	0	0	7	0	0	28
7:45 AM	0	1	0	0	3	0	0	0	0	33	0	0	0	8	1	0	46
8:00 AM	0	0	0	0	0	0	0	0	0	4	0	0	0	0	0	0	4
8:15 AM	0	0	0	0	0	0	0	0	0	6	0	0	0	3	0	0	9
8:30 AM	0	0	0	0	0	0	0	0	0	7	0	0	0	3	1	0	11
8:45 AM	0	0	2	0	0	0	1	0	0	4	1	0	0	2	1	0	11
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
TOTAL VOLUMES :	0	4	3	0	4	0	1	0	0	76	1	0	0	30	4	0	123
APPROACH % 's :	0.00%	57.14%	42.86%	0.00%	80.00%	0.00%	20.00%	0.00%	0.00%	98.70%	1.30%	0.00%	0.00%	88.24%	11.76%	0.00%	
PEAK HR :	()7:30 AM -	08:30 AM														TOTAL
PEAK HR VOL :	0	2	0	0	4	0	0	0	0	62	0	0	0	18	1	0	87
PEAK HR FACTOR :	0.000	0.500	0.000	0.000	0.333	0.000	0.000	0.000	0.000	0.470	0.000	0.000	0.000	0.563	0.250	0.000	0.473
		0.50	00			0.3	33			0.4	70			0.52	28		0.170

Bikes

Location: Wright Ave & Homestead Rd City: Cupertino

Project ID: 18-08664-006 Date: 12/11/2018

NS/EW Streets:	Wrigł	nt Ave	Wrigh	nt Ave	Homes	tead Rd	Homest	tead Rd	
AM		TH LEG	SOUT	H LEG		T LEG	WES	T LEG	
	EB	WB	EB	WB	NB	SB	NB	SB	TOTAL
7:00 AM	0	0	2	0	0	0	0	0	2
7:15 AM	0	0	0	0	0	0	0	1	1
7:30 AM	2	3	5	0	0	3	1	1	15
7:45 AM	3	5	13	2	2	0	8	4	37
8:00 AM	4	5	2	0	1	2	2	1	17
8:15 AM	0	0	1	0	0	0	1	0	2
8:30 AM	1	0	0	0	1	0	0	0	2
8:45 AM	0	0	1	0	0	0	0	0	1
	EB	WB	EB	WB	NB	SB	NB	SB	TOTAL
TOTAL VOLUMES :	10	13	24	2	4	5	12	7	77
APPROACH %'s :	43.48%	56.52%	92.31%	7.69%	44.44%	55.56%	63.16%	36.84%	
PEAK HR :	07:30 AM	- 08:30 AM							TOTAL
PEAK HR VOL :	9	13	21	2	3	5	12	6	71
PEAK HR FACTOR :	0.563	0.650	0.404	0.250	0.375	0.417	0.375	0.375	0.400
	0.0	611	0.3	83	0.6	667	0.3	375	0.480

7:15 AM	3	2	1	0	4	0	11	0	3	38	2	0	0	119	4	0	187
7:30 AM	8	2	0	0	2	0	18	0	4	55	0	0	1	167	5	0	262
7:45 AM	17	0	4	0	5	0	27	0	9	86	3	0	0	191	10	0	352
8:00 AM	8	3	1	0	3	0	20	0	13	117	12	0	0	189	11	0	377
8:15 AM	8	2	5	0	6	0	16	0	11	9 5	1	0	1	173	11	0	329
8:30 AM	9	1	6	0	26	2	14	0	2	178	4	0	0	220	15	0	477
8:45 AM	6	3	9	0	51	1	23	0	7	211	5	0	0	261	49	0	626
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
TOTAL VOLUMES :	61	13	26	0	99	3	135	0	49	809	27	0	2	1401	106	0	2731
APPROACH % 's :	61.00%	13.00%	26.00%	0.00%	41.77%	1.27%	56.96%	0.00%	5.54%	91.41%	3.05%	0.00%	0.13%	92.84%	7.02%	0.00%	TOTAL
PEAK HR :		- MA 00:80		0	<i></i>	0	70	0		(01		0		0.40	04	0	TOTAL
PEAK HR VOL :	31	9	21	0 0.000	86	3 0.375	73 0.793	0	33	601 0.712	22 0.458	0	1	843 0.807	86	0	1809
PEAK HR FACTOR :	0.861	0.750	0.583	0.000	0.422			0.000	0.635			0.000	0.250		0.439	0.000	0.722
		0.8	47			0.54	40			0.73	50			0.75	00		
		NORTH	BOUND			SOUTH	BOUND			EASTB				WESTB			
PM	0	1	1	0	0	1	1	0	1	2	0	0	1	2	0	0	
1 1 1 1	NL	NT	NR	NU	SL	ST	SR	SU	EL	ĒT	ER	EU	WL	ŴT	WR	WU	TOTAL
2:00 PM	4	0	0	0	2	0	9	0	9	111	5	0	2	114	8	0	264
2:15 PM	5	Õ	2	Ő	4	1	11	0	4	96	4	0	4	90	13	0	234
2:30 PM	8	1	3	0	6	0	10	0	9	111	6	0	2	117	9	0	282
2:45 PM	1	3	2	0	5	1	11	0	8	109	11	0	0	122	20	0	293
3:00 PM	2	1	2	0	57	1	11	0	14	152	5	0	1	105	14	0	365
3:15 PM	2	2	3	0	26	1	12	0	9	174	4	0	0	90	12	0	335
3:30 PM	14	5	5	0	13	2	13	0	10	191	4	0	1	178	21	0	457
3:45 PM	1	1	1	0	11	2	8	0	10	178	5	0	1	112	10	0	340
4:00 PM	3	1	7	0	5	1	7	0	9	191	3	0	2	90	2	0	321
4:15 PM	3	1	2	0	16	1	5	0	7	202	9	0	0	92	2	0	340
4:30 PM	0	0	4	0	3	2	7	0	4	222	7	0	2	96	9	0	356
4:45 PM	1	0	2	0	5	1	7	0	3	219	6	0	2	96	9	0	351
5:00 PM	2	0	4	0	10	1	5	0	5	237	4	0	2	95	9	0	374
5:15 PM	1	1	1	0	9	3	8	0	13	210	7	0	5	104	11	0	373
5:30 PM	1	1	4	0	9	3	12	0	5	255	5	0	0	111	10	0	416
5:45 PM	2	1	3	0	13	4	13	0	7	251	7	0	5	115	8	0	429
	NII	NT	NR	NUT	SL	ST	SR	SU	EI.	ET	ER	EU	WL	WT	WR	14/11	TOTAL
	NL 50	NI 18	NR 45	NU O	SL 194	ST 24	SR 149	SU 0	EL 126	E1 2909	ER 92	EU O	WL 29	WI 1727	WR 167	WU 0	5530
TOTAL VOLUMES : APPROACH %'s :	50 44.25%	18	45 39.82%	0.00%	194 52.86%	24 6.54%	149 40.60%	0.00%	4.03%	2909 93.03%	92 2.94%	0.00%	29 1.51%	89.81%	167 8.68%	0.00%	5530
PEAK HR :		15.93% 05:00 PM -		0.00%	02.00%	0.34%	40.00%	0.00%	4.03%	73.03%	2.94%	0.00%	1.31%	07.01%	0.00%	0.00%	TOTAL
PEAK HR : PEAK HR VOL :		<u>- 3</u>	12	0	41	11	20	0	20	953	23	0	10	425	20	0	1592
	6 0.750	3 0.750	0.750	0 0.000	41 0.788	11 0.688	38 0.731	0 0.000	30 0.577	953 0.934	23 0.821	0 0.000	12 0.600	425 0.924	38 0.864	0 0.000	1592
PEAK HR FACTOR :	0.750	0.750		0.000	0.788	0.688		0.000	0.577	0.934		0.000	0.600	0.924		0.000	0.928
		0.8	75			0.7	00			0.92	+7			0.92	20		

Total

1

EL

0

0

SU

0

Homestead Rd

EASTBOUND

0

ER

0

0

EU

0

1

WL

0

2

ΕT

29

Wright Ave

SOUTHBOUND

1

SR

6

1

ST

0

0

SL

2

0

NU

0

Location: Wright Ave & Homestead Rd City: Cupertino Control: Signalized

0

NL

2

Wright Ave

1

NT

0

NORTHBOUND

1

NR

0

NS/EW Streets:

7:00 AM

AM

Project ID: 18-08549-006 Date: 10/24/2018

Homestead Rd

WESTBOUND

0

WR

1

0

WU

0

TOTAL

121

2

WT

81

No, EW Streets.		wingin				wingin					Jua na				Jud Hu		
		NORTH	BOUND			SOUTH	BOUND			EASTB	OUND			WESTE	SOUND		
AM	0	1	1	0	0	1	1	0	1	2	0	0	1	2	0	0	
AIVI	-		NR				SR	-									TOTAL
	NL	NT		NU	SL	ST		SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
7:00 AM	0	2	0	0	0	0	0	0	0	4	0	0	0	1	0	0	7
7:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	4	1	0	5
7:30 AM	0	0	0	0	0	0	0	0	0	2	0	0	0	1	0	0	3
7:45 AM	0	0	0	0	1	0	0	0	0	2	0	0	0	8	0	0	11
8:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	4	0	0	4
8:15 AM	Ő	Ő	1	Ő	0	õ	0	Ő	õ	5	õ	Ő	õ	7	õ	0	13
8:30 AM	0	0	1	0	3	0	0	0	0	27	1	0	0	3	3	0	38
	-											-		3 7			
8:45 AM	0	0	0	0	3	0	0	0	1	62	0	0	0	/	1	0	74
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
TOTAL VOLUMES :	0	2	2	0	7	0	0	0	1	102	1	0	0	35	5	0	155
APPROACH %'s :	0.00%	50.00%	50.00%	0.00%	100.00%	0.00%	0.00%	0.00%	0.96%	98.08%	0.96%	0.00%	0.00%	87.50%	12.50%	0.00%	
PEAK HR :		08:00 AM -		010070	10010070	010070	010070	010070	017070	7010070	017070	010070	010070	0710070	1210070	010070	TOTAL
			2	0	,	0	0	0	1	94	1	0	0	21	4	0	129
PEAK HR VOL :	0	0			6				1		1	0	0				129
PEAK HR FACTOR :	0.000	0.000	0.500	0.000	0.500	0.000	0.000	0.000	0.250	0.379	0.250	0.000	0.000	0.750	0.333	0.000	0.436
		0.5	00			0.50	00			0.38	81			0.78	31		0.100
		NORTH	BOUND			SOUTH	BOUND			EASTB	OUND			WESTE	BOUND		
PM	0	1	1	0	0	1	1	0	1	2	0	0	1	2	0	0	
1 1 1 1	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
2:00 PM	0	0	0	0	0	0	0	0	1	1	0	0	0	4	0	0	6
2:15 PM	0	0	0	0	0	0	0	0	0	1	0	0	0	2	0	0	3
	-						-	-		1	•	0		-	-	-	
2:30 PM	0	0	0	0	0	0	0	0	0	1	0	-	0	0	0	0	1
2:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1
3:00 PM	0	0	1	0	1	0	0	0	0	12	0	0	0	1	0	0	15
3:15 PM	0	0	0	0	0	0	0	0	0	4	0	0	0	3	0	0	7
3:30 PM	0	0	0	0	0	0	0	0	0	3	0	0	0	47	3	0	53
3:45 PM	0	0	0	0	1	0	0	0	0	5	0	0	0	9	0	0	15
4:00 PM	0	0	0	0	0	0	1	0	0	0	0	0	0	9	0	0	10
4:15 PM	0	Ő	Ő	Ő	0	0	0	Ő	õ	3	Õ	0	1	3	Õ	0	7
4:30 PM	0	0	0	0	0	0	0	0	0	1	0	0	0	6	0	0	7
4:45 PM	0	0	0	0	0	0	0	0	0	5	0	0	0	5	0	0	, 10
							1			ט ד		0		0	1	-	
5:00 PM	0	0	0	0	0	0	1	0	0	/	0	•	0	4	1	0	13
5:15 PM	0	0	0	0	2	0	0	0	0	8	0	0	0	9	0	0	19
5:30 PM	0	0	0	0	0	0	1	0	0	4	1	0	0	4	1	0	11
5:45 PM	0	0	0	0	0	2	0	0	0	3	0	0	0	5	1	0	11
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
TOTAL VOLUMES :	0	0	1	0	4	2	3	0	1	58	1	0	1	112	6	0	189
APPROACH %'s :	0.00%		100.00%	0.00%	44.44%	22.22%	33.33%	0.00%	1.67%	96.67%	1.67%	0.00%	0.84%	94.12%	5.04%	0.00%	107
		05:00 PM -		0.0076	44.4470	22.22 /0	55.5570	0.0076	1.0770	70.07 70	1.0770	0.0076	0.04 /0	74.1270	5.0470	0.0076	TOTAL
PEAK HR :				0		0		0	0			0	0		0	0	
PEAK HR VOL :	0	0	0	0	2	2	2	0	0	22	1	0	0	22	3	0	54
PEAK HR FACTOR :	0.00	0.000	0.000	0.000	0.250	0.250	0.500	0.000	0.000	0.688	0.250	0.000	0.000	0.611	0.750	0.000	0.711
						0.7	50			0.7	19			0.6	94		0.711

Bikes

Homestead Rd

Wright Ave

Location: Wright Ave & Homestead Rd City: Cupertino Control: Signalized

Wright Ave

NS/EW Streets:

Project ID: 18-08549-006 Date: 10/24/2018

Homestead Rd

Location: Wright Ave & Homestead Rd City: Cupertino

Project ID: 18-08549-006 Date: 10/24/2018

			Pede	estrians	(Crossw	alks)			-
NS/EW Streets:	Wrigh	nt Ave	Wrigh	it Ave	Homes	tead Rd	Homes	tead Rd	
AM	NORT	H LEG	SOUT	H LEG	EAS	T LEG	WES	T LEG	
AIVI	EB	WB	EB	WB	NB	SB	NB	SB	TOTAL
7:00 AM	0	1	1	1	0	0	0	1	4
7:15 AM	1	0	0	0	0	0	0	0	1
7:30 AM	0	4	1	0	0	0	0	0	5
7:45 AM	1	1	0	0	0	1	0	0	3
8:00 AM	4	2	0	0	0	1	0	0	7
8:15 AM	2	0	2	2	0	1	1	0	8
8:30 AM	3	0	12	0	1	3	0	0	19
8:45 AM	6	10	13	0	0	1	0	3	33
	EB	WB	EB	WB	NB	SB	NB	SB	TOTAL
TOTAL VOLUMES :	17	18	29	3	1	7	1	4	80
APPROACH %'s :	48.57%	51.43%	90.63%	9.38%	12.50%	87.50%	20.00%	80.00%	
PEAK HR :	08:00 AM	- 09:00 AM	0.010012001						TOTAL
PEAK HR VOL :	15	12	27	2	1	6	1	3	67
PEAK HR FACTOR :	0.625	0.300	0.519	0.250	0.250	0.500	0.250	0.250	0.508
	0.4	122	0.5	58	0.4	138	0.3	333	0.308

PM	NORT	'H LEG	SOUT	H LEG	EAS	T LEG	WEST	Г LEG	
FIVI	EB	WB	EB	WB	NB	SB	NB	SB	TOTAL
2:00 PM	0	0	0	2	0	0	0	0	2
2:15 PM	0	1	0	0	0	0	0	1	2
2:30 PM	1	0	1	0	0	0	0	0	2
2:45 PM	0	0	0	0	0	1	1	0	2
3:00 PM	24	0	19	1	0	5	0	25	74
3:15 PM	1	1	3	0	0	0	0	4	9
3:30 PM	2	6	0	33	9	0	4	0	54
3:45 PM	1	1	1	2	3	1	1	2	12
4:00 PM	1	1	1	6	0	1	4	0	14
4:15 PM	0	0	2	2	0	0	0	0	4
4:30 PM	0	0	0	1	0	0	0	0	1
4:45 PM	1	1	0	2	1	0	0	0	5
5:00 PM	0	1	0	0	0	0	0	0	1
5:15 PM	0	2	0	2	0	0	1	0	5
5:30 PM	1	3	0	1	0	0	0	0	5
5:45 PM	0	0	3	0	0	0	0	0	3
	EB	WB	EB	WB	NB	SB	NB	SB	TOTAL
TOTAL VOLUMES :	32	17	30	52	13	8	11	32	195
APPROACH % 's :	65.31%	34.69%	36.59%	63.41%	61.90%	38.10%	25.58%	74.42%	
PEAK HR :	05:00 PM	- 06:00 PM	05:00 PM						TOTAL
PEAK HR VOL :	1	6	3	3	0	0	1	0	14
PEAK HR FACTOR :	0.250	0.500	0.250	0.375			0.250		0.700
	0.4	438	0.5	500			0.2	250	0.700

Location: Mary Ave & Homestead Rd City: Cupertino Control: Signalized

Project ID: 18-08664-007 Date: 12/11/2018

_								10	tai								
NS/EW Streets:		Mary	Ave			Mary	Ave			Homeste	ead Rd			Homeste	ad Rd		
		NORTH	BOUND			SOUTH	BOUND			EASTB	OUND			WESTE	OUND		
AM	1	0.5	0.5	0	1.5	0.5	1	0	1	2	0	0	1	2	0	0	
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ΕT	ER	EU	WL	WT	WR	WU	TOTAL
7:00 AM	0	0	0	0	8	1	4	0	2	31	7	0	6	78	9	0	146
7:15 AM	2	4	1	0	11	6	7	0	2	36	6	0	6	119	31	0	231
7:30 AM	23	21	11	0	38	26	16	0	6	83	58	0	31	214	18	0	545
7:45 AM	64	61	14	0	86	50	28	0	14	169	90	0	20	199	47	0	842
8:00 AM	19	18	6	0	49	7	14	0	22	182	9	0	10	219	60	0	615
8:15 AM	1	5	1	0	39	2	13	0	17	105	3	0	2	166	57	0	411
8:30 AM	0	2	1	0	36	3	14	0	25	92	1	0	0	194	64	0	432
8:45 AM	4	0	2	0	36	2	11	0	23	90	5	0	1	227	76	0	477
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
TOTAL VOLUMES :	113	111	36	0	303	97	107	0	111	788	179	0	76	1416	362	0	3699
APPROACH % 's :	43.46%	42.69%	13.85%	0.00%	59.76%	19.13%	21.10%	0.00%	10.30%	73.10%	16.60%	0.00%	4.10%	76.38%	19.53%	0.00%	
PEAK HR :	C)7:30 AM -	08:30 AM														TOTAL
PEAK HR VOL :	107	105	32	0	212	85	71	0	59	539	160	0	63	798	182	0	2413
PEAK HR FACTOR :	0.418	0.430	0.571	0.000	0.616	0.425	0.634	0.000	0.670	0.740	0.444	0.000	0.508	0.911	0.758	0.000	0.716
		0.43	39			0.50	61			0.6	94			0.90)2		0.710

Total

Location: Mary Ave & Homestead Rd City: Cupertino Control: Signalized

Project ID: 18-08664-007 Date: 12/11/2018

_								DIF	(05								
NS/EW Streets:		Mary	Ave			Mary	Ave			Homeste	ead Rd			Homeste	ead Rd		
		NORTH	BOUND			SOUTH	BOUND			EASTE	OUND			WESTE	BOUND		
AM	1	0.5	0.5	0	1.5	0.5	1	0	1	2	0	0	1	2	0	0	
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
7:00 AM	1	0	0	0	0	0	0	0	0	0	1	0	0	1	0	0	3
7:15 AM	1	0	0	0	0	1	0	0	0	3	0	0	0	3	1	0	9
7:30 AM	0	0	0	0	0	28	0	0	0	1	7	0	0	9	0	0	45
7:45 AM	0	2	0	0	0	76	0	0	0	3	0	0	0	8	0	0	89
8:00 AM	1	1	0	0	1	5	0	0	0	1	5	0	0	1	0	0	15
8:15 AM	0	1	2	0	0	0	1	0	0	4	2	0	0	2	3	0	15
8:30 AM	4	1	0	0	0	0	0	0	0	6	2	0	0	1	0	0	14
8:45 AM	2	1	0	0	0	0	0	0	0	4	2	0	0	1	1	0	11
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
TOTAL VOLUMES :	9	6	2	0	1	110	1	0	0	22	19	0	0	26	5	0	201
APPROACH % 's :	52.94%	35.29%	11.76%	0.00%	0.89%	98.21%	0.89%	0.00%	0.00%	53.66%	46.34%	0.00%	0.00%	83.87%	16.13%	0.00%	
PEAK HR :	C)7:30 AM -	08:30 AM														TOTAL
PEAK HR VOL :	1	4	2	0	1	109	1	0	0	9	14	0	0	20	3	0	164
PEAK HR FACTOR :	0.250	0.500	0.250	0.000	0.250	0.359	0.250	0.000	0.000	0.563	0.500	0.000	0.000	0.556	0.250	0.000	0.461
		0.58	83			0.30	65			0.7	19			0.63	39		0.401

Bikes

Location: Mary Ave & Homestead Rd City: Cupertino

Project ID: 18-08664-007 Date: 12/11/2018

NS/EW Streets:	Mary	v Ave	Mary	Ave	Homes	tead Rd	Homes	tead Rd	
AM		H LEG	SOUT		EAS	T LEG	WES	t leg	
	EB	WB	EB	WB	NB	SB	NB	SB	TOTAL
7:00 AM	0	0	2	0	0	0	0	1	3
7:15 AM	0	0	3	0	1	0	0	3	7
7:30 AM	27	3	17	0	0	33	0	3	83
7:45 AM	72	7	142	3	3	130	2	91	450
8:00 AM	1	0	3	0	0	8	0	1	13
8:15 AM	0	0	2	0	1	0	0	0	3
8:30 AM	2	0	2	0	1	2	0	0	7
8:45 AM	6	1	1	0	1	7	0	0	16
	EB	WB	EB	WB	NB	SB	NB	SB	TOTAL
TOTAL VOLUMES :	108	11	172	3	7	180	2	99	582
APPROACH %'s :	90.76%	9.24%	98.29%	1.71%	3.74%	96.26%	1.98%	98.02%	
PEAK HR :	07:30 AM	- 08:30 AM							TOTAL
PEAK HR VOL :	100	10	164	3	4	171	2	95	549
PEAK HR FACTOR :	0.347	0.357	0.289	0.250	0.333	0.329	0.250	0.261	0.205
	0.3	348	0.2	88	0.3	329	0.2	261	0.305

		NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
	7:00 AM	0	0	0	0	10	0	0	0	3	29	5	0	7	75	13	0	142
	7:15 AM	0	1	1	0	9	0	4	0	5	31	8	0	15	123	12	0	209
	7:30 AM	2	1	1	0	10	5	19	0	6	46	11	0	23	160	24	0	308
	7:45 AM	0	5	1	0	20	4	25	0	15	74	10	0	16	161	33	0	364
	8:00 AM	3	3	1	0	27	3	17	0	20	91	6	0	3	167	29	0	370
	8:15 AM	3	13	2	0	37	10	23	0	20	86	7	0	6	155	42	0	404
	8:30 AM	20	28	8	0	62	35	21	0	24	123	36	0	11	192	66	0	626
	8:45 AM	61	59	29	0	108	49	15	0	15	160	64	0	17	186	56	0	819
		NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
	TOTAL VOLUMES :	89	110	43	0	283	106	124	0	108	640	147	0	98	1219	275	0	3242
	APPROACH %'s :	36.78%	45.45%	17.77%	0.00%	55.17%	20.66%	24.17%	0.00%	12.07%	71.51%	16.42%	0.00%	6.16%	76.57%	17.27%	0.00%	
	PEAK HR :		- MA 00:80	09:00 AM						0.8:45.494								TOTAL
	PEAK HR VOL :	87	103	40	0	234	97	76	0	79	460	113	0	37	700	193	0	2219
, I	PEAK HR FACTOR :	0.357	0.436	0.345	0.000	0.542	0.495	0.826	0.000	0.823	0.719	0.441	0.000	0.544	0.911	0.731	0.000	0.677
			0.3	86			0.59	92			0.68	32			0.86	64		0.077
			NORTH				SOUTH				EASTB				WESTE			
	PM	1	0.5	0.5	0	1.5	0.5	1	0	1	2	0	0	1	2	0	0	
		NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
	2:00 PM	2	0	3	0	35	0	13	0	10	102	1	0	1	109	31	0	307
	2:15 PM	1	2	3	0	32	2	11	0	4	105	2	0	1	105	29	0	297
	2:30 PM	0	2	4	0	38	0	10	0	9	106	2	0	2	122	18	0	313
	2:45 PM	3	0	4	0	34	12	10	0	8	101	7	0	4	125	31	0	339
	3:00 PM	0	1	3	0	48	14	9	0	13	168	12	0	8	101	25	0	402
	3:15 PM	15	10	11	0	64	4	18	0	12	166	8	0	4	87	31	0	430
	3:30 PM	39	31	36	0	84	22	19	0	17	171	23	0	7	125	41	0	615
	3:45 PM	11	11	16	0	49	5	16	0	19	163	7	0	2	95	36	0	430
	4:00 PM	8	7	13	0	57	2	12	0	2	192	5	0	4	85	31	0	418
	4:15 PM	6	3	8	0	65	5	13	0	11	205	5	0	4	86	34	0	445
	4:30 PM	9	7	10	0	60	4	19	0	10	215	7	0	3	85	39	0	468
\vdash	4:45 PM	1	3	7	0	83	2	19	0	17	215	0	0	2	87	32	0	468
	5:00 PM	1	4	7	0	94	2	24	0	18	230	0	0	3	101	34	0	518
	5:15 PM	2	1	3	0	126	0	23	0	16	203	1	0	2	103	36	0	516
	5:30 PM	0	1	1	0	111	3	25	0	14	264	0	0	3	106	49	0	577
	5:45 PM	1	2	0	0	94	6	21	0	6	249	4	0	6	114	46	0	549
⊢			NT	ND		01	OT	00	011	-	FT	50	E 11	14/1	1.1/T	11/5		TOTAL
		NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
	TOTAL VOLUMES :	99	85	129	0	1074	83	262	0	186	2855	84	0	56	1636	543	0	7092
	APPROACH %'s :	31.63%	27.16%	41.21%	0.00%	75.69%	5.85%	18.46%	0.00%	5.95%	91.36%	2.69%	0.00%	2.51%	73.20%	24.30%	0.00%	TOTA
	PEAK HR :		05:00 PM -			105						_						TOTAL
	PEAK HR VOL :	4	8	11	0	425	11	93	0	54	946	5	0	14	424	165	0	2160
	PEAK HR FACTOR :	0.500	0.500	0.393	0.000	0.843	0.458	0.930	0.000	0.750	0.896	0.313	0.000	0.583	0.930	0.842	0.000	0.936
			0.4	/9			0.88	38			0.90	J4			0.90	78		

Total

EL

SU

Homestead Rd

ΕT

EASTBOUND

ER

EU

WL

Mary Ave

SOUTHBOUND

SR

0.5

ST

Location: Mary Ave & Homestead Rd City: Cupertino Control: Signalized

NL

Mary Ave

0.5

NT

NORTHBOUND

0.5

NR

NU

1.5

SL

NS/EW Streets:

AM

Project ID: 18-08549-007 Date: 10/24/2018

Homestead Rd

WESTBOUND

WR

WΤ

WU

TOTAL

		. ,	-			. ,			i								
		NORTH	BOUND			SOUTH	BOUND		1	EASTB	OUND			WESTE	BOUND		
AM	1	0.5	0.5	0	1.5	0.5	1	0	1	2	0	0	1	2	0	0	
								-	-			-	-				TOTAL
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
7:00 AM	0	0	1	0	0	0	0	0	1	2	2	0	1	1	0	0	8
7:15 AM	1	2	0	0	0	0	0	0	1	0	0	0	0	2	2	0	8
7:30 AM	1	1	0	0	0	0	0	0	0	3	0	0	0	0	0	0	5
7:45 AM	1	0	0	õ	0 0	3	0	0	0	1	1	0	1	6	1	0	14
							0	-	•				-	0			
8:00 AM	2	2	0	0	1	5	1	0	0	0	2	0	0	1	3	0	17
8:15 AM	3	4	2	0	2	8	0	0	1	3	1	0	0	1	1	0	26
8:30 AM	0	3	0	0	4	57	0	0	2	0	12	0	0	7	0	0	85
8:45 AM	0	1	0	0	1	103	0	0	2	9	42	0	0	2	1	0	161
0.45 AW	0		U	U		105	0	0	2	7	42	0	0	2	· · · ·	v	101
													0				
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
TOTAL VOLUMES :	8	13	3	0	8	176	1	0	7	18	60	0	2	20	8	0	324
APPROACH %'s :	33.33%	54.17%	12.50%	0.00%	4.32%	95.14%	0.54%	0.00%	8.24%	21.18%	70.59%	0.00%	6.67%	66.67%	26.67%	0.00%	
				0.0070	4.5270	75.1470	0.5470	0.0070	0.2470	21.1070	70.3770	0.0070	0.0770	00.0770	20.0770	0.0070	TOTAL
PEAK HR :		- MA 00:80															TOTAL
PEAK HR VOL :	5	10	2	0	8	173	1	0	5	12	57	0	0	11	5	0	289
PEAK HR FACTOR :	0.417	0.625	0.250	0.000	0.500	0.420	0.250	0.000	0.625	0.333	0.339	0.000	0.000	0.393	0.417	0.000	
		0.4				0.43			1	0.34				0.5			0.449
		0.4	12			0.40	00			0.5	т <i>)</i>			0.5	/ 1		
																	1
		NORTH				SOUTH	BOUND		i.	EASTB	OUND			WESTE	Bound		
PM	1	0.5	0.5	0	1.5	0.5	1	0	1	2	0	0	1	2	0	0	
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
2:00 PM	3	0	0	0	0	1	0	0	0	0	1	0	0	0	1	0	6
	3				1	1		-	-		1	-	0	-	1	-	
2:15 PM	1	1	0	0		0	0	0	0	0	0	0		1	0	0	5
2:30 PM	0	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	2
2:45 PM	1	0	0	0	2	0	0	0	0	0	0	0	0	1	0	0	4
3:00 PM	1	1	1	0	4	2	2	0	0	12	0	0	1	1	1	0	26
3:15 PM	5	0	0	0	0	1	0	0	0	4	0	0	0	3	3	0	16
						0	-	-			1	0	•	5			
3:30 PM	59	46	6	0	0	-	2	0		2		•	0	4	22	0	143
3:45 PM	7	2	1	0	0	0	1	0	0	2	4	0	0	4	5	0	26
4:00 PM	4	0	0	0	0	1	0	0	0	0	0	0	1	1	1	0	8
4:15 PM	3	1	0	0	0	3	1	0	1	2	0	0	0	3	1	0	15
4:30 PM	6	2	0	0	0	0	0	0	0	1	0	0	0	0	4	0	13
	1	_					1	-	-		-	-	-	-		-	
4:45 PM	1	0	0	0	3	2		0	0	0	0	0	0	3	5	0	15
5:00 PM	3	0	0	0	0	0	0	0	1	4	0	0	0	2	8	0	18
5:15 PM	0	0	1	0	1	1	1	0	0	7	0	0	0	6	15	0	32
5:30 PM	0	1	0	0	0	1	0	0	0	3	0	0	0	4	2	0	11
5:45 PM	Ő	1	0	Ő	1	1	1	0	1	1	1	0	1	2	0	0	10
5.45 PIVI	U	1	U	U	'	1	1	v	1	1	1	v	1	2	U	v	10
ļ																	
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
TOTAL VOLUMES :	94	55	9	0	12	13	9	0	4	39	8	0	4	35	68	0	350
APPROACH %'s :	59.49%	34.81%	5.70%	0.00%	35.29%	38.24%	26.47%	0.00%	7.84%	76.47%	15.69%	0.00%	3.74%	32.71%	63.55%	0.00%	
				0.00 /0	55.2770	30.2470	20.4770	0.0070	7.0470	10.4170	13.0770	0.0070	5.7470	52.7170	03.3370	0.0076	TOTAL
PEAK HR :		05:00 PM -							1								TOTAL
PEAK HR VOL :	3	2	1	0	2	3	2	0	2	15	1	0	1	14	25	0	71
FLAKTIK VUL .																	
PEAK HR FACTOR :	0.25	0.500	0.250	0.000	0.500	0.750	0.500	0.000	0.500	0.536	0.250	0.000	0.250	0.583	0.417	0.000	0.555
	0.25	0.500 0.50		0.000	0.500	0.750 0.58		0.000	0.500	0.536 0.64		0.000	0.250	0.583		0.000	0.555

Bikes

Homestead Rd

Mary Ave

Location: Mary Ave & Homestead Rd City: Cupertino Control: Signalized

Mary Ave

NS/EW Streets:

Project ID: 18-08549-007 Date: 10/24/2018

Homestead Rd

Location: Mary Ave & Homestead Rd City: Cupertino

Project ID: 18-08549-007 Date: 10/24/2018

			Pede	estrians	<u>(Crossw</u>	alks)			-
NS/EW Streets:	Mary	/ Ave	Mary	Ave	Homes	tead Rd	Homes	tead Rd	
AM	NORT	H LEG	SOUT	H LEG	EAS	t leg	WES	t leg	
AIVI	EB	WB	EB	WB	NB	SB	NB	SB	TOTAL
7:00 AM	0	0	0	0	0	1	0	0	1
7:15 AM	1	0	0	1	0	2	1	1	6
7:30 AM	0	1	2	1	0	0	0	1	5
7:45 AM	2	0	6	0	0	1	0	3	12
8:00 AM	1	0	6	1	0	1	0	5	14
8:15 AM	1	0	6	3	1	3	0	1	15
8:30 AM	13	0	23	0	0	24	0	13	73
8:45 AM	94	14	103	0	0	160	1	50	422
	EB	WB	EB	WB	NB	SB	NB	SB	TOTAL
TOTAL VOLUMES :	112	15	146	6	1	192	2	74	548
APPROACH %'s :	88.19%	11.81%	96.05%	3.95%	0.52%	99.48%	2.63%	97.37%	
PEAK HR :	08:00 AM	- 09:00 AM	08:00.434						TOTAL
PEAK HR VOL :	109	14	138	4	1	188	1	69	524
PEAK HR FACTOR :	0.290	0.250	0.335	0.333	0.250	0.294	0.250	0.345	0.310
	0.2	285	0.3	345	0.	295	0.3	343	0.310

PM	NORT	TH LEG	SOUT	H LEG	EAST	LEG	WEST	LEG	
FIVI	EB	WB	EB	WB	NB	SB	NB	SB	TOTAL
2:00 PM	0	0	0	3	0	0	1	0	4
2:15 PM	0	0	0	0	1	0	0	0	1
2:30 PM	0	0	0	2	0	1	1	0	4
2:45 PM	0	1	2	1	2	0	0	0	6
3:00 PM	9	0	10	1	1	1	0	1	23
3:15 PM	13	56	10	51	258	4	27	0	419
3:30 PM	2	20	5	49	44	3	22	1	146
3:45 PM	0	5	2	9	2	2	2	0	22
4:00 PM	0	2	1	3	5	0	2	0	13
4:15 PM	1	1	1	5	7	3	1	0	19
4:30 PM	0	2	1	10	16	2	5	0	36
4:45 PM	0	2	1	1	4	0	0	0	8
5:00 PM	0	1	0	2	2	0	0	0	5
5:15 PM	1	5	0	4	3	1	0	0	14
5:30 PM	0	2	0	2	1	0	0	0	5
5:45 PM	0	2	1	3	0	0	1	2	9
	EB	WB	EB	WB	NB	SB	NB	SB	TOTAL
TOTAL VOLUMES :	26	99	34	146	346	17	62	4	734
APPROACH %'s :	20.80%	79.20%	18.89%	81.11%	95.32%	4.68%	93.94%	6.06%	
PEAK HR :	05:00 PM	- 06:00 PM	05:00 884						TOTAL
PEAK HR VOL :	1	10	1	11	6	1	1	2	33
PEAK HR FACTOR :	0.250	0.500	0.250	0.688	0.500	0.250	0.250	0.250	0 5 0 0
	0.4	458	0.7	/50	0.4	38	0.2	50	0.589

Location: Kennewick Dr & Homestead Rd City: Cupertino Control: Signalized

Project ID: 18-08664-008 Date: 12/11/2018

_								10	tai								
NS/EW Streets:		Kenne	wick Dr			Kennew	ick Dr			Homeste	ead Rd			Homeste	ead Rd		
		NORTH	HBOUND			SOUTH	BOUND			EASTE	OUND			WESTE	BOUND		
AM	0	0	0	0	0	1	0	0	1	2	0	0	1	2	0	0	
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
7:00 AM	0	0	0	0	2	0	3	0	0	32	3	0	5	87	5	0	137
7:15 AM	0	0	0	0	4	0	8	0	2	46	6	0	7	155	6	0	234
7:30 AM	0	0	0	0	9	18	15	0	20	86	26	0	13	285	15	0	487
7:45 AM	0	0	0	0	13	37	15	0	39	210	58	0	24	307	31	0	734
8:00 AM	0	0	0	0	15	1	10	0	34	234	5	0	10	248	26	0	583
8:15 AM	0	0	0	0	7	0	7	0	11	149	0	0	2	211	15	0	402
8:30 AM	0	0	0	0	12	1	11	0	8	119	2	0	2	247	11	0	413
8:45 AM	0	0	0	0	8	2	8	0	0	118	1	0	6	279	7	0	429
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
TOTAL VOLUMES :	0	0	0	0	70	59	77	0	114	994	101	0	69	1819	116	0	3419
APPROACH % 's :					33.98%	28.64%	37.38%	0.00%	9.43%	82.22%	8.35%	0.00%	3.44%	90.77%	5.79%	0.00%	
PEAK HR :		07:30 AM	- 08:30 AM						07:45 8.84								TOTAL
PEAK HR VOL :	0	0	0	0	44	56	47	0	104	679	89	0	49	1051	87	0	2206
PEAK HR FACTOR :	0.000	0.000	0.000	0.000	0.733	0.378	0.783	0.000	0.667	0.725	0.384	0.000	0.510	0.856	0.702	0.000	0.751
						0.50	65			0.7	10			0.82	20		0.751

Total

Location: Kennewick Dr & Homestead Rd City: Cupertino Control: Signalized

Project ID: 18-08664-008 Date: 12/11/2018

-																	
NS/EW Streets:		Kennew	ick Dr			Kennew	rick Dr			Homeste	ead Rd			Homeste	ad Rd		
		NORTH	BOUND			SOUTH	BOUND			EASTB	OUND			WESTB	OUND		
AM	0	0	0	0	0	1	0	0	1	2	0	0	1	2	0	0	
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
7:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1
7:15 AM	0	0	0	0	0	0	0	0	0	2	0	0	1	4	1	0	8
7:30 AM	1	0	0	0	0	1	0	0	0	1	0	0	6	8	1	0	18
7:45 AM	0	0	0	0	0	8	0	0	0	1	5	0	26	9	1	0	50
8:00 AM	0	0	0	0	0	0	0	0	0	2	0	0	0	2	0	0	4
8:15 AM	0	0	0	0	0	0	0	0	0	6	0	0	0	4	0	0	10
8:30 AM	0	0	0	0	0	0	0	0	0	6	0	0	0	2	0	0	8
8:45 AM	0	0	0	0	0	0	0	0	0	4	0	0	0	1	0	0	5
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
TOTAL VOLUMES :	1	0	0	0	0	9	0	0	0	22	5	0	33	31	3	0	104
APPROACH %'s :	100.00%	0.00%	0.00%	0.00%	0.00%	100.00%	0.00%	0.00%	0.00%	81.48%	18.52%	0.00%	49.25%	46.27%	4.48%	0.00%	
PEAK HR :	C)7:30 AM -	08:30 AM		07:30.481												TOTAL
PEAK HR VOL :	1	0	0	0	0	9	0	0	0	10	5	0	32	23	2	0	82
PEAK HR FACTOR :	0.250	0.000	0.000	0.000	0.000	0.281	0.000	0.000	0.000	0.417	0.250	0.000	0.308	0.639	0.500	0.000	0.410
		0.25	50			0.28	31			0.62	25			0.39	96		0.110

Bikes

Location: Kennewick Dr & Homestead Rd

Project ID: 18-08664-008 Date: 12/11/2018

City: Cupertino

NS/EW Streets:	Kenne	wick Dr	Kenne	wick Dr	Homes	tead Rd	Homes	tead Rd	
AM	NORT	'H LEG	SOUT	H LEG	EAS	T LEG	WES	T LEG	
AIVI	EB	WB	EB	WB	NB	SB	NB	SB	TOTAL
7:00 AM	0	0	1	1	0	0	0	0	2
7:15 AM	0	1	0	1	0	3	0	2	7
7:30 AM	0	6	3	9	0	24	2	14	58
7:45 AM	0	3	2	43	0	83	0	68	199
8:00 AM	0	0	0	4	0	9	0	10	23
8:15 AM	0	0	0	7	0	3	1	0	11
8:30 AM	2	0	2	1	1	0	0	2	8
8:45 AM	0	0	1	0	0	0	0	2	3
	EB	WB	EB	WB	NB	SB	NB	SB	TOTAL
TOTAL VOLUMES :	2	10	9	66	1	122	3	98	311
APPROACH %'s :	16.67%	83.33%	12.00%	88.00%	0.81%	99.19%	2.97%	97.03%	
PEAK HR :	07:30 AM	- 08:30 AM	07:30 AM						TOTAL
PEAK HR VOL :	0	9	5	63	0	119	3	92	291
PEAK HR FACTOR :		0.375	0.417	0.366		0.358	0.375	0.338	0.277
	0.3	375	0.3	378	0.3	358	0.3	349	0.366

WESTBOUND NORTHBOUND SOUTHBOUND EASTBOUND ΡM NR ST ΕT ER WT WR WU TOTAL NL NT NU SL SR SU EL EU WL 2:00 PM 2:15 PM 2:30 PM 2:45 PM 3:00 PM 3:15 PM 3:30 PM 3:45 PM 4:00 PM 4:15 PM 4:30 PM 4:45 PM 5:00 PM 5:15 PM 5:30 PM 5:45 PM NL NT NR NU ST SR SU ER EU WL WT WR WU TOTAL SL EL ΕT TOTAL VOLUMES APPROACH %'s 61.51% 5.<u>66</u>% 32.83% 0.00% 3.61% 94.24% 2.15% 0.00% 2.75% 87.96% 9.25% 0.04% PEAK HR : 05:00 PM - 06:00 PM TOTAL PEAK HR VOL PEAK HR FACTOR 0.000 0.000 0.000 0.000 0.846 0.375 0.719 0.000 0.550 0.900 0.692 0.000 0.500 0.870 0.806 0.000 0.910 0.795 0.891 0.867

NS/EW Streets:		Kenne	wick Dr			Kennew	ick Dr			Homeste	ead Rd			Homeste	ead Rd		
		NORTI	HBOUND			SOUTH	BOUND			EASTE	OUND			WESTE	OUND		
AM	0	0	0	0	0	1	0	0	1	2	0	0	1	2	0	0	
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
7:00 AM	0	0	0	0	2	0	5	0	3	36	3	0	2	9 5	5	0	151
7:15 AM	0	0	0	0	5	0	8	0	1	43	0	0	5	143	6	0	211
7:30 AM	0	0	0	0	5	0	10	0	1	51	0	0	2	197	5	0	271
7:45 AM	0	0	0	0	12	0	13	0	12	75	1	0	6	194	12	0	325
8:00 AM	0	0	0	0	13	0	8	0	11	106	1	0	5	189	8	0	341
8:15 AM	0	0	0	0	14	3	4	0	11	113	5	0	7	204	18	0	379
8:30 AM	0	0	0	0	12	18	8	0	27	150	35	0	17	298	19	0	584
8:45 AM	0	0	0	0	14	29	5	0	43	234	40	0	23	282	30	0	700
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
TOTAL VOLUMES :	0	0	0	0	77	50	61	0	109	808	85	0	67	1602	103	0	2962
APPROACH %'s :					40.96%	26.60%	32.45%	0.00%	10.88%	80.64%	8.48%	0.00%	3.78%	90.41%	5.81%	0.00%	
PEAK HR :		08:00 AM	- 09:00 AM														TOTAL
PEAK HR VOL :	0	0	0	0	53	50	25	0	92	603	81	0	52	973	75	0	2004
PEAK HR FACTOR :	0.000	0.000	0.000	0.000	0.946	0.431	0.781	0.000	0.535	0.644	0.506	0.000	0.565	0.816	0.625	0.000	0.716
						0.6	57			0.6	12			0.82	21		0.716

Total

Location: Kennewick Dr & Homestead Rd City: Cupertino Control: Signalized

Project ID: 18-08549-008 Date: 10/24/2018

Location: Kennewick Dr & Homestead Rd City: Cupertino Control: Signalized

									(05								
NS/EW Streets:		Kenne	wick Dr			Kennew	ick Dr			Homeste	ead Rd			Homeste	ead Rd		
		NORTI	HBOUND			SOUTH	BOUND			EASTE	OUND			WESTE	BOUND		
AM	0	0	0	0	0	1	0	0	1	2	0	0	1	2	0	0	
,	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
7:00 AM	0	0	0	0	0	0	1	0	0	3	0	0	1	1	0	0	6
7:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	3	0	0	3
7:30 AM	0	0	0	0	0	0	0	0	0	2	0	0	1	2	0	0	5
7:45 AM	0	0	0	0	0	0	1	0	0	1	0	0	0	7	0	0	9
8:00 AM	0	0	0	0	0	0	0	0	0	1	0	0	0	4	0	0	5
8:15 AM	0	0	0	0	1	1	0	0	0	6	0	0	3	2	1	0	14
8:30 AM	0	0	0	0	1	9	0	0	0	2	0	0	8	7	0	0	27
8:45 AM	0	0	0	0	0	21	0	0	0	12	0	0	24	9	0	0	66
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
TOTAL VOLUMES :	0	0	0	0	2	31	2	0	0	27	0	0	37	35	1	0	135
APPROACH % 's :					5.71%	88.57%	5.71%	0.00%	0.00%	100.00%	0.00%	0.00%	50.68%	47.95%	1.37%	0.00%	
PEAK HR :		08:00 AM	- 09:00 AM		08200.484												TOTAL
PEAK HR VOL :	0	0	0	0	2	31	0	0	0	21	0	0	35	22	1	0	112
PEAK HR FACTOR :	0.000	0.000	0.000	0.000	0.500	0.369	0.000	0.000	0.000	0.438	0.000	0.000	0.365	0.611	0.250	0.000	0.404
						0.3	93			0.43	38			0.4	39		0.424
		NORTI	HBOUND		SOUTHBOUND					EASTE	OUND			WESTE	BOUND		
PM	0	0	0	0	0	1	0	0	1	2	0	0	1	2	0	0	
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
2:00 PM	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	1
0.45 014									_				~				

Bikes

Project ID: 18-08549-008 Date: 10/24/2018

		NORTH	IBOUND			SOUTH	BOUND			EASTE	BOUND			WESTE	BOUND		
PM	0	0	0	0	0	1	0	0	1	2	0	0	1	2	0	0	
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	Т
2:00 PM	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	
2:15 PM	0	0	0	0	0	0	0	0	0	1	0	0	0	2	0	0	
2:30 PM	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	
2:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	
3:00 PM	0	0	0	0	3	0	1	0	0	17	0	0	0	1	0	0	
3:15 PM	0	0	1	0	0	0	0	0	0	5	0	0	1	2	0	0	
3:30 PM	1	29	16	0	0	0	0	0	2	10	0	0	0	3	1	0	
3:45 PM	0	0	2	0	0	1	1	0	1	5	0	0	0	2	1	0	
4:00 PM	0	0	2	0	0	0	0	0	0	1	0	0	0	2	0	0	
4:15 PM	0	0	3	0	0	0	0	0	0	2	0	0	0	3	0	0	
4:30 PM	1	2	0	0	0	0	0	0	0	1	0	0	0	3	0	0	
4:45 PM	0	0	0	0	0	0	0	0	0	2	0	0	0	4	0	0	
5:00 PM	0	0	0	0	0	0	0	0	0	4	0	0	0	3	0	0	
5:15 PM	0	0	3	0	0	0	0	0	0	8	0	0	0	6	0	0	
5:30 PM	0	2	4	0	1	0	0	0	1	3	0	0	0	3	1	0	
5:45 PM	0	2	1	0	0	1	0	0	0	4	0	0	0	4	0	0	
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	
TOTAL VOLUMES :	2	35	33	0	4	2	2	0	4	64	0	0	1	39	3	0	
APPROACH % 's :	2.86%	50.00%	47.14%	0.00%	50.00%	25.00%	25.00%	0.00%	5.88%	94.12%	0.00%	0.00%	2.33%	90.70%	6.98%	0.00%	
PEAK HR :		05:00 PM -	06:00 PM														l '
PEAK HR VOL :	0	4	8	0	1	1	0	0	1	19	0	0	0	16	1	0	
PEAK HR FACTOR :	0.00	0.500	0.500	0.000	0.250	0.250	0.000	0.000	0.250	0.594	0.000	0.000	0.000	0.667	0.250	0.000	
		0.5	00			0.50	00			0.6	25			0.7	08		

Location: Kennewick Dr & Homestead Rd City: Cupertino

Project ID: 18-08549-008 Date: 10/24/2018

			Pede	estrians	(Crossw	alks)			_
NS/EW Streets:	Kenne	wick Dr	Kenne	wick Dr	Homes	stead Rd	Homes	tead Rd	
AM	NORT	'H LEG	SOUT	H LEG	EAS	t leg	WES	t leg	
AIVI	EB	WB	EB	WB	NB	SB	NB	SB	TOTAL
7:00 AM	0	0	1	0	0	0	0	0	1
7:15 AM	0	1	1	1	0	0	0	0	3
7:30 AM	0	2	2	0	0	0	0	1	5
7:45 AM	0	0	1	6	0	5	0	1	13
8:00 AM	0	0	4	3	0	5	0	0	12
8:15 AM	0	0	2	7	0	3	0	2	14
8:30 AM	1	7	1	5	3	22	0	27	66
8:45 AM	2	8	1	61	2	84	6	85	249
	EB	WB	EB	WB	NB	SB	NB	SB	TOTAL
TOTAL VOLUMES :	3	18	13	83	5	119	6	116	363
APPROACH %'s :	14.29%	85.71%	13.54%	86.46%	4.03%	95.97%	4.92%	95.08%	
PEAK HR :	08:00 AM	- 09:00 AM	08:00.484						TOTAL
PEAK HR VOL :	3	15	8	76	5	114	6	114	341
PEAK HR FACTOR :	0.375	0.469	0.500	0.311	0.417	0.339	0.250	0.335	0.342
	0.4	450	0.3	339	0.	346	0.3	330	0.342

PM	NORT	'H LEG	SOUT	H LEG	EAST	LEG	WEST	Г LEG	
FIVI	EB	WB	EB	WB	NB	SB	NB	SB	TOTAL
2:00 PM	0	0	7	1	8	2	1	0	19
2:15 PM	0	0	1	0	1	0	2	0	4
2:30 PM	0	0	0	2	0	1	1	0	4
2:45 PM	1	0	2	1	1	2	0	0	7
3:00 PM	2	0	7	1	1	0	0	0	11
3:15 PM	5	2	47	2	6	0	18	13	93
3:30 PM	6	1	110	7	106	1	82	1	314
3:45 PM	0	2	6	4	6	2	0	0	20
4:00 PM	1	0	4	1	4	2	3	0	15
4:15 PM	0	0	7	1	2	0	2	0	12
4:30 PM	0	2	10	4	11	0	6	1	34
4:45 PM	3	1	3	0	2	0	0	0	9
5:00 PM	2	2	0	0	2	1	3	0	10
5:15 PM	0	2	0	1	0	0	2	0	5
5:30 PM	0	0	1	4	2	0	2	1	10
5:45 PM	1	2	1	1	0	0	0	0	5
	EB	WB	EB	WB	NB	SB	NB	SB	TOTAL
TOTAL VOLUMES :	21	14	206	30	152	11	122	16	572
APPROACH % 's :	60.00%	40.00%	87.29%	12.71%	93.25%	6.75%	88.41%	11.59%	
PEAK HR :	05:00 PM	- 06:00 PM	05:00.8%						TOTAL
PEAK HR VOL :	3	6	2	6	4	1	7	1	30
PEAK HR FACTOR :	0.375	0.750	0.500	0.375	0.500	0.250	0.583	0.250	0.750
	0.!	563	0.4	100	0.4	17	0.6	67	0.750

Location: Stelling Rd & Homestead Rd City: Cupertino Control: Signalized

Project ID: 18-08664-009 Date: 12/13/2018

-								10	tui								
NS/EW Streets:		Stellin	g Rd			Stellin	g Rd			Homeste	ead Rd			Homeste	ad Rd		
		NORTH	BOUND			SOUTH	BOUND			EASTB	OUND			WESTE	OUND		
AM	2	2	0	0	1	2	0	0	1	2	0	0	1	2	0	0	
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
7:00 AM	15	14	11	0	21	24	22	0	19	48	21	0	15	46	19	0	275
7:15 AM	21	22	10	0	39	35	28	0	27	58	25	0	21	74	35	0	395
7:30 AM	15	22	46	0	52	68	42	0	28	107	33	0	26	165	56	0	660
7:45 AM	54	99	50	0	47	47	74	0	33	138	28	0	53	262	67	0	952
8:00 AM	58	101	81	0	54	65	27	0	32	172	35	0	50	180	34	0	889
8:15 AM	72	130	74	0	31	63	11	0	22	114	46	0	56	166	39	0	824
8:30 AM	101	154	70	0	28	53	16	0	19	89	41	0	59	177	41	0	848
8:45 AM	90	159	63	0	38	79	16	0	16	82	52	0	60	224	41	0	920
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
TOTAL VOLUMES :	426	701	405	0	310	434	236	0	196	808	281	0	340	1294	332	0	5763
APPROACH % 's :	27.81%	45.76%	26.44%	0.00%	31.63%	44.29%	24.08%	0.00%	15.25%	62.88%	21.87%	0.00%	17.29%	65.82%	16.89%	0.00%	
PEAK HR :	C	7:45 AM -	08:45 AM						07545 AM								TOTAL
PEAK HR VOL :	285	484	275	0	160	228	128	0	106	513	150	0	218	785	181	0	3513
PEAK HR FACTOR :	0.705	0.786	0.849	0.000	0.741	0.877	0.432	0.000	0.803	0.746	0.815	0.000	0.924	0.749	0.675	0.000	0.923
		0.80	03			0.70	68			0.80)4			0.77	75		0.723

Total

Location: Stelling Rd & Homestead Rd City: Cupertino Control: Signalized

Project ID: 18-08664-009 Date: 12/13/2018

_								DIN	103								
NS/EW Streets:		Stellin	g Rd			Stellin	g Rd			Homeste	ead Rd			Homeste	ad Rd		
		NORTH	BOUND			SOUTH	BOUND			EASTB	OUND			WESTB	OUND		
AM	2	2	0	0	1	2	0	0	1	2	0	0	1	2	0	0	
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
7:00 AM	0	0	0	0	0	0	0	0	0	1	1	0	1	2	0	0	5
7:15 AM	0	2	1	0	1	1	0	0	1	5	0	0	2	1	0	0	14
7:30 AM	1	1	1	0	0	0	0	0	0	5	1	0	0	2	0	0	11
7:45 AM	0	0	0	0	1	1	0	0	0	2	0	0	1	0	0	0	5
8:00 AM	0	1	1	0	1	0	0	0	0	1	0	0	1	2	0	0	7
8:15 AM	0	2	1	0	0	1	0	0	0	4	1	0	2	2	0	0	13
8:30 AM	1	1	0	0	0	4	0	0	0	4	0	0	0	1	0	0	11
8:45 AM	1	1	0	0	0	2	0	0	0	4	0	0	1	3	0	0	12
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
TOTAL VOLUMES :	3	8	4	0	3	9	0	0	1	26	3	0	8	13	0	0	78
APPROACH % 's :	20.00%	53.33%	26.67%	0.00%	25.00%	75.00%	0.00%	0.00%	3.33%	86.67%	10.00%	0.00%	38.10%	61.90%	0.00%	0.00%	
PEAK HR :	()7:45 AM -	08:45 AM		07:45.4.84												TOTAL
PEAK HR VOL :	1	4	2	0	2	6	0	0	0	11	1	0	4	5	0	0	36
PEAK HR FACTOR :	0.250	0.500	0.500	0.000	0.500	0.375	0.000	0.000	0.000	0.688	0.250	0.000	0.500	0.625	0.000	0.000	0.692
		0.58	33			0.50	00			0.60	00			0.56	53		0.072

Bikes

Location: Stelling Rd & Homestead Rd City: Cupertino

Project ID: 18-08664-009 Date: 12/13/2018

NS/EW Streets:	Stelli	ng Rd	Stelli	ng Rd	Homes	tead Rd	Homes	tead Rd	
AM	NORT	TH LEG	SOUT	H LEG	EAST	T LEG	WES	T LEG	
Alvi	EB	WB	EB	WB	NB	SB	NB	SB	TOTAL
7:00 AM	2	1	0	0	2	0	1	0	6
7:15 AM	3	0	7	0	1	0	3	0	14
7:30 AM	14	1	13	0	10	0	20	6	64
7:45 AM	0	11	1	33	1	15	1	7	69
8:00 AM	0	4	4	4	1	4	2	2	21
8:15 AM	0	4	1	4	0	3	0	3	15
8:30 AM	2	3	2	1	3	5	1	1	18
8:45 AM	0	0	2	2	1	2	1	0	8
	EB	WB	EB	WB	NB	SB	NB	SB	TOTAL
TOTAL VOLUMES :	21	24	30	44	19	29	29	19	215
APPROACH %'s :	46.67%	53.33%	40.54%	59.46%	39.58%	60.42%	60.42%	39.58%	
PEAK HR :	07:45 AM	- 08:45 AM	07:45 45						TOTAL
PEAK HR VOL :	2	22	8	42	5	27	4	13	123
PEAK HR FACTOR :	0.250	0.500	0.500	0.318	0.417	0.450	0.500	0.464	0.447
	0.	545	0.3	368	0.5	500	0.5	531	0.446

	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
TOTAL VOLUMES :	474	676	432	0	242	384	186	0	128	610	237	0	422	1215	309	0	5315
APPROACH %'s :	29.96%	42.73%	27.31%	0.00%	29.80%	47.29%	22.91%	0.00%	13.13%	62.56%	24.31%	0.00%	21.69%	62.44%	15.88%	0.00%	
PEAK HR :			09:00 AM	<u>^</u>	4.47	o	400	0		400	470	0	057	705	450	0	TOTAL
PEAK HR VOL :	299	467	284	0	147	266	139	0	83	432 0.783	172 0.935	0	257	735	153	0	3434
PEAK HR FACTOR :	0.879	0.784	0.845	0.000	0.799	0.679 0.8 ⁻	0.644	0.000	0.593	0.783		0.000	0.857	0.879 0.92	0.765	0.000	0.881
		0.00	00			0.0	12			0.70	54			0.72	23		
		NORTH	BOUND			SOUTH	BOUND			EASTB	OUND			WESTE	OUND		
PM	1	2	0	0	1	2	0	0	1	2	0	0	1	2	0	0	
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
2:00 PM	47	50	49	0	42	65	23	0	11	110	34	0	36	91	41	0	599
2:15 PM	36	50	44	0	45	46	14	0	17	87	43	0	42	96	46	0	566
2:30 PM	44	54	48	0	55	46	12	0	9	89	41	0	30	9 8	34	0	560
2:45 PM	44	48	55	0	40	70	16	0	9	88	47	0	42	128	51	0	638
3:00 PM	44	52	63	0	50	58	20	0	14	150	63	0	43	111	43	0	711
3:15 PM	47	64	49	0	51	84	21	0	10	135	62	0	54	96	38	0	711
3:30 PM	53	60	53	0	46	76	17	0	40	204	71	0	42	115	34	0	811
3:45 PM	43	62	57	0	29	108	13	0	25	175	58	0	55	76	38	0	739
4:00 PM	28	79	62	0	53	93	15	0	25	161	63	0	40	87	35	0	741
4:15 PM 4:30 PM	50	57 56	53 59	0 0	54	88 80	12 13	0	19 13	212 224	65 72	0	40	107	32 39	0	789 792
4:30 PM 4:45 PM	35 40	50 53	59 70	0	60 53	80 85	13	0	23	224 208	72 92	0	43 48	98 99	39 41	0	792 826
5:00 PM	53	75	66	0	45	127	14	0	16	208	92	0	52	87	41	0	884
5:15 PM	52	68	71	0	62	146	14	0	20	205	87	0	52	111	41	0	937
5:30 PM	61	96	64	0	59	134	14	0	20	230	99	0	55	115	46	0	994
5:45 PM	51	75	58	0	46	128	12	Ő	17	200	127	Ő	59	110	41	0 0	924
011011	0.		00	, in the second s		.20		Ŭ		200		Ŭ	0,			Ŭ	/21
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
TOTAL VOLUMES :	728	999	921	0	790	1434	248	0	289	2688	1118	0	734	1625	648	0	12222
APPROACH %'s :	27.49%	37.73%	34.78%	0.00%	31.96%	58.01%	10.03%	0.00%	7.06%	65.64%	27.30%	0.00%	24.41%	54.04%	21.55%	0.00%	
PEAK HR :		05:00 PM -			05:00 8:4												TOTAL
PEAK HR VOL :	217	314	259	0	212	535	58	0	74	845	407	0	219	423	176	0	3739
PEAK HR FACTOR :	0.889	0.818	0.912	0.000	0.855	0.916	0.806	0.000	0.881	0.918	0.801	0.000	0.928	0.920	0.917	0.000	0.940
		0.8	74			0.90)/			0.94	47			0.94	1/		

NS/EW Streets:		Stelling	g Rd		Stelling Rd				Homestead Rd				Homestead Rd				
		NORTH	BOUND			SOUTH	BOUND			EASTB	OUND			WESTB	OUND		
AM	1	2	0	0	1	2	0	0	1	2	0	0	1	2	0	0	
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
7:00 AM	25	30	24	0	10	21	7	0	3	26	14	0	23	73	20	0	276
7:15 AM	34	34	21	0	24	31	6	0	5	29	12	0	39	118	23	0	376
7:30 AM	54	55	47	0	31	23	13	0	13	52	15	0	48	137	49	0	537
7:45 AM	62	90	56	0	30	43	21	0	24	71	24	0	55	152	64	0	692
8:00 AM	57	86	66	0	46	98	26	0	14	68	43	0	68	152	31	0	755
8:15 AM	73	98	64	0	34	76	21	0	11	9 8	41	0	75	179	39	0	809
8:30 AM	85	134	84	0	33	38	38	0	23	128	42	0	49	209	33	0	896
8:45 AM	84	149	70	0	34	54	54	0	35	138	46	0	6 5	1 9 5	50	0	974
									-								
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
TOTAL VOLUMES :	474	676	432	0	242	384	186	0	128	610	237	0	422	1215	309	0	5315
APPROACH %'s :	29.96%	42.73%	27.31%	0.00%	29.80%	47.29%	22.91%	0.00%	13.13%	62.56%	24.31%	0.00%	21.69%	62.44%	15.88%	0.00%	
PEAK HR :	(- MA 00:80	09:00 AM						0.354.55483								TOTAL
PEAK HR VOL :	299	467	284	0	147	266	139	0	83	432	172	0	257	735	153	0	3434
PEAK HR FACTOR :	0.879	0.784	0.845	0.000	0.799	0.679	0.644	0.000	0.593	0.783	0.935	0.000	0.857	0.879	0.765	0.000	0.881
		0.86	6			0.8	12			0.78	34		0.923				0.001

Total

Location: Stelling Rd & Homestead Rd City: Cupertino Control: Signalized

Project I D: 18-08549-009 Date: 10/24/2018

NS/EW Streets.		Stellin	gitu		Stening Ru				Homesteau Ku Homesteau Ku								
		NORTH	BOUND			SOUTH				EASTB				WESTE			
AM	1	2	0	0	1	2	0	0	1	2	0	0	1	2	0	0	
AIVI								-				-					
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
7:00 AM	0	0	1	0	0	1	0	0	0	2	0	0	0	2	0	0	6
7:15 AM	2	0	0	0	0	0	0	0	0	1	1	0	0	1	0	0	5
7:30 AM	0	4	0	0	0	1	0	0	0	1	0	0	0	3	2	0	11
7:45 AM	2	0	1	0	1	0	0	0	1	2	1	0	1	7	0	0	16
8:00 AM	0	0	0	0	0	4	0	0	1	0	0	0	2	4	0	0	11
8:15 AM	0	1	2	0	0	3	0	0	0	4	4	0	1	4	0	0	19
	•	1		-		3 1	0	-		4	4	-	1	4	-	-	
8:30 AM	3	2	2	0	0		1	0	0	2	0	0	2	12	0	0	25
8:45 AM	0	0	1	0	0	3	3	0	1	4	2	0	3	16	1	0	34
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
TOTAL VOLUMES :	7	7	7	0	1	13	4	0	3	16	8	0	9	49	3	0	127
APPROACH %'s :	33.33%	33.33%	33.33%	0.00%	5.56%	72.22%	22.22%	0.00%	11.11%	59.26%	29.63%	0.00%	14.75%	80.33%	4.92%	0.00%	
PEAK HR :		08:00 AM -		0.0070	0.0070	72.2270	22.2270	0.0070	11.1170	07.2070	27.0070	0.0070	11.7070	00.0070	1.7270	0.0070	TOTAL
				-				0	0	4.0	,	0	0	<u>.</u>		0	-
PEAK HR VOL :	3	3	5	0	0	11	4	0	2	10	6	0	8	36	1	0	89
PEAK HR FACTOR :	0.250	0.375	0.625	0.000	0.000	0.688	0.333	0.000	0.500	0.625	0.375	0.000	0.667	0.563	0.250	0.000	0.654
		0.3	93			0.6	25			0.50	53			0.5	63		0.034
		NORTH	BOUND			SOUTH	BOUND			EASTB	OUND			WESTE	BOUND	1	
PM	1	2	0	0	1	2	0	0	1	2	0	0	1	2	0	0	
1 1 1 1	NL	ŇT	NR	NU	SL	ST	SR	SU	EL	ĒT	ER	EU	WL	WT	WR	WU	TOTAL
2:00 PM	1	1	0		1	3	0	0	0	1	0	0	1	0	0		
2:00 PM	1	1		0		-	-	-	-	1	-	-	1	0	-	0	8
2:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	2	0	0	2
2:30 PM	0	1	0	0	0	0	0	0	0	2	0	0	0	0	0	0	3
2:45 PM	1	2	0	0	0	0	0	0	0	0	0	0	1	0	0	0	4
3:00 PM	1	0	0	0	1	1	0	0	2	9	0	0	1	0	0	0	15
3:15 PM	1	1	2	0	0	0	1	0	0	7	0	0	0	0	0	0	12
3:30 PM	0	2	2	0	1	0	2	0	5	17	1	0	1	0	0	0	31
3:45 PM	1	0	1	0	0	0	0	0	3	2	0	0	0	3	0	0	10
4:00 PM	1	6	1	0	0	0	0	0	2	3	3	0	1	4	1	0	22
4:15 PM	1	3	Ó	0	1	2	0	0	3	1	1	0	0	2	1	0	16
4:13 PM 4:30 PM	і Э	ی 1		-	0	2	-	-	0	1		-	-	3	1	-	
	2	1	4	0			0	0	-	1	0	0	0	2	1	0	13
4:45 PM	1	4	0	0	1	2	0	0	0	3	0	0	0	3	0	0	14
5:00 PM	0	1	1	0	0	4	1	0	0	4	0	0	0	3	2	0	16
5:15 PM	3	3	0	0	1	2	1	0	0	9	1	0	0	4	0	0	24
5:30 PM	1	4	0	0	0	2	0	0	2	2	0	0	0	2	2	0	15
5:45 PM	0	5	0	0	0	4	0	0	0	3	0	0	1	5	0	0	18
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
TOTAL VOLUMES :	14	34	11	0	6	22	5	0	17	64	6	0	6	31	7	0	223
				-	-			-				-	-			-	223
APPROACH %'s :	23.73%	57.63%	18.64%	0.00%	18.18%	66.67%	15.15%	0.00%	19.54%	73.56%	6.90%	0.00%	13.64%	70.45%	15.91%	0.00%	TOTAL
PEAK HR :		05:00 PM -															TOTAL
PEAK HR VOL :	4	13	1	0	1	12	2	0	2	18	1	0	1	14	4	0	73
PEAK HR FACTOR :	0.33	0.650	0.250	0.000	0.250	0.750	0.500	0.000	0.250	0.500	0.250	0.000	0.250	0.700	0.500	0.000	0.7/0
		0.7	50			0.7	50			0.52	25			0.7	92		0.760
		5.7				311				5101				511			

Bikes

Homestead Rd

Stelling Rd

Location: Stelling Rd & Homestead Rd City: Cupertino Control: Signalized

Stelling Rd

NS/EW Streets:

Project ID: 18-08549-009 Date: 10/24/2018

Homestead Rd

Location: Stelling Rd & Homestead Rd City: Cupertino

Project ID: 18-08549-009 Date: 10/24/2018

			Peue	estrians	(CIOSSW)	_			
NS/EW Streets:	Stelling Rd		Stelli	ng Rd	Homes	stead Rd	Homes	tead Rd	
AM	NORTH LEG		SOUT	'H LEG	EAS	t leg	WES	Г LEG	
AIVI	EB	WB	EB	WB	NB	SB	NB	SB	TOTAL
7:00 AM	0	1	1	0	1	1	0	1	5
7:15 AM	0	0	0	1	0	3	1	2	7
7:30 AM	0	4	2	4	3	2	1	1	17
7:45 AM	2	6	1	2	0	3	0	2	16
8:00 AM	0	8	2	1	0	0	0	6	17
8:15 AM	1	0	3	8	2	4	1	2	21
8:30 AM	0	26	0	41	0	27	0	5	99
8:45 AM	2	19	4	56	0	32	0	7	120
	EB	WB	EB	WB	NB	SB	NB	SB	TOTAL
TOTAL VOLUMES :	5	64	13	113	6	72	3	26	302
APPROACH %'s :	7.25%	92.75%	10.32%	89.68%	7.69%	92.31%	10.34%	89.66%	
PEAK HR :	08:00 AM	- 09:00 AM	08:00.484						TOTAL
PEAK HR VOL :	3	53	9	106	2	63	1	20	257
PEAK HR FACTOR :	0.375	0.510	0.563	0.473	0.250	0.492	0.250	0.714	0.535
	0.!	538	0.4	479	0.	508	0.7	0.555	

PM	NORTH LEG		SOUT	H LEG	EAST	T LEG	WEST	Г LEG	
FIVI	EB	WB	EB	WB	NB	SB	NB	SB	TOTAL
2:00 PM	3	1	2	1	4	1	3	1	16
2:15 PM	2	0	8	0	0	2	3	1	16
2:30 PM	3	3	2	0	5	3	0	1	17
2:45 PM	3	2	4	12	4	4	2	1	32
3:00 PM	0	6	0	6	10	0	1	3	26
3:15 PM	13	5	3	0	3	2	3	0	29
3:30 PM	52	0	75	1	22	1	38	2	191
3:45 PM	10	1	19	2	12	4	5	3	56
4:00 PM	8	0	7	1	8	8	3	1	36
4:15 PM	8	2	9	2	5	7	8	1	42
4:30 PM	10	3	4	0	2	3	3	1	26
4:45 PM	0	3	4	1	6	3	2	2	21
5:00 PM	4	4	3	3	4	4	2	1	25
5:15 PM	3	2	1	6	3	9	5	1	30
5:30 PM	2	5	5	2	4	4	2	6	30
5:45 PM	3	0	7	4	5	4	1	11	35
	EB	WB	EB	WB	NB	SB	NB	SB	TOTAL
TOTAL VOLUMES :	124	37	153	41	97	59	81	36	628
APPROACH %'s :	77.02%	22.98%	78.87%	21.13%	62.18%	37.82%	69.23%	30.77%	
PEAK HR :	05:00 PM	- 06:00 PM	05:00 PM						TOTAL
PEAK HR VOL :	12	11	16	15	16	21	10	19	120
PEAK HR FACTOR :	0.750	0.550	0.571	0.625	0.800	0.583	0.500	0.432	0.857
	0.	719	0.7	/05	0.7	771	0.6	04	0.057

F. Synchro Worksheets

HCM Signalized Intersection Capacity Analysis 1: Foothill Expy & Vineyard Dr/Homestead Road

	۶	-	$\mathbf{\hat{z}}$	•	+	•	1	1	1	1	Ļ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		र्भ	1	<u> </u>	र् ग	1	<u></u>	- ††	1	<u> </u>	- ††	1
Traffic Volume (vph)	15	48	32	425	20	454	14	1140	234	198	545	18
Future Volume (vph)	15	48	32	425	20	454	14	1140	234	198	545	18
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		5.2	5.2	5.1	5.1	5.1	4.7	5.8	5.8	4.9	5.8	5.8
Lane Util. Factor		1.00	1.00	0.95	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00
Frpb, ped/bikes		1.00	0.93	1.00	1.00	0.98	1.00	1.00	0.97	1.00	1.00	0.98
Flpb, ped/bikes		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt		1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85
Flt Protected		0.99	1.00	0.95	0.96	1.00	0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (prot)		1840	1466	1681	1693	1558	1770	3539	1536	1770	3539	1550
Flt Permitted		0.99	1.00	0.95	0.96	1.00	0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (perm)		1840	1466	1681	1693	1558	1770	3539	1536	1770	3539	1550
Peak-hour factor, PHF	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96
Adj. Flow (vph)	16	50	33	443	21	473	15	1188	244	206	568	19
RTOR Reduction (vph)	0	0	30	0	0	375	0	0	117	0	0	9
Lane Group Flow (vph)	0	66	3	230	234	98	15	1188	127	206	568	10
Confl. Peds. (#/hr)	2		3	3		2						
Confl. Bikes (#/hr)			23			1			11			2
Turn Type	Split	NA	Perm	Split	NA	Perm	Prot	NA	Perm	Prot	NA	Perm
Protected Phases	4	4		3	3		5	2		1	6	
Permitted Phases			4			3			2			6
Actuated Green, G (s)		13.2	13.2	31.0	31.0	31.0	3.3	62.8	62.8	22.0	81.7	81.7
Effective Green, g (s)		13.2	13.2	31.0	31.0	31.0	3.3	62.8	62.8	22.0	81.7	81.7
Actuated g/C Ratio		0.09	0.09	0.21	0.21	0.21	0.02	0.42	0.42	0.15	0.54	0.54
Clearance Time (s)		5.2	5.2	5.1	5.1	5.1	4.7	5.8	5.8	4.9	5.8	5.8
Vehicle Extension (s)		4.0	4.0	4.0	4.0	4.0	3.0	4.0	4.0	3.0	4.0	4.0
Lane Grp Cap (vph)		161	129	347	349	321	38	1481	643	259	1927	844
v/s Ratio Prot		c0.04		0.14	c0.14		0.01	c0.34		c0.12	0.16	
v/s Ratio Perm			0.00			0.06			0.08			0.01
v/c Ratio		0.41	0.02	0.66	0.67	0.30	0.39	0.80	0.20	0.80	0.29	0.01
Uniform Delay, d1		64.7	62.5	54.7	54.8	50.4	72.4	38.2	27.6	61.8	18.5	15.7
Progression Factor		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Incremental Delay, d2		2.3	0.1	5.2	5.4	0.7	6.6	4.7	0.7	15.4	0.1	0.0
Delay (s)		67.0	62.6	59.9	60.2	51.1	79.0	42.8	28.3	77.2	18.6	15.7
Level of Service		E	E	E	E	D	E	D	С	E	В	В
Approach Delay (s)		65.6			55.5			40.8			33.8	
Approach LOS		E			E			D			С	
Intersection Summary												
HCM 2000 Control Delay			44.1	Н	CM 2000	Level of S	Service		D			
HCM 2000 Volume to Capac	ity ratio		0.73									
Actuated Cycle Length (s)			150.0	S	um of los	t time (s)			21.0			
Intersection Capacity Utilizat	ion		82.5%	IC	U Level	of Service			Е			
Analysis Period (min)			15									
c Critical Lane Group												

c Critical Lane Group

	≯	-	←	•	1	~
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		1	•	1	7	1
Traffic Volume (veh/h)	0	480	867	123	81	29
Future Volume (Veh/h)	0	480	867	123	81	29
Sign Control		Free	Free		Stop	
Grade		0%	0%		0%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	0	522	942	134	88	32
Pedestrians		1			4	
Lane Width (ft)		12.0			12.0	
Walking Speed (ft/s)		4.0			4.0	
Percent Blockage		0			0	
Right turn flare (veh)						7
Median type		Raised	None			
Median storage veh)		2				
Upstream signal (ft)		171				
pX, platoon unblocked					0.98	
vC, conflicting volume	1080				1468	947
vC1, stage 1 conf vol					946	
vC2, stage 2 conf vol					522	
vCu, unblocked vol	1080				1467	947
tC, single (s)	4.1				6.4	6.2
tC, 2 stage (s)					5.4	
tF (s)	2.2				3.5	3.3
p0 queue free %	100				73	90
cM capacity (veh/h)	644				332	315
Direction, Lane #	EB 1	WB 1	WB 2	SB 1		
Volume Total	522	942	134	120		
Volume Left	0	0	0	88		
Volume Right	0	0	134	32		
cSH	1700	1700	1700	453		
Volume to Capacity	0.31	0.55	0.08	0.27		
Queue Length 95th (ft)	0	0	0	26		
Control Delay (s)	0.0	0.0	0.0	19.2		
Lane LOS				С		
Approach Delay (s)	0.0	0.0		19.2		
Approach LOS				С		
Intersection Summary						
Average Delay			1.3			
Intersection Capacity Utilizati	on		57.1%	IC	U Level o	of Service
Analysis Period (min)			15			

	٦	-	$\mathbf{\hat{z}}$	4	←	*	٩.	Ť	۲	5	ŧ	-
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	ef 👘		٦	eî			4			4	
Traffic Volume (veh/h)	26	508	10	13	828	33	26	3	49	50	0	51
Future Volume (Veh/h)	26	508	10	13	828	33	26	3	49	50	0	51
Sign Control		Free			Free			Stop			Stop	
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
Hourly flow rate (vph)	28	546	11	14	890	35	28	3	53	54	0	55
Pedestrians		1			38			32			8	
Lane Width (ft)		12.0			12.0			12.0			12.0	
Walking Speed (ft/s)		4.0			4.0			4.0			4.0	
Percent Blockage		0			3			3			1	
Right turn flare (veh)												
Median type		None			None							
Median storage veh)												
Upstream signal (ft)		1198			1012							
pX, platoon unblocked	0.72						0.72	0.72		0.72	0.72	0.72
vC, conflicting volume	933			589			1614	1600	622	1638	1588	916
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	718			589			1657	1639	622	1690	1622	695
tC, single (s)	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
tC, 2 stage (s)												
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free %	96			99			34	95	88	0	100	83
cM capacity (veh/h)	636			960			42	66	459	41	68	318
Direction, Lane #	EB 1	EB 2	WB 1	WB 2	NB 1	SB 1						
Volume Total	28	557	14	925	84	109						
Volume Left	28	0	14	0	28	54						
Volume Right	0	11	0	35	53	55						
cSH	636	1700	960	1700	102	73						
Volume to Capacity	0.04	0.33	0.01	0.54	0.82	1.49						
Queue Length 95th (ft)	3	0	1	0	115	225						
Control Delay (s)	10.9	0.0	8.8	0.0	120.9	376.8						
Lane LOS	В		А		F	F						
Approach Delay (s)	0.5		0.1		120.9	376.8						
Approach LOS					F	F						
Intersection Summary												
Average Delay			30.1									
Intersection Capacity Utiliza	ation		63.9%	IC	CU Level	of Service			В			
Analysis Period (min)			15									

	٦	-	$\mathbf{\hat{z}}$	∢	←	•	1	Ť	1	1	ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	<u>۲</u>	1 2		<u>۲</u>	∱1 ≱			4			र्भ	1
Traffic Volume (vph)	65	551	3	2	793	194	22	11	10	114	9	82
Future Volume (vph)	65	551	3	2	793	194	22	11	10	114	9	82
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	5.0	5.5		5.0	5.5			5.6			5.6	5.6
Lane Util. Factor	1.00	1.00		1.00	0.95			1.00			1.00	1.00
Frpb, ped/bikes	1.00	1.00		1.00	0.98			0.99			1.00	0.92
Flpb, ped/bikes	1.00	1.00		1.00	1.00			0.97			0.97	1.00
Frt	1.00	1.00		1.00	0.97			0.97			1.00	0.85
Flt Protected	0.95	1.00		0.95	1.00			0.97			0.96	1.00
Satd. Flow (prot)	1770	1860		1770	3354			1694			1733	1463
Flt Permitted	0.95	1.00		0.95	1.00			0.81			0.74	1.00
Satd. Flow (perm)	1770	1860		1770	3354			1402			1349	1463
Peak-hour factor, PHF	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83
Adj. Flow (vph)	78	664	4	2	955	234	27	13	12	137	11	99
RTOR Reduction (vph)	0	0	0	0	13	0	0	9	0	0	0	60
Lane Group Flow (vph)	78	668	0	2	1176	0	0	43	0	0	148	39
Confl. Peds. (#/hr)	31		17	17		31	45		13	13		45
Confl. Bikes (#/hr)			106			9						
Turn Type	Prot	NA		Prot	NA		Perm	NA		Perm	NA	Perm
Protected Phases	5	2		1	6			8			4	
Permitted Phases							8			4		4
Actuated Green, G (s)	8.3	88.0		1.4	81.1			23.9			23.9	23.9
Effective Green, g (s)	8.3	88.6		1.4	81.7			23.9			23.9	23.9
Actuated g/C Ratio	0.06	0.68		0.01	0.63			0.18			0.18	0.18
Clearance Time (s)	5.0	6.1		5.0	6.1			5.6			5.6	5.6
Vehicle Extension (s)	1.0	2.5		1.0	2.5			2.5			2.5	2.5
Lane Grp Cap (vph)	113	1267		19	2107			257			248	268
v/s Ratio Prot	c0.04	0.36		0.00	c0.35							
v/s Ratio Perm								0.03			c0.11	0.03
v/c Ratio	0.69	0.53		0.11	0.56			0.17			0.60	0.15
Uniform Delay, d1	59.6	10.3		63.7	13.8			44.7			48.6	44.5
Progression Factor	1.00	1.00		1.41	0.23			1.00			1.00	1.00
Incremental Delay, d2	13.6	1.6		0.8	1.0			0.2			3.2	0.2
Delay (s)	73.2	11.9		90.9	4.1			44.9			51.8	44.7
Level of Service	E	В		F	А			D			D	D
Approach Delay (s)		18.3			4.3			44.9			49.0	
Approach LOS		В			А			D			D	
Intersection Summary												
HCM 2000 Control Delay			14.8	Н	CM 2000	Level of	Service		В			
HCM 2000 Volume to Capa	acity ratio		0.58									
Actuated Cycle Length (s)			130.0	S	um of los	t time (s)			16.1			
Intersection Capacity Utiliz	ation		73.7%	IC	CU Level	of Service	;		D			
Analysis Period (min)			15									
c Critical Lano Group												

c Critical Lane Group

HCM Signalized Intersection Capacity Analysis
5: Maxine Avenue/85 SB Off-ramp & Homestead Road

	≯	+	\mathbf{F}	4	ł	•	1	1	1	1	ţ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		ef 👘		<u>۲</u>	- † †			- 4 >		ሻ	4Î	
Traffic Volume (vph)	0	668	3	9	850	0	4	0	28	136	2	133
Future Volume (vph)	0	668	3	9	850	0	4	0	28	136	2	133
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		6.0		6.0	6.0			6.0		6.0	6.0	
Lane Util. Factor		1.00		1.00	0.95			1.00		1.00	1.00	
Frpb, ped/bikes		1.00		1.00	1.00			1.00		1.00	0.98	
Flpb, ped/bikes		1.00		1.00	1.00			1.00		1.00	1.00	
Frt		1.00		1.00	1.00			0.88		1.00	0.85	
Flt Protected		1.00		0.95	1.00			0.99		0.95	1.00	
Satd. Flow (prot)		1860		1770	3539			1632		1770	1549	
Flt Permitted		1.00		0.95	1.00			0.99		0.95	1.00	
Satd. Flow (perm)		1860		1770	3539			1632		1770	1549	
Peak-hour factor, PHF	0.78	0.78	0.78	0.78	0.78	0.78	0.78	0.78	0.78	0.78	0.78	0.78
Adj. Flow (vph)	0	856	4	12	1090	0	5	0	36	174	3	171
RTOR Reduction (vph)	0	0	0	0	0	0	0	40	0	0	149	0
Lane Group Flow (vph)	0	860	0	12	1090	0	0	1	0	174	25	0
Confl. Peds. (#/hr)	48		16	16		48	9					9
Confl. Bikes (#/hr)			127			10						
Turn Type		NA		Prot	NA		Split	NA		Split	NA	
Protected Phases		2		1	6		3	3		4	4	
Permitted Phases												
Actuated Green, G (s)		83.6		3.0	91.6			4.4		18.0	18.0	
Effective Green, g (s)		83.6		2.0	91.6			3.4		17.0	17.0	
Actuated g/C Ratio		0.64		0.02	0.70			0.03		0.13	0.13	
Clearance Time (s)		6.0		5.0	6.0			5.0		5.0	5.0	
Vehicle Extension (s)		5.0		3.0	5.0			3.0		3.0	3.0	
Lane Grp Cap (vph)		1196		27	2493			42		231	202	
v/s Ratio Prot		c0.46		0.01	c0.31			c0.00		c0.10	0.02	
v/s Ratio Perm												
v/c Ratio		0.72		0.44	0.44			0.03		0.75	0.13	
Uniform Delay, d1		15.4		63.4	8.2			61.7		54.5	49.9	
Progression Factor		0.87		1.49	0.12			1.00		1.00	1.00	
Incremental Delay, d2		3.4		9.3	0.5			0.2		13.0	0.3	
Delay (s)		16.7		103.6	1.5			61.9		67.5	50.2	
Level of Service		В		F	A			E		E	D	
Approach Delay (s)		16.7			2.6			61.9			58.8	
Approach LOS		В			A			E			E	
Intersection Summary												
HCM 2000 Control Delay			17.1	Н	CM 2000	Level of	Service		В			
HCM 2000 Volume to Capacit	y ratio		0.71									
Actuated Cycle Length (s)	-		130.0	S	um of los	t time (s)			24.0			
Intersection Capacity Utilization	on		61.5%			of Service			В			
Analysis Period (min)			15									
c Critical Lane Group												

c Critical Lane Group

	٦	-	\mathbf{F}	∢	←	•	•	Ť	1	1	Ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	†		5	↑ 1≱						र्स	1
Traffic Volume (vph)	103	561	0	133	749	246	0	0	0	99	11	98
Future Volume (vph)	103	561	0	133	749	246	0	0	0	99	11	98
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	5.0	5.5		5.0	5.5						5.5	5.5
Lane Util. Factor	1.00	1.00		1.00	0.95						1.00	1.00
Frpb, ped/bikes	1.00	1.00		1.00	0.98						1.00	1.00
Flpb, ped/bikes	1.00	1.00		1.00	1.00						1.00	1.00
Frt	1.00	1.00		1.00	0.96						1.00	0.85
Flt Protected	0.95	1.00		0.95	1.00						0.96	1.00
Satd. Flow (prot)	1770	1863		1770	3350						1782	1583
Flt Permitted	0.95	1.00		0.95	1.00						0.96	1.00
Satd. Flow (perm)	1770	1863		1770	3350						1782	1583
Peak-hour factor, PHF	0.73	0.73	0.73	0.73	0.73	0.73	0.73	0.73	0.73	0.73	0.73	0.73
Adj. Flow (vph)	141	768	0	182	1026	337	0	0	0	136	15	134
RTOR Reduction (vph)	0	0	0	0	17	0	0	0	0	0	0	106
Lane Group Flow (vph)	141	768	0	182	1346	0	0	0	0	0	151	28
Confl. Peds. (#/hr)	15		25	25		15			1	1		
Confl. Bikes (#/hr)			61			10						
Turn Type	Prot	NA		Prot	NA					Split	NA	Perm
Protected Phases	1	6		5	2					. 4	4	
Permitted Phases												4
Actuated Green, G (s)	13.9	80.8		18.2	85.1						14.2	14.2
Effective Green, g (s)	13.9	81.4		18.2	85.7						14.4	14.4
Actuated g/C Ratio	0.11	0.63		0.14	0.66						0.11	0.11
Clearance Time (s)	5.0	6.1		5.0	6.1						5.7	5.7
Vehicle Extension (s)	1.0	2.5		1.0	2.5						2.5	2.5
Lane Grp Cap (vph)	189	1166		247	2208						197	175
v/s Ratio Prot	0.08	c0.41		c0.10	0.40						c0.08	
v/s Ratio Perm												0.02
v/c Ratio	0.75	0.66		0.74	0.61						0.77	0.16
Uniform Delay, d1	56.3	15.5		53.6	12.6						56.2	52.3
Progression Factor	0.87	0.60		0.94	1.50						1.00	1.00
Incremental Delay, d2	11.1	1.0		7.1	0.9						15.6	0.3
Delay (s)	60.3	10.3		57.2	19.9						71.7	52.6
Level of Service	E	В		E	В						E	D
Approach Delay (s)		18.1			24.3			0.0			62.8	
Approach LOS		В			С			А			E	
Intersection Summary												
HCM 2000 Control Delay			26.2	Н	CM 2000	Level of 3	Service		С			
HCM 2000 Volume to Capa	acity ratio		0.68									
Actuated Cycle Length (s)	-		130.0	S	um of los	t time (s)			16.0			
Intersection Capacity Utilization	ation		63.0%			of Service	•		В			
Analysis Period (min)			15									
c Critical Lano Croup												

	≯	-	$\mathbf{\hat{z}}$	4	+	•	•	Ť	۲	5	Ļ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	۲	∱1 ≱		ľ	A			ب	1		र्च	1
Traffic Volume (vph)	26	621	17	2	930	117	59	4	18	155	3	125
Future Volume (vph)	26	621	17	2	930	117	59	4	18	155	3	125
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	2100	2100	1900	2100	2100
Total Lost time (s)	5.0	5.5		5.0	5.5			5.7	5.7		5.7	5.7
Lane Util. Factor	1.00	0.95		1.00	0.95			1.00	1.00		1.00	1.00
Frpb, ped/bikes	1.00	1.00		1.00	0.99			1.00	0.97		1.00	0.96
Flpb, ped/bikes	1.00	1.00		1.00	1.00			0.99	1.00		0.99	1.00
Frt	1.00	0.80		1.00	0.98			1.00	0.85		1.00	0.85
Flt Protected	0.95	1.00		0.95	1.00			0.96	1.00		0.95	1.00
Satd. Flow (prot)	1770	2811		1770	3439			1938	1705		1942	1684
Flt Permitted	0.95	1.00		0.95	1.00			0.39	1.00		0.66	1.00
Satd. Flow (perm)	1770	2811		1770	3439			500	1705		1351	1684
Peak-hour factor, PHF	0.69	0.69	0.69	0.69	0.69	0.69	0.69	0.69	0.69	0.69	0.69	0.69
Adj. Flow (vph)	38	900	25	3	1348	170	86	6	26	225	4	181
RTOR Reduction (vph)	0	1	0	0	7	0	0	0	21	0	0	114
Lane Group Flow (vph)	38	924	0	3	1511	0	0	92	5	0	229	67
Confl. Peds. (#/hr)	22		23	23		22	18		8	8		18
Confl. Bikes (#/hr)			62			18			2			
Bus Blockages (#/hr)	0	2	2	0	0	0	0	0	0	0	0	0
Turn Type	Prot	NA		Prot	NA		Perm	NA	Perm	Perm	NA	Perm
Protected Phases	1	6		5	2			8			4	
Permitted Phases							8		8	4		4
Actuated Green, G (s)	6.7	84.4		1.6	79.3			27.2	27.2		27.2	27.2
Effective Green, g (s)	6.7	85.0		1.6	79.9			27.2	27.2		27.2	27.2
Actuated g/C Ratio	0.05	0.65		0.01	0.61			0.21	0.21		0.21	0.21
Clearance Time (s)	5.0	6.1		5.0	6.1			5.7	5.7		5.7	5.7
Vehicle Extension (s)	1.0	2.5		1.0	2.5			2.5	2.5		2.5	2.5
Lane Grp Cap (vph)	91	1837		21	2113			104	356		282	352
v/s Ratio Prot	c0.02	c0.33		0.00	c0.44							
v/s Ratio Perm								c0.18	0.00		0.17	0.04
v/c Ratio	0.42	0.50		0.14	0.72			0.88	0.02		0.81	0.19
Uniform Delay, d1	59.8	11.6		63.5	17.2			49.9	40.8		49.0	42.3
Progression Factor	1.05	0.90		0.95	1.18			1.00	1.00		1.00	1.00
Incremental Delay, d2	0.9	0.8		0.4	0.8			52.9	0.0		15.8	0.2
Delay (s)	64.0	11.2		60.6	21.0			102.7	40.8		64.7	42.5
Level of Service	E	В		E	С			F	D		E	D
Approach Delay (s)		13.3			21.1			89.1			54.9	
Approach LOS		В			С			F			D	
Intersection Summary												
HCM 2000 Control Delay			25.9	Н	CM 2000	Level of	Service		С			
HCM 2000 Volume to Capa	city ratio		0.74									
Actuated Cycle Length (s)			130.0		um of lost				16.2			
Intersection Capacity Utiliza	ition		68.3%	IC	CU Level o	of Service	:		С			
Analysis Period (min)			15									
c Critical Lane Group												

HCM Signalized Intersection Capacity Analysis 8: Mary Avenue & Homestead Road

	۶	+	\mathbf{F}	*	Ļ	•	 	Ť	1	*	ţ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	<u>۲</u>	≜ ⊅		ሻ	∱1 ≱		ሻ	4î		ሻ	स	1
Traffic Volume (vph)	59	539	160	63	798	182	107	105	32	212	85	71
Future Volume (vph)	59	539	160	63	798	182	107	105	32	212	85	71
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	5.5	5.5		5.5	5.5		5.6	5.6		5.5	5.5	5.5
Lane Util. Factor	1.00	0.95		1.00	0.95		1.00	1.00		0.95	0.95	1.00
Frpb, ped/bikes	1.00	0.92		1.00	0.95		1.00	0.94		1.00	1.00	0.76
Flpb, ped/bikes	1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00	1.00
Frt	1.00	0.97		1.00	0.97		1.00	0.97		1.00	1.00	0.85
Flt Protected	0.95	1.00		0.95	1.00		0.95	1.00		0.95	0.98	1.00
Satd. Flow (prot)	1770	3147		1770	3259		1770	1685		1681	1728	1203
Flt Permitted	0.95	1.00		0.95	1.00		0.95	1.00		0.95	0.98	1.00
Satd. Flow (perm)	1770	3147		1770	3259		1770	1685		1681	1728	1203
Peak-hour factor, PHF	0.72	0.72	0.72	0.72	0.72	0.72	0.72	0.72	0.72	0.72	0.72	0.72
Adj. Flow (vph)	82	749	222	88	1108	253	149	146	44	294	118	99
RTOR Reduction (vph)	0	0	0	0	0	0	0	0	0	0	0	0
Lane Group Flow (vph)	82	971	0	88	1361	0	149	190	0	185	227	99
Confl. Peds. (#/hr)	110		167	167		110	97		175	175		97
Confl. Bikes (#/hr)			9			20			4			109
Bus Blockages (#/hr)	0	2	0	0	4	4	0	0	0	0	0	0
Turn Type	Prot	NA		Prot	NA		Split	NA		Split	NA	Perm
Protected Phases	1	6		5	2		3	3		. 4	4	
Permitted Phases												4
Actuated Green, G (s)	11.6	44.0		12.5	44.9		25.4	25.4		24.8	24.8	24.8
Effective Green, g (s)	11.6	44.6		12.5	45.5		25.4	25.4		25.4	25.4	25.4
Actuated g/C Ratio	0.09	0.34		0.10	0.35		0.20	0.20		0.20	0.20	0.20
Clearance Time (s)	5.5	6.1		5.5	6.1		5.6	5.6		6.1	6.1	6.1
Vehicle Extension (s)	1.0	2.5		1.0	2.5		1.0	1.0		2.5	2.5	2.5
Lane Grp Cap (vph)	157	1079		170	1140		345	329		328	337	235
v/s Ratio Prot	0.05	0.31		c0.05	c0.42		0.08	c0.11		0.11	c0.13	
v/s Ratio Perm												0.08
v/c Ratio	0.52	0.90		0.52	1.19		0.43	0.58		0.56	0.67	0.42
Uniform Delay, d1	56.6	40.6		55.9	42.2		46.0	47.4		47.3	48.5	45.9
Progression Factor	1.25	0.73		1.40	0.75		1.00	1.00		1.00	1.00	1.00
Incremental Delay, d2	1.3	10.6		0.7	93.1		0.3	1.5		1.8	4.8	0.9
Delay (s)	72.1	40.2		78.7	124.9		46.3	49.0		49.1	53.2	46.7
Level of Service	E	D		E	F		D	D		D	D	D
Approach Delay (s)		42.7			122.1			47.8			50.5	
Approach LOS		D			F			D			D	
Intersection Summary												
HCM 2000 Control Delay			78.7	Н	CM 2000	Level of	Service		E			
HCM 2000 Volume to Capac	city ratio		0.86									
Actuated Cycle Length (s)			130.0	S	um of los	t time (s)			22.1			
Intersection Capacity Utilizat	tion		102.0%			of Service			G			
Analysis Period (min)			15									
c Critical Lane Group												

	٦	-	\mathbf{F}	•	+	•	1	1	1	1	ţ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ľ	† †		7	A						\$	
Traffic Volume (vph)	104	679	89	49	1051	87	0	0	0	44	56	47
Future Volume (vph)	104	679	89	49	1051	87	0	0	0	44	56	47
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	5.0	5.5		5.0	5.5						5.6	
Lane Util. Factor	1.00	0.95		1.00	0.95						1.00	
Frpb, ped/bikes	1.00	0.96		1.00	1.00						0.95	
Flpb, ped/bikes	1.00	1.00		1.00	1.00						0.94	
Frt	1.00	0.98		1.00	0.99						0.96	
Flt Protected	0.95	1.00		0.95	1.00						0.99	
Satd. Flow (prot)	1770	3316		1770	3454						1571	
Flt Permitted	0.95	1.00		0.95	1.00						0.99	
Satd. Flow (perm)	1770	3316		1770	3454						1571	
Peak-hour factor, PHF	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75
Adj. Flow (vph)	139	905	119	65	1401	116	0	0	0	59	75	63
RTOR Reduction (vph)	0	7	0	0	5	0	0	0	0	0	13	0
Lane Group Flow (vph)	139	1017	0	65	1512	0	0	0	0	0	184	0
Confl. Peds. (#/hr)	9		68	68		9	95		119	119		95
Confl. Bikes (#/hr)			10			23						9
Bus Blockages (#/hr)	0	4	0	0	4	0	0	0	0	0	0	0
Turn Type	Prot	NA		Prot	NA					Perm	NA	
Protected Phases	5	2		1	6						4	
Permitted Phases										4		
Actuated Green, G (s)	12.9	81.0		7.0	75.1						25.3	
Effective Green, g (s)	12.9	81.6		7.0	75.7						25.3	
Actuated g/C Ratio	0.10	0.63		0.05	0.58						0.19	
Clearance Time (s)	5.0	6.1		5.0	6.1						5.6	
Vehicle Extension (s)	1.0	2.5		1.0	2.5						2.5	
Lane Grp Cap (vph)	175	2081		95	2011						305	
v/s Ratio Prot	c0.08	0.31		0.04	c0.44						000	
v/s Ratio Perm	00.00	0.01		0.01	00.11						0.12	
v/c Ratio	0.79	0.49		0.68	0.75						0.60	
Uniform Delay, d1	57.3	13.0		60.4	20.2						47.8	
Progression Factor	0.95	1.46		1.34	0.52						1.00	
Incremental Delay, d2	14.4	0.6		12.1	2.1						2.8	
Delay (s)	69.0	19.5		93.0	12.7						50.6	
Level of Service	E	B		F	B						D	
Approach Delay (s)	-	25.4		•	16.0			0.0			50.6	
Approach LOS		23.4 C			В			A			D	
		0			D						D	
Intersection Summary					014 6 6 6 5		<u> </u>					
HCM 2000 Control Delay			22.0	Н	CM 2000	Level of	Service		С			
HCM 2000 Volume to Capa	acity ratio		0.72	-								
Actuated Cycle Length (s)			130.0		um of los				16.1			
Intersection Capacity Utiliza	ation		72.6%	IC	U Level	of Service	9		С			
Analysis Period (min)			15									
c Critical Lane Group												

HCM Signalized Intersection Capacity Analysis
10: Stelling Road/Hollenbeck Avenue & Homestead Road

	۶	-	\mathbf{i}	*	+	•	1	1	1	1	ţ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	٦	∱ î,		٦	∱1 ≱		ኘኘ	≜ ⊅		۳	∱ }	
Traffic Volume (vph)	115	531	142	185	773	196	199	352	251	184	243	154
Future Volume (vph)	115	531	142	185	773	196	199	352	251	184	243	154
Ideal Flow (vphpl)	1900	2100	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	5.0	5.5		5.0	5.5		5.0	5.1		5.0	5.1	
Lane Util. Factor	1.00	0.95		1.00	0.95		0.97	0.95		1.00	0.95	
Frpb, ped/bikes	1.00	0.98		1.00	0.99		1.00	0.98		1.00	0.98	
Flpb, ped/bikes	1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00	
Frt	1.00	0.97		1.00	0.97		1.00	0.94		1.00	0.94	
Flt Protected	0.95	1.00		0.95	1.00		0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1770	3716		1770	3387		3433	3242		1770	3255	
Flt Permitted	0.95	1.00		0.95	1.00		0.95	1.00		0.95	1.00	
Satd. Flow (perm)	1770	3716		1770	3387		3433	3242		1770	3255	
Peak-hour factor, PHF	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87
Adj. Flow (vph)	132	610	163	213	889	225	229	405	289	211	279	177
RTOR Reduction (vph)	0	17	0	0	16	0	0	103	0	0	80	0
Lane Group Flow (vph)	132	756	0	213	1098	0	229	591	0	211	376	0
Confl. Peds. (#/hr)	34		60	60		34	41		34	34		41
Confl. Bikes (#/hr)			11			5			4			6
Turn Type	Prot	NA		Prot	NA		Prot	NA		Prot	NA	
Protected Phases	5	2		1	6		3	8		7	4	
Permitted Phases												
Actuated Green, G (s)	11.8	43.4		18.6	50.2		11.7	30.2		16.0	34.5	
Effective Green, g (s)	11.8	44.0		18.6	50.8		11.7	30.8		16.0	35.1	
Actuated g/C Ratio	0.09	0.34		0.14	0.39		0.09	0.24		0.12	0.27	
Clearance Time (s)	5.0	6.1		5.0	6.1		5.0	5.7		5.0	5.7	
Vehicle Extension (s)	1.0	2.5		1.0	2.5		1.0	2.5		1.0	2.5	
Lane Grp Cap (vph)	160	1257		253	1323		308	768		217	878	
v/s Ratio Prot	0.07	0.20		c0.12	c0.32		0.07	c0.18		c0.12	c0.12	
v/s Ratio Perm												
v/c Ratio	0.82	0.60		0.84	0.83		0.74	0.77		0.97	0.43	
Uniform Delay, d1	58.1	35.7		54.3	35.7		57.7	46.3		56.8	39.2	
Progression Factor	0.97	1.55		1.00	1.00		1.00	1.00		1.00	1.00	
Incremental Delay, d2	24.2	1.9		20.9	6.1		8.2	4.5		52.7	0.2	
Delay (s)	80.4	57.1		75.1	41.8		65.9	50.8		109.5	39.4	
Level of Service	F	E		E	D		E	D		F	D	
Approach Delay (s)		60.5			47.2			54.5			61.6	
Approach LOS		E			D			D			E	
Intersection Summary												
HCM 2000 Control Delay			54.6	Н	CM 2000	Level of	Service		D			
HCM 2000 Volume to Capa	city ratio		0.84		2 2000	2010101	20.100		5			
Actuated Cycle Length (s)			130.0	S	um of los	t time (s)			20.6			
Intersection Capacity Utiliza	ation		91.4%			of Service	<u>,</u>		20.0 F			
Analysis Period (min)			15						•			
c Critical Lane Group			10									

HCM Signalized Intersection Capacity Analysis 1: Foothill Expy & Vineyard Dr/Homestead Road

	≯	-	\mathbf{i}	•	+	×	1	1	1	1	Ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		<u>स</u>	1	<u> </u>	स ी	1	<u>۲</u>	- ††	1	<u>۲</u>	- ††	1
Traffic Volume (vph)	6	21	13	308	22	174	17	484	250	340	1047	16
Future Volume (vph)	6	21	13	308	22	174	17	484	250	340	1047	16
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		5.2	5.2	5.1	5.1	5.1	4.7	5.8	5.8	4.9	5.8	5.8
Lane Util. Factor		1.00	1.00	0.95	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00
Frpb, ped/bikes		1.00	0.98	1.00	1.00	0.97	1.00	1.00	0.98	1.00	1.00	0.98
Flpb, ped/bikes		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt		1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85
Flt Protected		0.99	1.00	0.95	0.96	1.00	0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (prot)		1843	1551	1681	1696	1535	1770	3539	1548	1770	3539	1546
Flt Permitted		0.99	1.00	0.95	0.96	1.00	0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (perm)		1843	1551	1681	1696	1535	1770	3539	1548	1770	3539	1546
Peak-hour factor, PHF	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Adj. Flow (vph)	6	22	14	328	23	185	18	515	266	362	1114	17
RTOR Reduction (vph)	0	0	13	0	0	154	0	0	173	0	0	7
Lane Group Flow (vph)	0	28	1	174	177	31	18	515	93	362	1114	10
Confl. Peds. (#/hr)	2		2	2		2						
Confl. Bikes (#/hr)			2			12			2			5
Turn Type	Split	NA	Perm	Split	NA	Perm	Prot	NA	Perm	Prot	NA	Perm
Protected Phases	4	4		3	3		5	2		1	6	
Permitted Phases			4			3			2			6
Actuated Green, G (s)		8.4	8.4	19.9	19.9	19.9	3.3	42.1	42.1	28.6	67.6	67.6
Effective Green, g (s)		8.4	8.4	19.9	19.9	19.9	3.3	42.1	42.1	28.6	67.6	67.6
Actuated g/C Ratio		0.07	0.07	0.17	0.17	0.17	0.03	0.35	0.35	0.24	0.56	0.56
Clearance Time (s)		5.2	5.2	5.1	5.1	5.1	4.7	5.8	5.8	4.9	5.8	5.8
Vehicle Extension (s)		4.0	4.0	4.0	4.0	4.0	3.0	4.0	4.0	3.0	4.0	4.0
Lane Grp Cap (vph)		129	108	278	281	254	48	1241	543	421	1993	870
v/s Ratio Prot		c0.02		0.10	c0.10		0.01	0.15		c0.20	c0.31	
v/s Ratio Perm			0.00			0.02			0.06			0.01
v/c Ratio		0.22	0.01	0.63	0.63	0.12	0.38	0.41	0.17	0.86	0.56	0.01
Uniform Delay, d1		52.7	51.9	46.6	46.6	42.6	57.3	29.6	26.9	43.8	16.7	11.5
Progression Factor		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Incremental Delay, d2		1.2	0.0	4.9	5.0	0.3	4.9	1.0	0.7	15.9	0.4	0.0
Delay (s)		53.9	52.0	51.5	51.6	42.9	62.2	30.6	27.6	59.7	17.1	11.5
Level of Service		D	D	D	D	D	E	С	С	E	В	В
Approach Delay (s)		53.2			48.6			30.3			27.4	
Approach LOS		D			D			С			С	
Intersection Summary												
HCM 2000 Control Delay			32.5	Н	CM 2000	Level of	Service		С			
HCM 2000 Volume to Capa	city ratio		0.64						-			
Actuated Cycle Length (s)	.,		120.0	S	um of los	t time (s)			21.0			
Intersection Capacity Utiliza	tion		65.0%			of Service	è.		C			
Analysis Period (min)			15						-			
c Critical Lane Group												

	۶	+	Ļ	×	1	4
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		•	†	1	1	1
Traffic Volume (veh/h)	0	616	474	119	134	29
Future Volume (Veh/h)	0	616	474	119	134	29
Sign Control		Free	Free		Stop	
Grade		0%	0%		0%	
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94
Hourly flow rate (vph)	0	655	504	127	143	31
Pedestrians		1			4	
Lane Width (ft)		12.0			12.0	
Walking Speed (ft/s)		4.0			4.0	
Percent Blockage		0			0	
Right turn flare (veh)						7
Median type		Raised	None			
Median storage veh)		2				
Upstream signal (ft)		171				
pX, platoon unblocked						
vC, conflicting volume	635				1163	509
vC1, stage 1 conf vol					508	
vC2, stage 2 conf vol					655	
vCu, unblocked vol	635				1163	509
tC, single (s)	4.1				6.4	6.2
tC, 2 stage (s)					5.4	
tF (s)	2.2				3.5	3.3
p0 queue free %	100				67	94
cM capacity (veh/h)	945				429	562
Direction, Lane #	EB 1	WB 1	WB 2	SB 1		
Volume Total	655	504	127	174		
Volume Left	0	0	0	143		
Volume Right	0	0	127	31		
cSH	1700	1700	1700	522		
Volume to Capacity	0.39	0.30	0.07	0.33		
Queue Length 95th (ft)	0.07	0.00	0.07	36		
Control Delay (s)	0.0	0.0	0.0	16.5		
Lane LOS	0.0	0.0	0.0	C		
Approach Delay (s)	0.0	0.0		16.5		
Approach LOS	0.0	0.0		C		
Intersection Summary						
Average Delay			2.0			
Intersection Capacity Utiliz	ation		46.7%	IC	Ulevelo	of Service
Analysis Period (min)			15			
			15			

Movement EBL EBT EBR WBT WBT NBT NBT NBR SBL SBT SBR Lane Corfigurations 1 1 1 449 9 1 17 36 0 24 Future Volume (veh/h) 26 655 20 19 449 49 9 1 17 36 0 24 Sign Control Free Free Stop Stop 0% 0/4 0/4 94 0.94 <th></th> <th>۶</th> <th>-</th> <th>$\mathbf{\hat{z}}$</th> <th>4</th> <th>←</th> <th>•</th> <th>٩.</th> <th>Ť</th> <th>۲</th> <th>5</th> <th>ŧ</th> <th>~</th>		۶	-	$\mathbf{\hat{z}}$	4	←	•	٩.	Ť	۲	5	ŧ	~
Traffic Volume (veh/h) 26 655 20 19 449 49 9 1 17 36 0 24 Future Volume (Veh/h) 26 655 20 19 449 49 9 1 17 36 0 24 Sign Control Free Free Stop Stop Stop 0%	Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Future Volume (Velvh) 26 655 20 19 449 49 9 1 17 36 0 24 Sign Control Free Free Stop Stop Stop Stop Stop Stop Stop Stop Stop Pack Hour Factor 0.94			ef 👘		ሻ				4			- 4 >	
Sign Control Free Free Stop Stop Grade 0% 0% 0% 0% 0% 0% Grade 0% 094 0	Traffic Volume (veh/h)	26	655	20	19	449	49	9	1	17		0	24
Grade 0% 0% 0% 0% 0% Peak Hour Factor 0.94 <td< td=""><td>Future Volume (Veh/h)</td><td>26</td><td>655</td><td>20</td><td>19</td><td>449</td><td>49</td><td>9</td><td>1</td><td>17</td><td>36</td><td>0</td><td>24</td></td<>	Future Volume (Veh/h)	26	655	20	19	449	49	9	1	17	36	0	24
Peak Hour Factor 0.94			Free			Free			Stop			Stop	
Hourly flow rate (vph) 28 697 21 20 478 52 10 1 18 38 0 26 Pedestrians 8 28 7 12.0 12.	Grade		0%			0%			0%			0%	
Pedestrians 8 28 7 Lane Width (th) 12.0 12.0 12.0 Walking Speed (tVs) 12.0 4.0 4.0 Percent Blockage 1 2 1 Right turn flare (veh) None None None Median storage veh) 1 2 1 yc, conflicting volume 537 746 1336 1368 744 1330 1353 511 vC, conflicting volume 537 746 1336 1368 744 1330 1353 511 vC1, stage 1 conf vol vC2, stage 2 conf vol vC3, vol 2 conf vol vC3, vol 2 co		0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Lane Width (ft) 12.0 12.0 12.0 Walking Speed (IV/s) 4.0 4.0 4.0 Percent Blockage 1 2 1 Right turn flare (veh) 11 2 1 Median type None None None Median storage veh) Upstream signal (ft) 1198 1012 pX, platoon unblocked 0.89	Hourly flow rate (vph)	28	697	21	20	478	52	10	1	18	38		26
Walking Speed (ti/s) 4.0 4.0 Percent Blockage 1 2 1 Right turn flare (veh) None None 1 2 1 Median storage veh) Upstream signal (ft) 1198 1012 5 <	Pedestrians					8			28			7	
Percent Blockage 1 2 1 Right tum flare (veh) None	Lane Width (ft)					12.0			12.0			12.0	
Right tum flare (veh) None None Median type None None Median storage veh) pX, platoon unblocked 0.89 0.29 0.81 Statistical stati	Walking Speed (ft/s)					4.0			4.0			4.0	
Median storage veh) None Upstream signal (ft) 1198 1012 yr, platoon unblocked 0.89 0.80 0.33 0.33 0.33	Percent Blockage					1			2			1	
Median Storage veh) Upstream signal (ft) 1198 1012 pX, platoon unblocked 0.89 <td>Right turn flare (veh)</td> <td></td>	Right turn flare (veh)												
Upstream signal (ft) 1198 1012 pX, platoon unblocked 0.89 0.81 Sta	Median type		None			None							
pX, platoon unblocked 0.89 <t< td=""><td>Median storage veh)</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	Median storage veh)												
vC, conflicting volume 537 746 1336 1368 744 1330 1353 511 vC1, stage 1 conf vol vC2, stage 2 conf vol vC4, unblocked vol 422 746 1316 1353 744 1310 1335 393 tC, single (s) 4.1 7.1 6.5 6.2 7.1 6.5 6.2 tC, single (s) 2.2 2.2 3.5 4.0 3.3 3.5 4.0 3.3 p0 queue free % 97 98 91 99 96 65 100 96 cM capacity (veh/h) 1010 842 106 123 402 107 126 582 Direction, Lane # EB 1 EB 2 WB 1 WB 2 NB 1 SB 1 Volume 10 100 98 91 99 96 65 100 96 Volume Total 28 718 20 530 29 64 Volume 16 2 2 18 26 531 40 100 1700 197 160 Volume 16 2 2<	Upstream signal (ft)		1198			1012							
vC1, stage 1 conf vol vC2, stage 2 conf vol vC2, stage 2 conf vol vC4, unblocked vol 422 746 1316 1353 744 1310 1335 393 tC, single (s) 4.1 4.1 7.1 6.5 6.2 7.1 6.5 6.2 tC, 2 stage (s) 2.2 3.5 4.0 3.3 3.5 4.0 3.3 D0 queue free % 97 98 91 99 96 65 100 96 cM capacity (veh/h) 1010 842 106 123 402 107 126 582 Direction, Lane # EB 1 EB 2 WB 1 WB 2 NB 1 SB 1 VO 107 126 582 Direction, Lane # EB 1 EB 2 WB 1 WB 2 NB 1 SB 1 VO 107 126 582 Direction, Lane # EB 1 EB 2 WB 1 WB 2 NB 1 SB 1 VO 107 126 582 Oline Left 28 0 20 0.1 38 26 <td< td=""><td>pX, platoon unblocked</td><td>0.89</td><td></td><td></td><td></td><td></td><td></td><td>0.89</td><td>0.89</td><td></td><td>0.89</td><td>0.89</td><td>0.89</td></td<>	pX, platoon unblocked	0.89						0.89	0.89		0.89	0.89	0.89
vC2, stage 2 conf vol vC2, unblocked vol 422 746 1316 1353 744 1310 1335 393 tC, single (s) 4.1 4.1 7.1 6.5 6.2 7.1 6.5 6.2 tF (s) 2.2 2.2 3.5 4.0 3.3 3.5 4.0 3.3 p0 queue free % 97 98 91 99 96 65 100 96 cM capacity (veh/h) 1010 842 106 123 402 107 126 582 Direction, Lane # EB 1 EB 2 WB 1 WB 2 NB 1 SB 1 Volume 123 402 107 126 582 Direction, Lane # EB 1 EB 2 WB 1 WB 2 NB 1 SB 1 Volume 123 402 107 126 582 Direction, Lane # EB 1 EB 2 WB 1 WB 2 NB 1 SB 1 Volume 123 402 107 126 582 Olume total 28 0 20 0 10 38 <tr< td=""><td>vC, conflicting volume</td><td>537</td><td></td><td></td><td>746</td><td></td><td></td><td>1336</td><td>1368</td><td>744</td><td>1330</td><td>1353</td><td>511</td></tr<>	vC, conflicting volume	537			746			1336	1368	744	1330	1353	511
vCu, unblocked vol 422 746 1316 1353 744 1310 1335 393 tC, single (s) 4.1 4.1 7.1 6.5 6.2 7.1 6.5 6.2 tC, 2 stage (s) 2.2 2.2 3.5 4.0 3.3 3.5 4.0 3.3 p0 queue free % 97 98 91 99 96 65 100 96 cM capacity (veh/h) 1010 842 106 123 402 107 126 582 Direction, Lane # EB 1 EB 2 WB 1 WB 2 NB 1 SB 1 Volume 104 28 718 20 530 29 64 Volume Total 28 718 20 530 29 64 Volume 104 100 126 582 Volume Right 0 21 0 52 18 26 107 126 582 CSH 1010 1700 842 1700 197 160 104 100 100 100 100 100	vC1, stage 1 conf vol												
tC, single (s) 4.1 7.1 6.5 6.2 7.1 6.5 6.2 tC, 2 stage (s) 1 2.2 3.5 4.0 3.3 3.5 4.0 3.3 p0 queue free % 97 98 91 99 96 65 100 96 cM capacity (veh/h) 1010 842 106 123 402 107 126 582 Direction, Lane # EB 1 EB 2 WB 1 WB 2 NB 1 SB 1 SB 1 SB 1 SB 2 SB 1 SB 2 SB 1 SB 2 SB 2 <t< td=""><td>vC2, stage 2 conf vol</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	vC2, stage 2 conf vol												
tC, 2 stage (s) tF (s) 2.2 2.2 3.5 4.0 3.3 3.5 4.0 3.3 p0 queue free % 97 98 91 99 96 65 100 96 cM capacity (veh/h) 1010 842 106 123 402 107 126 582 Direction, Lane # EB 1 EB 2 WB 1 WB 2 NB 1 SB 1 582 Volume Total 28 718 20 530 29 64 582 582 Volume Left 28 0 20 0 10 38 56 582 582 Volume Right 0 21 0 52 18 26 56 56 56 56 56 56 56 56 56 56 56 56 56 57 56 56 56 56 56 56 56 57 56 56 56 57 56 56 56 56 56 57 56 57 56 57	vCu, unblocked vol	422			746			1316	1353	744	1310	1335	393
tF (s) 2.2 3.5 4.0 3.3 3.5 4.0 3.3 p0 queue free % 97 98 91 99 96 65 100 96 cM capacity (veh/h) 1010 842 106 123 402 107 126 582 Direction, Lane # EB 1 EB 2 WB 1 WB 2 NB 1 SB 1 Volume Total 28 718 20 530 29 64 Volume Left 28 0 20 0 10 38 26 27 28 26 CSH 1010 1700 842 1700 197 160 28 28 28 28 28 28 28 28 29 28 20	tC, single (s)	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
p0 queue free % 97 98 91 99 96 65 100 96 CM capacity (veh/h) 1010 842 106 123 402 107 126 582 Direction, Lane # EB 1 EB 2 WB 1 WB 2 NB 1 SB 1 SB 1 Volume Total 28 718 20 530 29 64 65 100 96 Volume Total 28 718 20 530 29 64 65 100 96 Volume Left 28 0 20 0 10 38 26 77 78 26 78 26 78 78 26 78 78 78 <th< td=""><td>tC, 2 stage (s)</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	tC, 2 stage (s)												
CM capacity (veh/h) 1010 842 106 123 402 107 126 582 Direction, Lane # EB 1 EB 2 WB 1 WB 2 NB 1 SB 1 Volume Total 28 718 20 530 29 64 Volume Total 28 718 20 530 29 64 Volume Left 28 0 20 0 10 38 78 26 CSH 0 21 0 52 18 26 78 78 26 78 78 26 78 78 78 7	tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
Direction, Lane # EB 1 EB 2 WB 1 WB 2 NB 1 SB 1 Volume Total 28 718 20 530 29 64 Volume Left 28 0 20 0 10 38 Volume Right 0 21 0 52 18 26 cSH 1010 1700 842 1700 197 160 Volume to Capacity 0.03 0.42 0.02 0.31 0.15 0.40 Queue Length 95th (ft) 2 0 2 0 13 44 Control Delay (s) 8.7 0.0 9.4 0.0 26.5 41.7 Lane LOS A A D E E Approach LOS D E Intersection Summary 2.8 D E E Average Delay 2.8 Intersection Capacity Utilization 48.5% ICU Level of Service A A	p0 queue free %	97			98			91	99	96	65	100	96
Volume Total 28 718 20 530 29 64 Volume Left 28 0 20 0 10 38 Volume Right 0 21 0 52 18 26 cSH 1010 1700 842 1700 197 160 Volume to Capacity 0.03 0.42 0.02 0.31 0.15 0.40 Queue Length 95th (ft) 2 0 2 0 13 44 Control Delay (s) 8.7 0.0 9.4 0.0 26.5 41.7 Lane LOS A A D E Approach Delay (s) 0.3 0.3 26.5 41.7 Approach LOS D E E Intersection Summary 2.8 E E Intersection Capacity Utilization 48.5% ICU Level of Service A	cM capacity (veh/h)	1010			842			106	123	402	107	126	582
Volume Left 28 0 20 0 10 38 Volume Right 0 21 0 52 18 26 cSH 1010 1700 842 1700 197 160 Volume to Capacity 0.03 0.42 0.02 0.31 0.15 0.40 Queue Length 95th (ft) 2 0 2 0 13 44 Control Delay (s) 8.7 0.0 9.4 0.0 26.5 41.7 Lane LOS A A D E Approach Delay (s) 0.3 0.3 26.5 41.7 Approach LOS V D E Intersection Summary D E Average Delay 2.8 I Intersection Capacity Utilization 48.5% ICU Level of Service A	Direction, Lane #	EB 1	EB 2	WB 1	WB 2	NB 1	SB 1						
Volume Right 0 21 0 52 18 26 cSH 1010 1700 842 1700 197 160 Volume to Capacity 0.03 0.42 0.02 0.31 0.15 0.40 Queue Length 95th (ft) 2 0 2 0 13 44 Control Delay (s) 8.7 0.0 9.4 0.0 26.5 41.7 Lane LOS A A D E Approach Delay (s) 0.3 0.3 26.5 41.7 Approach LOS A A D E Intersection Summary Z.8 I Z.8 I Intersection Capacity Utilization 48.5% ICU Level of Service A	Volume Total	28	718	20	530	29	64						
cSH 1010 1700 842 1700 197 160 Volume to Capacity 0.03 0.42 0.02 0.31 0.15 0.40 Queue Length 95th (ft) 2 0 2 0 13 44 Control Delay (s) 8.7 0.0 9.4 0.0 26.5 41.7 Lane LOS A A D E Approach Delay (s) 0.3 0.3 26.5 41.7 Approach LOS D E D E Intersection Summary 2.8 D E Intersection Capacity Utilization 48.5% ICU Level of Service A	Volume Left	28	0	20	0	10	38						
Volume to Capacity 0.03 0.42 0.02 0.31 0.15 0.40 Queue Length 95th (ft) 2 0 2 0 13 44 Control Delay (s) 8.7 0.0 9.4 0.0 26.5 41.7 Lane LOS A A D E Approach Delay (s) 0.3 0.3 26.5 41.7 Approach LOS A A D E Intersection Summary Z.8 Z.8 Z.8 Intersection Capacity Utilization 48.5% ICU Level of Service A	Volume Right	0	21	0	52	18	26						
Queue Length 95th (ft) 2 0 2 0 13 44 Control Delay (s) 8.7 0.0 9.4 0.0 26.5 41.7 Lane LOS A A D E Approach Delay (s) 0.3 0.3 26.5 41.7 Approach Delay (s) 0.3 0.3 26.5 41.7 Approach LOS D E D E Intersection Summary 2.8 Intersection Capacity Utilization 48.5% ICU Level of Service A	cSH	1010	1700	842	1700	197	160						
Control Delay (s) 8.7 0.0 9.4 0.0 26.5 41.7 Lane LOS A A D E Approach Delay (s) 0.3 0.3 26.5 41.7 Approach Delay (s) 0.3 0.3 26.5 41.7 Approach LOS D E E Intersection Summary 2.8 ICU Level of Service A	Volume to Capacity	0.03	0.42	0.02	0.31	0.15	0.40						
Lane LOSAADEApproach Delay (s)0.30.326.541.7Approach LOSDEIntersection SummaryAverage Delay2.8Intersection Capacity Utilization48.5%ICU Level of ServiceA	Queue Length 95th (ft)	2	0	2	0	13	44						
Approach Delay (s)0.30.326.541.7Approach LOSDEIntersection SummaryAverage Delay2.8Intersection Capacity Utilization48.5%ICU Level of ServiceA	Control Delay (s)	8.7	0.0	9.4	0.0	26.5	41.7						
Approach LOS D E Intersection Summary 2.8 Average Delay 2.8 Intersection Capacity Utilization 48.5% ICU Level of Service A	Lane LOS	А		А		D	Е						
Intersection Summary 2.8 Average Delay 2.8 Intersection Capacity Utilization 48.5% ICU Level of Service A	Approach Delay (s)	0.3		0.3		26.5	41.7						
Average Delay 2.8 Intersection Capacity Utilization 48.5% ICU Level of Service A	Approach LOS					D	E						
Intersection Capacity Utilization 48.5% ICU Level of Service A	Intersection Summary												
Intersection Capacity Utilization 48.5% ICU Level of Service A	Average Delay			2.8									
		ation			IC	CU Level	of Service			А			

	۶	-	\mathbf{i}	•	-	•	1	1	1	1	Ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	4Î		ሻ	- † Ъ			4			र्स	1
Traffic Volume (vph)	51	646	15	2	462	55	8	1	5	71	1	52
Future Volume (vph)	51	646	15	2	462	55	8	1	5	71	1	52
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	5.0	5.5		5.0	5.5			5.6			5.6	5.6
Lane Util. Factor	1.00	1.00		1.00	0.95			1.00			1.00	1.00
Frpb, ped/bikes	1.00	1.00		1.00	0.98			0.99			1.00	0.98
Flpb, ped/bikes	1.00	1.00		1.00	1.00			0.99			0.99	1.00
Frt	1.00	1.00		1.00	0.98			0.95			1.00	0.85
Flt Protected	0.95	1.00		0.95	1.00			0.97			0.95	1.00
Satd. Flow (prot)	1770	1853		1770	3419			1691			1759	1546
Flt Permitted	0.95	1.00		0.95	1.00			0.87			0.72	1.00
Satd. Flow (perm)	1770	1853		1770	3419			1515			1324	1546
Peak-hour factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	57	718	17	2	513	61	9	1	6	79	1	58
RTOR Reduction (vph)	0	0	0	0	6	0	0	5	0	0	0	48
Lane Group Flow (vph)	57	735	0	2	568	0	0	11	0	0	80	10
Confl. Peds. (#/hr)	31		15	15		31	8		4	4		8
Confl. Bikes (#/hr)			7			112						
Turn Type	Prot	NA		Prot	NA		Perm	NA		Perm	NA	Perm
Protected Phases	5	2		1	6			8			4	
Permitted Phases							8			4		4
Actuated Green, G (s)	7.3	88.9		1.4	83.0			23.0			23.0	23.0
Effective Green, g (s)	7.3	89.5		1.4	83.6			23.0			23.0	23.0
Actuated g/C Ratio	0.06	0.69		0.01	0.64			0.18			0.18	0.18
Clearance Time (s)	5.0	6.1		5.0	6.1			5.6			5.6	5.6
Vehicle Extension (s)	1.0	2.5		1.0	2.5			2.5			2.5	2.5
Lane Grp Cap (vph)	99	1275		19	2198			268			234	273
v/s Ratio Prot	c0.03	c0.40		0.00	0.17							
v/s Ratio Perm								0.01			c0.06	0.01
v/c Ratio	0.58	0.58		0.11	0.26			0.04			0.34	0.04
Uniform Delay, d1	59.8	10.5		63.7	9.9			44.4			46.9	44.3
Progression Factor	1.00	1.00		1.33	0.49			1.00			1.00	1.00
Incremental Delay, d2	5.0	1.9		0.9	0.3			0.0			0.6	0.0
Delay (s)	64.8	12.4		85.3	5.1			44.4			47.5	44.4
Level of Service	E	В		F	А			D			D	D
Approach Delay (s)		16.1			5.4			44.4			46.2	
Approach LOS		В			А			D			D	
Intersection Summary												
HCM 2000 Control Delay			15.1	Н	CM 2000	Level of	Service		В			
HCM 2000 Volume to Capa	acity ratio		0.54									
Actuated Cycle Length (s)	-		130.0	S	um of los	t time (s)			16.1			
Intersection Capacity Utilization	ation		61.6%	IC	U Level	of Service	;		В			
Analysis Period (min)			15									
c Critical Lane Group												

HCM Signalized Intersection Capacity Analysis 5: Maxine Avenue/85 SB Off-ramp & Homestead Road

	۶	-	\mathbf{F}	•	+	•	1	1	1	1	ţ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4Î		<u>۲</u>	- † †			4		ሻ	eî 👘	
Traffic Volume (vph)	0	716	4	12	461	0	1	0	18	87	3	59
Future Volume (vph)	0	716	4	12	461	0	1	0	18	87	3	59
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		6.0		6.0	6.0			6.0		6.0	6.0	
Lane Util. Factor		1.00		1.00	0.95			1.00		1.00	1.00	
Frpb, ped/bikes		1.00		1.00	1.00			1.00		1.00	0.98	
Flpb, ped/bikes		1.00		1.00	1.00			1.00		1.00	1.00	
Frt		1.00		1.00	1.00			0.87		1.00	0.86	
Flt Protected		1.00		0.95	1.00			1.00		0.95	1.00	
Satd. Flow (prot)		1860		1770	3539			1619		1770	1569	
Flt Permitted		1.00		0.95	1.00			1.00		0.95	1.00	
Satd. Flow (perm)		1860		1770	3539			1619		1770	1569	
Peak-hour factor, PHF	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85
Adj. Flow (vph)	0	842	5	14	542	0	1	0	21	102	4	69
RTOR Reduction (vph)	0	0	0	0	0	0	0	22	0	0	63	0
Lane Group Flow (vph)	0	847	0	14	542	0	0	0	0	102	10	0
Confl. Peds. (#/hr)	47		27	27		47	5					5
Confl. Bikes (#/hr)			11			125						
Turn Type		NA		Prot	NA		Split	NA		Split	NA	
Protected Phases		2		1	6		3	3		. 4	4	
Permitted Phases												
Actuated Green, G (s)		89.8		3.1	97.9			3.3		12.8	12.8	
Effective Green, g (s)		89.8		2.1	97.9			2.3		11.8	11.8	
Actuated g/C Ratio		0.69		0.02	0.75			0.02		0.09	0.09	
Clearance Time (s)		6.0		5.0	6.0			5.0		5.0	5.0	
Vehicle Extension (s)		5.0		3.0	5.0			3.0		3.0	3.0	
Lane Grp Cap (vph)		1284		28	2665			28		160	142	
v/s Ratio Prot		c0.46		0.01	c0.15			c0.00		c0.06	0.01	
v/s Ratio Perm												
v/c Ratio		0.66		0.50	0.20			0.01		0.64	0.07	
Uniform Delay, d1		11.4		63.4	4.7			62.7		57.0	54.1	
Progression Factor		0.85		1.19	0.59			1.00		1.00	1.00	
Incremental Delay, d2		2.4		13.3	0.2			0.2		8.1	0.2	
Delay (s)		12.1		88.8	2.9			62.9		65.1	54.3	
Level of Service		В		F	А			E		E	D	
Approach Delay (s)		12.1			5.1			62.9			60.6	
Approach LOS		В			А			E			E	
Intersection Summary												
HCM 2000 Control Delay			15.6	H	CM 2000	Level of	Service		В			
HCM 2000 Volume to Capacity	ratio		0.64									
Actuated Cycle Length (s)			130.0	S	um of los	t time (s)			24.0			
Intersection Capacity Utilization	ı		61.0%			of Service			В			
Analysis Period (min)			15									
c Critical Lane Group												

	۶	-	\mathbf{F}	4	+	•	٠	1	1	1	Ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	۲	†		۲.	↑ 1≱						र्स	1
Traffic Volume (vph)	50	682	0	74	408	68	0	0	0	78	4	56
Future Volume (vph)	50	682	0	74	408	68	0	0	0	78	4	56
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	5.0	5.5		5.0	5.5						5.5	5.5
Lane Util. Factor	1.00	1.00		1.00	0.95						1.00	1.00
Frpb, ped/bikes	1.00	1.00		1.00	0.99						1.00	1.00
Flpb, ped/bikes	1.00	1.00		1.00	1.00						1.00	1.00
Frt	1.00	1.00		1.00	0.98						1.00	0.85
Flt Protected	0.95	1.00		0.95	1.00						0.95	1.00
Satd. Flow (prot)	1770	1863		1770	3429						1779	1583
Flt Permitted	0.95	1.00		0.95	1.00						0.95	1.00
Satd. Flow (perm)	1770	1863		1770	3429						1779	1583
Peak-hour factor, PHF	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87
Adj. Flow (vph)	57	784	0	85	469	78	0	0	0	90	5	64
RTOR Reduction (vph)	0	0	0	0	5	0	0	0	0	0	0	59
Lane Group Flow (vph)	57	784	0	85	542	0	0	0	0	0	95	5
Confl. Peds. (#/hr)	7		32	32		7			5	5		
Confl. Bikes (#/hr)			7			59						
Turn Type	Prot	NA		Prot	NA					Split	NA	Perm
Protected Phases	1	6		5	2					. 4	4	
Permitted Phases												4
Actuated Green, G (s)	7.6	92.2		10.3	94.9						10.7	10.7
Effective Green, g (s)	7.6	92.8		10.3	95.5						10.9	10.9
Actuated g/C Ratio	0.06	0.71		0.08	0.73						0.08	0.08
Clearance Time (s)	5.0	6.1		5.0	6.1						5.7	5.7
Vehicle Extension (s)	1.0	2.5		1.0	2.5						2.5	2.5
Lane Grp Cap (vph)	103	1329		140	2518						149	132
v/s Ratio Prot	0.03	c0.42		c0.05	0.16						c0.05	
v/s Ratio Perm												0.00
v/c Ratio	0.55	0.59		0.61	0.22						0.64	0.04
Uniform Delay, d1	59.5	9.2		57.9	5.4						57.6	54.7
Progression Factor	0.80	0.36		1.54	0.32						1.00	1.00
Incremental Delay, d2	3.0	0.5		4.9	0.2						7.6	0.1
Delay (s)	50.6	3.8		94.2	2.0						65.2	54.8
Level of Service	D	А		F	А						E	D
Approach Delay (s)		6.9			14.4			0.0			61.0	
Approach LOS		А			В			А			E	
Intersection Summary												
HCM 2000 Control Delay			15.1	Н	CM 2000	Level of 2	Service		В			
HCM 2000 Volume to Capa	acity ratio		0.60									
Actuated Cycle Length (s)			130.0		um of los				16.0			
Intersection Capacity Utiliza	ation		67.1%	IC	U Level	of Service			С			
Analysis Period (min)			15									
c Critical Lane Group												

Kimley-Horn and Associates, Inc. HCM Signalized Intersection Capacity Analysis

	٦	-	\mathbf{F}	∢	+	*	•	1	1	1	Ļ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	۲	∱ ⊅		ľ	↑ ⊅			र्भ	1		ب ا	1
Traffic Volume (vph)	43	695	18	3	485	57	19	9	11	107	6	44
Future Volume (vph)	43	695	18	3	485	57	19	9	11	107	6	44
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	2100	2100	1900	2100	2100
Total Lost time (s)	5.0	5.5		5.0	5.5			5.7	5.7		5.7	5.7
Lane Util. Factor	1.00	0.95		1.00	0.95			1.00	1.00		1.00	1.00
Frpb, ped/bikes	1.00	0.99		1.00	0.98			1.00	0.96		1.00	0.94
Flpb, ped/bikes	1.00	1.00		1.00	1.00			0.97	1.00		0.98	1.00
Frt	1.00	0.80		1.00	0.98			1.00	0.85		1.00	0.85
Flt Protected	0.95	1.00		0.95	1.00			0.97	1.00		0.95	1.00
Satd. Flow (prot)	1770	2806		1770	3421			1937	1683		1918	1640
Flt Permitted	0.95	1.00		0.95	1.00			0.72	1.00		0.71	1.00
Satd. Flow (perm)	1770	2806		1770	3421			500	1683		1430	1640
Peak-hour factor, PHF	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82
Adj. Flow (vph)	52	848	22	4	591	70	23	11	13	130	7	54
RTOR Reduction (vph)	0	1	0	0	5	0	0	0	11	0	0	47
Lane Group Flow (vph)	52	869	0	4	656	0	0	34	2	0	137	7
Confl. Peds. (#/hr)	36		59	59		36	36		18	18		36
Confl. Bikes (#/hr)			24			60						
Bus Blockages (#/hr)	0	2	2	0	0	0	0	0	0	0	0	0
Turn Type	Prot	NA		Prot	NA		Perm	NA	Perm	Perm	NA	Perm
Protected Phases	1	6		5	2			8			4	
Permitted Phases							8		8	4		4
Actuated Green, G (s)	7.1	93.8		1.6	88.3			17.8	17.8		17.8	17.8
Effective Green, g (s)	7.1	94.4		1.6	88.9			17.8	17.8		17.8	17.8
Actuated g/C Ratio	0.05	0.73		0.01	0.68			0.14	0.14		0.14	0.14
Clearance Time (s)	5.0	6.1		5.0	6.1			5.7	5.7		5.7	5.7
Vehicle Extension (s)	1.0	2.5		1.0	2.5			2.5	2.5		2.5	2.5
Lane Grp Cap (vph)	96	2037		21	2339			68	230		195	224
v/s Ratio Prot	c0.03	c0.31		0.00	0.19							
v/s Ratio Perm								0.07	0.00		c0.10	0.00
v/c Ratio	0.54	0.43		0.19	0.28			0.50	0.01		0.70	0.03
Uniform Delay, d1	59.9	7.1		63.6	8.0			52.0	48.5		53.6	48.6
Progression Factor	0.90	1.15		1.61	0.43			1.00	1.00		1.00	1.00
Incremental Delay, d2	2.9	0.6		1.4	0.3			4.2	0.0		10.1	0.0
Delay (s)	56.7	8.7		104.0	3.7			56.1	48.5		63.7	48.7
Level of Service	E	А		F	А			E	D		E	D
Approach Delay (s)		11.4			4.3			54.0			59.5	
Approach LOS		В			А			D			Е	
Intersection Summary												
HCM 2000 Control Delay			15.0	H	CM 2000	Level of	Service		В			
HCM 2000 Volume to Capa	acity ratio		0.49									
Actuated Cycle Length (s)			130.0		um of los	. ,			16.2			
Intersection Capacity Utilization	ation		64.7%	IC	U Level	of Service	;		С			
Analysis Period (min)			15									
c Critical Lane Group												

HCM Signalized Intersection Capacity Analysis 8: Mary Avenue & Homestead Road

	٦	-	\rightarrow	∢	-	•	•	Ť	1	1	ţ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	۲	∱ ⊅		ľ	A		ľ	¢Î		۲	ب ا	1
Traffic Volume (vph)	61	668	50	21	408	133	65	53	66	245	45	62
Future Volume (vph)	61	668	50	21	408	133	65	53	66	245	45	62
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	5.5	5.5		5.5	5.5		5.6	5.6		5.5	5.5	5.5
Lane Util. Factor	1.00	0.95		1.00	0.95		1.00	1.00		0.95	0.95	1.00
Frpb, ped/bikes	1.00	0.98		1.00	0.94		1.00	0.80		1.00	1.00	0.91
Flpb, ped/bikes	1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00	1.00
Frt	1.00	0.99		1.00	0.96		1.00	0.92		1.00	1.00	0.85
Flt Protected	0.95	1.00		0.95	1.00		0.95	1.00		0.95	0.97	1.00
Satd. Flow (prot)	1770	3414		1770	3193		1770	1363		1681	1712	1445
Flt Permitted	0.95	1.00		0.95	1.00		0.95	1.00		0.95	0.97	1.00
Satd. Flow (perm)	1770	3414		1770	3193		1770	1363		1681	1712	1445
Peak-hour factor, PHF	0.76	0.76	0.76	0.76	0.76	0.76	0.76	0.76	0.76	0.76	0.76	0.76
Adj. Flow (vph)	80	879	66	28	537	175	86	70	87	322	59	82
RTOR Reduction (vph)	0	0	0	0	0	0	0	0	0	0	0	0
Lane Group Flow (vph)	80	945	0	28	712	0	86	157	0	203	178	82
Confl. Peds. (#/hr)	105		137	137		105	53		315	315		53
Confl. Bikes (#/hr)			50			12			49			3
Bus Blockages (#/hr)	0	2	0	0	4	4	0	0	0	0	0	0
Turn Type	Prot	NA		Prot	NA		Split	NA		Split	NA	Perm
Protected Phases	1	6		5	2		3	3		. 4	4	
Permitted Phases												4
Actuated Green, G (s)	9.3	49.5		7.2	47.4		25.4	25.4		24.6	24.6	24.6
Effective Green, g (s)	9.3	50.1		7.2	48.0		25.4	25.4		25.2	25.2	25.2
Actuated g/C Ratio	0.07	0.39		0.06	0.37		0.20	0.20		0.19	0.19	0.19
Clearance Time (s)	5.5	6.1		5.5	6.1		5.6	5.6		6.1	6.1	6.1
Vehicle Extension (s)	1.0	2.5		1.0	2.5		1.0	1.0		2.5	2.5	2.5
Lane Grp Cap (vph)	126	1315		98	1178		345	266		325	331	280
v/s Ratio Prot	c0.05	c0.28		0.02	0.22		0.05	c0.12		c0.12	0.10	
v/s Ratio Perm												0.06
v/c Ratio	0.63	0.72		0.29	0.60		0.25	0.59		0.62	0.54	0.29
Uniform Delay, d1	58.7	34.0		58.9	33.3		44.2	47.6		48.1	47.2	44.8
Progression Factor	0.97	1.04		1.37	0.95		1.00	1.00		1.00	1.00	1.00
Incremental Delay, d2	7.0	3.2		0.6	2.2		0.1	2.3		3.2	1.3	0.4
Delay (s)	63.7	38.4		81.4	33.7		44.4	49.9		51.3	48.5	45.2
Level of Service	E	D		F	С		D	D		D	D	D
Approach Delay (s)		40.4			35.5			47.9			49.1	
Approach LOS		D			D			D			D	
Intersection Summary												
HCM 2000 Control Delay			41.3	Н	CM 2000	Level of	Service		D			
HCM 2000 Volume to Capa	acity ratio		0.67									
Actuated Cycle Length (s)	,		130.0	S	um of los	t time (s)			22.1			
Intersection Capacity Utiliza	ation		84.7%			of Service	!		E			
Analysis Period (min)			15									
c Critical Lane Group												

	≯	-	$\mathbf{\hat{z}}$	4	+	•	•	Ť	۲	1	Ļ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	۲	††		ľ	↑ ⊅						\$	
Traffic Volume (vph)	25	975	80	19	500	63	0	0	0	52	7	28
Future Volume (vph)	25	975	80	19	500	63	0	0	0	52	7	28
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	5.0	5.5		5.0	5.5						5.6	
Lane Util. Factor	1.00	0.95		1.00	0.95						1.00	
Frpb, ped/bikes	1.00	0.96		1.00	0.97						0.94	
Flpb, ped/bikes	1.00	1.00		1.00	1.00						0.89	
Frt	1.00	0.99		1.00	0.98						0.96	
Flt Protected	0.95	1.00		0.95	1.00						0.97	
Satd. Flow (prot)	1770	3315		1770	3358						1441	
Flt Permitted	0.95	1.00		0.95	1.00						0.97	
Satd. Flow (perm)	1770	3315		1770	3358						1441	
Peak-hour factor, PHF	0.78	0.78	0.78	0.78	0.78	0.78	0.78	0.78	0.78	0.78	0.78	0.78
Adj. Flow (vph)	32	1250	103	24	641	81	0	0	0	67	9	36
RTOR Reduction (vph)	0	4	0	0	6	0	0	0	0	0	13	0
Lane Group Flow (vph)	32	1349	0	24	716	0	0	0	0	0	99	0
Confl. Peds. (#/hr)	69		184	184		69	114		122	122		114
Confl. Bikes (#/hr)			37			8			29			1
Bus Blockages (#/hr)	0	4	0	0	4	0	0	0	0	0	0	0
Turn Type	Prot	NA		Prot	NA					Perm	NA	
Protected Phases	5	2		1	6						4	
Permitted Phases										4		
Actuated Green, G (s)	4.9	84.0		4.3	83.4						25.0	
Effective Green, g (s)	4.9	84.6		4.3	84.0						25.0	
Actuated g/C Ratio	0.04	0.65		0.03	0.65						0.19	
Clearance Time (s)	5.0	6.1		5.0	6.1						5.6	
Vehicle Extension (s)	1.0	2.5		1.0	2.5						2.5	
Lane Grp Cap (vph)	66	2157		58	2169						277	
v/s Ratio Prot	c0.02	c0.41		0.01	0.21						2.77	
v/s Ratio Perm	00.02	00.11		0.01	0.21						0.07	
v/c Ratio	0.48	0.63		0.41	0.33						0.36	
Uniform Delay, d1	61.3	13.4		61.6	10.3						45.5	
Progression Factor	0.97	1.01		1.46	0.31						1.00	
Incremental Delay, d2	1.7	1.1		1.6	0.4						0.6	
Delay (s)	61.2	14.6		91.6	3.6						46.1	
Level of Service	E	B		F	A						D	
Approach Delay (s)	-	15.7		•	6.4			0.0			46.1	
Approach LOS		B			A			A			D	
Intersection Summary												
HCM 2000 Control Delay			14.1	Н	CM 2000	Level of	Service		В			
HCM 2000 Volume to Capa	city ratio		0.56		2000	Lovoror			D			
Actuated Cycle Length (s)			130.0	S	um of los	t time (s)			16.1			
Intersection Capacity Utiliza	ition		60.0%	IC	U Level	of Service	<u>.</u>		В			
Analysis Period (min)			15									
c Critical Lane Group												

HCM Signalized Intersection Capacity Analysis
10: Stelling Road/Hollenbeck Avenue & Homestead Road

	٦	+	\mathbf{F}	4	Ļ	•	•	Ť	1	1	ţ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	≜ ⊅		<u>۲</u>	↑ 1≽		ሻሻ	∱ }		ሻ	≜ ⊅	
Traffic Volume (vph)	89	664	254	194	398	153	187	238	222	170	326	71
Future Volume (vph)	89	664	254	194	398	153	187	238	222	170	326	71
Ideal Flow (vphpl)	1900	2100	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	5.0	5.5		5.0	5.5		5.0	5.1		5.0	5.1	
Lane Util. Factor	1.00	0.95		1.00	0.95		0.97	0.95		1.00	0.95	
Frpb, ped/bikes	1.00	0.96		1.00	0.96		1.00	0.96		1.00	0.99	
Flpb, ped/bikes	1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00	
Frt	1.00	0.96		1.00	0.96		1.00	0.93		1.00	0.97	
Flt Protected	0.95	1.00		0.95	1.00		0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1770	3588		1770	3259		3433	3161		1770	3401	
Flt Permitted	0.95	1.00		0.95	1.00		0.95	1.00		0.95	1.00	
Satd. Flow (perm)	1770	3588		1770	3259		3433	3161		1770	3401	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	97	722	276	211	433	166	203	259	241	185	354	77
RTOR Reduction (vph)	0	28	0	0	29	0	0	138	0	0	15	0
Lane Group Flow (vph)	97	970	0	211	570	0	203	362	0	185	416	0
Confl. Peds. (#/hr)	87		106	106		87	55		54	54		55
Confl. Bikes (#/hr)			35			3			3			1
Turn Type	Prot	NA		Prot	NA		Prot	NA		Prot	NA	
Protected Phases	5	2		1	6		3	8		7	4	
Permitted Phases												
Actuated Green, G (s)	11.1	44.5		18.5	51.9		11.3	29.4		15.8	33.9	
Effective Green, g (s)	11.1	45.1		18.5	52.5		11.3	30.0		15.8	34.5	
Actuated g/C Ratio	0.09	0.35		0.14	0.40		0.09	0.23		0.12	0.27	
Clearance Time (s)	5.0	6.1		5.0	6.1		5.0	5.7		5.0	5.7	
Vehicle Extension (s)	1.0	2.5		1.0	2.5		1.0	2.5		1.0	2.5	
Lane Grp Cap (vph)	151	1244		251	1316		298	729		215	902	
v/s Ratio Prot	0.05	c0.27		c0.12	0.17		0.06	0.11		c0.10	c0.12	
v/s Ratio Perm												
v/c Ratio	0.64	0.78		0.84	0.43		0.68	0.50		0.86	0.46	
Uniform Delay, d1	57.5	38.0		54.3	28.0		57.6	43.4		56.0	40.0	
Progression Factor	0.90	1.38		1.00	1.00		1.00	1.00		1.00	1.00	
Incremental Delay, d2	5.5	4.0		20.9	1.0		5.0	0.4		27.0	0.3	
Delay (s)	57.1	56.3		75.2	29.0		62.6	43.8		83.0	40.2	
Level of Service	E	E		E	С		E	D		F	D	
Approach Delay (s)		56.4			41.1			49.3			53.1	
Approach LOS		E			D			D			D	
Intersection Summary												
HCM 2000 Control Delay			50.4	Н	CM 2000	Level of	Service		D			
HCM 2000 Volume to Capa	city ratio		0.72									
Actuated Cycle Length (s)	,		130.0	S	um of los	t time (s)			20.6			
Intersection Capacity Utiliza	ation		92.6%			of Service	9		F			
Analysis Period (min)			15									
c Critical Lane Group												

	۶	+	\mathbf{F}	4	┥	*	1	Ť	1	1	Ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		् 4	1	- ሻ	र्च	1	- ሽ	- ††	1	<u> </u>	- ††	1
Traffic Volume (vph)	5	26	20	232	21	121	17	502	271	463	1238	12
Future Volume (vph)	5	26	20	232	21	121	17	502	271	463	1238	12
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		5.2	5.2	5.1	5.1	5.1	4.7	5.8	5.8	4.9	5.8	5.8
Lane Util. Factor		1.00	1.00	0.95	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00
Frpb, ped/bikes		1.00	0.96	1.00	1.00	0.98	1.00	1.00	0.97	1.00	1.00	0.97
Flpb, ped/bikes		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt		1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85
Flt Protected		0.99	1.00	0.95	0.96	1.00	0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (prot)		1848	1527	1681	1699	1559	1770	3539	1535	1770	3539	1535
Flt Permitted		0.99	1.00	0.95	0.96	1.00	0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (perm)		1848	1527	1681	1699	1559	1770	3539	1535	1770	3539	1535
Peak-hour factor, PHF	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96
Adj. Flow (vph)	5	27	21	242	22	126	18	523	282	482	1290	12
RTOR Reduction (vph)	0	0	19	0	0	109	0	0	192	0	0	5
Lane Group Flow (vph)	0	32	2	131	133	17	18	523	90	482	1290	8
Confl. Peds. (#/hr)			8	8								1
Confl. Bikes (#/hr)			5			2			9			12
Turn Type	Split	NA	Perm	Split	NA	Perm	Prot	NA	Perm	Prot	NA	Perm
Protected Phases	4	4		3	3		5	2		1	6	
Permitted Phases			4			3			2			6
Actuated Green, G (s)		10.3	10.3	17.1	17.1	17.1	3.4	41.6	41.6	40.0	78.4	78.4
Effective Green, g (s)		10.3	10.3	17.1	17.1	17.1	3.4	41.6	41.6	40.0	78.4	78.4
Actuated g/C Ratio		0.08	0.08	0.13	0.13	0.13	0.03	0.32	0.32	0.31	0.60	0.60
Clearance Time (s)		5.2	5.2	5.1	5.1	5.1	4.7	5.8	5.8	4.9	5.8	5.8
Vehicle Extension (s)		4.0	4.0	4.0	4.0	4.0	3.0	4.0	4.0	3.0	4.0	4.0
Lane Grp Cap (vph)		146	120	221	223	205	46	1132	491	544	2134	925
v/s Ratio Prot		c0.02		0.08	c0.08		0.01	0.15		c0.27	c0.36	
v/s Ratio Perm			0.00			0.01			0.06			0.01
v/c Ratio		0.22	0.01	0.59	0.60	0.08	0.39	0.46	0.18	0.89	0.60	0.01
Uniform Delay, d1		56.1	55.2	53.2	53.2	49.6	62.3	35.3	31.9	42.8	16.1	10.3
Progression Factor		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Incremental Delay, d2		1.0	0.1	4.9	4.9	0.2	5.4	0.4	0.2	15.9	1.3	0.0
Delay (s)		57.1	55.2	58.1	58.1	49.8	67.7	35.7	32.2	58.7	17.4	10.3
Level of Service		E	E	E	E	D	E	D	С	E	В	В
Approach Delay (s)		56.4			55.4			35.2			28.5	
Approach LOS		E			E			D			С	
Intersection Summary												
HCM 2000 Control Delay			34.2	Н	CM 2000	Level of	Service		С			
HCM 2000 Volume to Capa	city ratio		0.68									
Actuated Cycle Length (s)	5		130.0	S	um of los	t time (s)			21.0			
Intersection Capacity Utiliza	tion		67.5%			of Service)		С			
Analysis Period (min)			15									
c Critical Lane Group												

	≯	→	+	×	1	~	
Movement	EBL	EBT	WBT	WBR	SBL	SBR	
Lane Configurations		†	†	1	5	1	
Traffic Volume (veh/h)	0	757	444	108	98	21	
Future Volume (Veh/h)	0	757	444	108	98	21	
Sign Control		Free	Free		Stop		
Grade		0%	0%		0%		
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94	
Hourly flow rate (vph)	0	805	472	115	104	22	
Pedestrians					3		
Lane Width (ft)					12.0		
Walking Speed (ft/s)					4.0		
Percent Blockage					0		
Right turn flare (veh)						7	
Median type		None	None				
Median storage veh)							
Upstream signal (ft)		171					
pX, platoon unblocked					0.99		
vC, conflicting volume	590				1280	475	
vC1, stage 1 conf vol							
vC2, stage 2 conf vol							
vCu, unblocked vol	590				1279	475	
tC, single (s)	4.1				6.4	6.2	
tC, 2 stage (s)							
tF (s)	2.2				3.5	3.3	
p0 queue free %	100				43	96	
cM capacity (veh/h)	983				182	588	
Direction, Lane #	EB 1	WB 1	WB 2	SB 1			
Volume Total	805	472	115	126			
Volume Left	0	0	0	104			
Volume Right	0	0	115	22			
cSH	1700	1700	1700	220			
Volume to Capacity	0.47	0.28	0.07	0.57			
Queue Length 95th (ft)	0	0	0	79			
Control Delay (s)	0.0	0.0	0.0	41.9			
Lane LOS				E			
Approach Delay (s)	0.0	0.0		41.9			
Approach LOS				E			
Intersection Summary							
Average Delay			3.5				
Intersection Capacity Utilization	on		51.9%	IC	U Level o	of Service	
Analysis Period (min)			15				

	٦	-	\mathbf{F}	4	+	•	٩.	Ť	1	5	Ļ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	f,		ሻ	4			4			4	
Traffic Volume (veh/h)	24	794	40	14	396	34	9	1	13	21	0	28
Future Volume (Veh/h)	24	794	40	14	396	34	9	1	13	21	0	28
Sign Control		Free			Free			Stop			Stop	
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98
Hourly flow rate (vph)	24	810	41	14	404	35	9	1	13	21	0	29
Pedestrians					4			22			6	
Lane Width (ft)					12.0			12.0			12.0	
Walking Speed (ft/s)					4.0			4.0			4.0	
Percent Blockage					0			2			1	
Right turn flare (veh)												
Median type		None			None							
Median storage veh)												
Upstream signal (ft)		1198			1012							
pX, platoon unblocked	0.93						0.93	0.93		0.93	0.93	0.93
vC, conflicting volume	445			873			1362	1374	856	1331	1376	428
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	367			873			1351	1364	856	1319	1367	348
tC, single (s)	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
tC, 2 stage (s)												
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free %	98			98			92	99	96	81	100	95
cM capacity (veh/h)	1104			759			106	129	350	113	128	644
Direction, Lane #	EB 1	EB 2	WB 1	WB 2	NB 1	SB 1						
Volume Total	24	851	14	439	23	50						
Volume Left	24	0	14	0	9	21						
Volume Right	0	41	0	35	13	29						
cSH	1104	1700	759	1700	177	217						
Volume to Capacity	0.02	0.50	0.02	0.26	0.13	0.23						
Queue Length 95th (ft)	2	0	1	0	11	22						
Control Delay (s)	8.3	0.0	9.8	0.0	28.4	26.6						
Lane LOS	А		А		D	D						
Approach Delay (s)	0.2		0.3		28.4	26.6						
Approach LOS					D	D						
Intersection Summary												
Average Delay			1.7									
Intersection Capacity Utiliz	zation		55.6%	10	CU Level o	of Service			В			
Analysis Period (min)			15		, _,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				-			

	٦	+	•	•	+	•	1	1	1	1	ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	<u> </u>	4Î		ሻ	≜ ⊅			ф —			् 4	1
Traffic Volume (vph)	49	730	15	4	408	69	11	0	6	36	1	42
Future Volume (vph)	49	730	15	4	408	69	11	0	6	36	1	42
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	5.0	5.5		5.0	5.5			5.6			5.6	5.6
Lane Util. Factor	1.00	1.00		1.00	0.95			1.00			1.00	1.00
Frpb, ped/bikes	1.00	1.00		1.00	0.99			1.00			1.00	0.98
Flpb, ped/bikes	1.00	1.00		1.00	1.00			1.00			1.00	1.00
Frt	1.00	1.00		1.00	0.98			0.95			1.00	0.85
Flt Protected	0.95	1.00		0.95	1.00			0.97			0.95	1.00
Satd. Flow (prot)	1770	1855		1770	3435			1715			1776	1559
Flt Permitted	0.95	1.00		0.95	1.00			0.85			0.74	1.00
Satd. Flow (perm)	1770	1855		1770	3435			1512			1374	1559
Peak-hour factor, PHF	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98
Adj. Flow (vph)	50	745	15	4	416	70	11	0	6	37	1	43
RTOR Reduction (vph)	0	0	0	0	7	0	0	15	0	0	0	37
Lane Group Flow (vph)	50	760	0	4	479	0	0	2	0	0	38	6
Confl. Peds. (#/hr)	7		7	7		7	2					2
Confl. Bikes (#/hr)			15			23						
Turn Type	Prot	NA		Prot	NA		Perm	NA		Perm	NA	Perm
Protected Phases	5	2		1	6			8			4	
Permitted Phases							8			4		4
Actuated Green, G (s)	7.3	110.3		1.4	104.4			21.6			21.6	21.6
Effective Green, g (s)	7.3	110.9		1.4	105.0			21.6			21.6	21.6
Actuated g/C Ratio	0.05	0.74		0.01	0.70			0.14			0.14	0.14
Clearance Time (s)	5.0	6.1		5.0	6.1			5.6			5.6	5.6
Vehicle Extension (s)	1.0	2.5		1.0	2.5			2.5			2.5	2.5
Lane Grp Cap (vph)	86	1371		16	2404			217			197	224
v/s Ratio Prot	c0.03	c0.41		0.00	0.14							
v/s Ratio Perm								0.00			c0.03	0.00
v/c Ratio	0.58	0.55		0.25	0.20			0.01			0.19	0.03
Uniform Delay, d1	69.9	8.6		73.8	7.8			55.0			56.5	55.2
Progression Factor	1.00	1.00		1.27	1.17			1.00			1.00	1.00
Incremental Delay, d2	6.3	1.6		2.9	0.2			0.0			0.3	0.0
Delay (s)	76.2	10.3		96.8	9.4			55.1			56.9	55.2
Level of Service	E	В		F	А			E			E	E
Approach Delay (s)		14.3			10.1			55.1			56.0	
Approach LOS		В			В			E			E	
Intersection Summary												
HCM 2000 Control Delay			15.8	H	CM 2000	Level of	Service		В			
HCM 2000 Volume to Capa	acity ratio		0.51									
Actuated Cycle Length (s)			150.0		um of los				16.1			
Intersection Capacity Utilization	ation		57.6%	IC	CU Level	of Service	;		В			
Analysis Period (min)			15									
c Critical Lane Group												

HCM Signalized Intersection Capacity Analysis 5: Maxine Avenue/85 SB Off-ramp & Homestead Road

	۶	-	\mathbf{r}	4	-	×.	1	1	1	1	ţ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		ef 👘		٦	<u></u>			\$		۳	et 🗧	
Traffic Volume (vph)	0	773	7	25	389	0	5	0	17	272	12	89
Future Volume (vph)	0	773	7	25	389	0	5	0	17	272	12	89
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		6.0		6.0	6.0			6.0		6.0	6.0	
Lane Util. Factor		1.00		1.00	0.95			1.00		1.00	1.00	
Frpb, ped/bikes		1.00		1.00	1.00			1.00		1.00	0.99	
Flpb, ped/bikes		1.00		1.00	1.00			1.00		1.00	1.00	
Frt		1.00		1.00	1.00			0.89		1.00	0.87	
Flt Protected		1.00		0.95	1.00			0.99		0.95	1.00	
Satd. Flow (prot)		1859		1770	3539			1648		1770	1594	
Flt Permitted		1.00		0.95	1.00			0.99		0.95	1.00	
Satd. Flow (perm)		1859		1770	3539			1648		1770	1594	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	0	840	8	27	423	0	5	0	18	296	13	97
RTOR Reduction (vph)	0	0	0	0	0	0	0	23	0	0	78	0
Lane Group Flow (vph)	0	848	0	27	423	0	0	0	0	296	32	0
Confl. Peds. (#/hr)	7		6	6		7	2					2
Confl. Bikes (#/hr)			17			27						
Turn Type		NA		Prot	NA		Split	NA		Split	NA	
Protected Phases		2		1	6		3	3		4	4	
Permitted Phases												
Actuated Green, G (s)		90.9		5.1	101.0			3.3		29.7	29.7	
Effective Green, g (s)		90.9		4.1	101.0			2.3		28.7	28.7	
Actuated g/C Ratio		0.61		0.03	0.67			0.02		0.19	0.19	
Clearance Time (s)		6.0		5.0	6.0			5.0		5.0	5.0	
Vehicle Extension (s)		5.0		3.0	5.0			3.0		3.0	3.0	
Lane Grp Cap (vph)		1126		48	2382			25		338	304	
v/s Ratio Prot		c0.46		c0.02	0.12			c0.00		c0.17	0.02	
v/s Ratio Perm												
v/c Ratio		0.75		0.56	0.18			0.01		0.88	0.10	
Uniform Delay, d1		21.4		72.1	9.1			72.7		58.9	50.0	
Progression Factor		0.74		1.00	0.75			1.00		1.00	1.00	
Incremental Delay, d2		4.2		14.2	0.2			0.2		21.5	0.2	
Delay (s)		20.1		86.1	7.0			73.0		80.4	50.2	
Level of Service		С		F	А			E		F	D	
Approach Delay (s)		20.1			11.7			73.0			72.2	
Approach LOS		С			В			E			E	
Intersection Summary												
HCM 2000 Control Delay			30.9	Н	CM 2000	Level of S	Service		С			
HCM 2000 Volume to Capacity	ratio		0.76									
Actuated Cycle Length (s)			150.0	S	um of los	t time (s)			24.0			
Intersection Capacity Utilization	۱		72.8%	IC	CU Level	of Service			С			
Analysis Period (min)			15									
c Critical Lano Group												

HCM Signalized Intersection Capacity Analysis 6: 85 NB On-ramp/Bernardo Avenue & Homestead Road

	1	۶	-	\mathbf{i}	∢	←	۰.	1	Ť	1	1	Ŧ
Movement	EBU	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT
Lane Configurations		<u> </u>	•		۲.	A⊅						र्स
Traffic Volume (vph)	1	40	957	0	64	363	43	0	0	0	55	5
Future Volume (vph)	1	40	957	0	64	363	43	0	0	0	55	5
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		5.0	5.5		5.0	5.5						5.5
Lane Util. Factor		1.00	1.00		1.00	0.95						1.00
Frpb, ped/bikes		1.00	1.00		1.00	0.99						1.00
Flpb, ped/bikes		0.99	1.00		1.00	1.00						1.00
Frt		1.00	1.00		1.00	0.98						1.00
Flt Protected		0.95	1.00		0.95	1.00						0.96
Satd. Flow (prot)		1743	1863		1770	3460						1781
Flt Permitted		0.50	1.00		0.95	1.00						0.96
Satd. Flow (perm)		919	1863		1770	3460						1781
Peak-hour factor, PHF	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Adj. Flow (vph)	1	43	1018	0.74	68	386	46	0.74	0.74	0.74	59	5
RTOR Reduction (vph)	0	0	0	0	0	7	0	0	0	0	0	0
Lane Group Flow (vph)	0	44	1018	0	68	, 425	0	0	0	0	0	64
Confl. Peds. (#/hr)	0	8	1010	5	5	720	8	U	U	U	2	
Confl. Bikes (#/hr)		0		13	5		21				2	
Turn Type	custom	Prot	NA	15	Prot	NA	21				Split	NA
Protected Phases	Cusion	1	6		5	2					3piit 4	4
Permitted Phases	1	I	0		5	Z					4	4
Actuated Green, G (s)	I	48.2	115.3		8.4	75.5						9.5
Effective Green, g (s)		48.2	115.9		8.4	76.1						9.5
Actuated g/C Ratio		40.Z 0.32	0.77		0.4	0.51						9.7 0.06
Clearance Time (s)		5.0	6.1		5.0	6.1						5.7
Vehicle Extension (s)		1.0	2.5		5.0 1.0	2.5						2.5
Lane Grp Cap (vph)		295	1439		99	1755						115
v/s Ratio Prot		0.05	c0.55		c0.04	0.12						c0.04
v/s Ratio Perm		0.05	0.71		0.40	0.04						0.57
v/c Ratio		0.15	0.71		0.69	0.24						0.56
Uniform Delay, d1		36.3	8.5		69.5	20.8						68.1
Progression Factor		0.83	0.59		1.31	0.77						1.00
Incremental Delay, d2		0.1	2.1		14.5	0.1						4.6
Delay (s)		30.1	7.2		105.6	15.9						72.7
Level of Service		С	А		F	В						E
Approach Delay (s)			8.2			28.1			0.0			69.7
Approach LOS			А			С			А			E
Intersection Summary												
HCM 2000 Control Delay			18.3	Н	CM 2000	Level of	Service		В			
HCM 2000 Volume to Cap	acity ratio		0.69									
Actuated Cycle Length (s)			150.0	S	um of los	t time (s)			16.0			
Intersection Capacity Utiliz	ation		69.0%		CU Level		2		С			
Analysis Period (min)			15									
c Critical Lane Group												

~

Movement	SBR
Lane Configurations	1
Traffic Volume (vph)	47
Future Volume (vph)	47
Ideal Flow (vphpl)	1900
Total Lost time (s)	5.5
Lane Util. Factor	1.00
Frpb, ped/bikes	1.00
Flpb, ped/bikes	1.00
Frt	0.85
Flt Protected	1.00
Satd. Flow (prot)	1583
Flt Permitted	1.00
Satd. Flow (perm)	1583
Peak-hour factor, PHF	0.94
Adj. Flow (vph)	50
RTOR Reduction (vph)	47
Lane Group Flow (vph)	3
Confl. Peds. (#/hr)	
Confl. Bikes (#/hr)	
Turn Type	Perm
Protected Phases	1 0111
Permitted Phases	4
Actuated Green, G (s)	9.5
Effective Green, g (s)	9.7
Actuated g/C Ratio	0.06
Clearance Time (s)	5.7
Vehicle Extension (s)	2.5
Lane Grp Cap (vph)	102
v/s Ratio Prot	102
v/s Ratio Perm	0.00
v/c Ratio	0.03
Uniform Delay, d1	65.7
Progression Factor	1.00
Incremental Delay, d2	0.1
Delay (s)	65.8
Level of Service	60.0 E
Approach Delay (s)	L
Approach LOS	
• •	
Intersection Summary	

	٦	+	*	*	ł	*	•	1	1	1	Ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	<u>۲</u>	≜ î≽		٦	A			ب	1		ب ا	1
Traffic Volume (vph)	30	953	23	12	425	38	6	3	12	41	11	38
Future Volume (vph)	30	953	23	12	425	38	6	3	12	41	11	38
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	2100	2100	1900	2100	2100
Total Lost time (s)	5.0	5.5		5.0	5.5			5.7	5.7		5.7	5.7
Lane Util. Factor	1.00	0.95		1.00	0.95			1.00	1.00		1.00	1.00
Frpb, ped/bikes	1.00	1.00		1.00	1.00			1.00	1.00		1.00	0.98
Flpb, ped/bikes	1.00	1.00		1.00	1.00			1.00	1.00		1.00	1.00
Frt	1.00	0.80		1.00	0.99			1.00	0.85		1.00	0.85
Flt Protected	0.95	1.00		0.95	1.00			0.97	1.00		0.96	1.00
Satd. Flow (prot)	1770	2817		1770	3479			1990	1750		1981	1716
Flt Permitted	0.95	1.00		0.95	1.00			0.81	1.00		0.77	1.00
Satd. Flow (perm)	1770	2817		1770	3479			500	1750		1577	1716
Peak-hour factor, PHF	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
Adj. Flow (vph)	32	1025	25	13	457	41	6	3	13	44	12	41
RTOR Reduction (vph)	0	1	0	0	3	0	0	0	12	0	0	38
Lane Group Flow (vph)	32	1049	0	13	495	0	0	9	1	0	56	3
Confl. Peds. (#/hr)	7		6	6		7	1					1
Confl. Bikes (#/hr)			22			22						2
Bus Blockages (#/hr)	0	2	2	0	0	0	0	0	0	0	0	0
Turn Type	Prot	NA		Prot	NA		Perm	NA	Perm	Perm	NA	Perm
Protected Phases	1	6		5	2			8			4	
Permitted Phases							8		8	4		4
Actuated Green, G (s)	5.0	118.6		3.2	116.8			11.4	11.4		11.4	11.4
Effective Green, g (s)	5.0	119.2		3.2	117.4			11.4	11.4		11.4	11.4
Actuated g/C Ratio	0.03	0.79		0.02	0.78			0.08	0.08		0.08	0.08
Clearance Time (s)	5.0	6.1		5.0	6.1			5.7	5.7		5.7	5.7
Vehicle Extension (s)	1.0	2.5		1.0	2.5			2.5	2.5		2.5	2.5
Lane Grp Cap (vph)	59	2238		37	2722			38	133		119	130
v/s Ratio Prot	c0.02	c0.37		0.01	0.14							
v/s Ratio Perm								0.02	0.00		c0.04	0.00
v/c Ratio	0.54	0.47		0.35	0.18			0.24	0.01		0.47	0.02
Uniform Delay, d1	71.4	5.0		72.4	4.1			65.2	64.1		66.4	64.2
Progression Factor	1.09	1.72		0.85	1.10			1.00	1.00		1.00	1.00
Incremental Delay, d2	4.0	0.5		1.9	0.1			2.3	0.0		2.1	0.1
Delay (s)	81.5	9.2		63.4	4.7			67.5	64.1		68.5	64.2
Level of Service	F	А		E	А			E	E		E	E
Approach Delay (s)		11.3			6.2			65.5			66.7	
Approach LOS		В			А			E			E	
Intersection Summary												
HCM 2000 Control Delay			13.6	Н	CM 2000	Level of	Service		В			
HCM 2000 Volume to Capa	acity ratio		0.48		2000	2010101	0011100					
Actuated Cycle Length (s)			150.0	S	um of los	t time (s)			16.2			
Intersection Capacity Utiliza	ation		54.2%			of Service	ż		10.2 A			
Analysis Period (min)			15						- A			
c Critical Lane Group			10									
e ontiour Eurio Group												

HCM Signalized Intersection Capacity Analysis 8: Mary Avenue & Homestead Road

	≯	+	*	4	Ļ	*	<	1	*	×	ţ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	<u>۲</u>	≜ †≱		<u>۲</u>	≜ †}		ሻ	ef 👘		ሻ	र्भ	1
Traffic Volume (vph)	54	946	5	14	424	165	4	8	11	425	11	93
Future Volume (vph)	54	946	5	14	424	165	4	8	11	425	11	93
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	5.5	5.5		5.5	5.5		5.6	5.6		5.5	5.5	5.5
Lane Util. Factor	1.00	0.95		1.00	0.95		1.00	1.00		0.95	0.95	1.00
Frpb, ped/bikes	1.00	1.00		1.00	0.98		1.00	0.98		1.00	1.00	0.98
Flpb, ped/bikes	1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00	1.00
Frt	1.00	1.00		1.00	0.96		1.00	0.91		1.00	1.00	0.85
Flt Protected	0.95	1.00		0.95	1.00		0.95	1.00		0.95	0.96	1.00
Satd. Flow (prot)	1770	3521		1770	3310		1770	1677		1681	1691	1552
Flt Permitted	0.95	1.00		0.95	1.00		0.95	1.00		0.95	0.96	1.00
Satd. Flow (perm)	1770	3521		1770	3310		1770	1677		1681	1691	1552
Peak-hour factor, PHF	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Adj. Flow (vph)	57	1006	5	15	451	176	4	9	12	452	12	99
RTOR Reduction (vph)	0	0	0	0	0	0	0	0	0	0	0	0
Lane Group Flow (vph)	57	1011	0	15	627	0	4	21	0	285	179	99
Confl. Peds. (#/hr)	11		12	12		11	3		7	7		3
Confl. Bikes (#/hr)			15			14			2			3
Bus Blockages (#/hr)	0	2	0	0	4	4	0	0	0	0	0	0
Turn Type	Prot	NA		Prot	NA		Split	NA		Split	NA	Perm
Protected Phases	1	6		5	2		3	3		4	4	
Permitted Phases												4
Actuated Green, G (s)	9.0	64.8		4.8	60.6		26.0	26.0		31.1	31.1	31.1
Effective Green, g (s)	9.0	65.4		4.8	61.2		26.0	26.0		31.7	31.7	31.7
Actuated g/C Ratio	0.06	0.44		0.03	0.41		0.17	0.17		0.21	0.21	0.21
Clearance Time (s)	5.5	6.1		5.5	6.1		5.6	5.6		6.1	6.1	6.1
Vehicle Extension (s)	1.0	2.5		1.0	2.5		1.0	1.0		2.5	2.5	2.5
Lane Grp Cap (vph)	106	1535		56	1350		306	290		355	357	327
v/s Ratio Prot	c0.03	c0.29		0.01	0.19		0.00	c0.01		c0.17	0.11	
v/s Ratio Perm												0.06
v/c Ratio	0.54	0.66		0.27	0.46		0.01	0.07		0.80	0.50	0.30
Uniform Delay, d1	68.5	33.5		70.9	32.4		51.4	51.9		56.2	52.2	49.8
Progression Factor	1.13	0.64		1.69	0.34		1.00	1.00		1.00	1.00	1.00
Incremental Delay, d2	2.4	2.0		0.9	1.1		0.0	0.0		12.0	0.8	0.4
Delay (s)	79.8	23.3		120.8	12.1		51.4	51.9		68.2	53.0	50.2
Level of Service	E	С		F	В		D	D		E	D	D
Approach Delay (s)		26.3			14.7			51.9			60.2	
Approach LOS		С			В			D			E	
Intersection Summary												
HCM 2000 Control Delay			31.7	Н	CM 2000	Level of	Service		С			
HCM 2000 Volume to Capa	acity ratio		0.58		2000	2010101	0011100					
Actuated Cycle Length (s)			150.0	S	um of los	t time (s)			22.1			
Intersection Capacity Utiliza	ation		72.1%			of Service			С			
Analysis Period (min)			15	10		2 2.1.50						
c Critical Lane Group												

	٦	-	*	•	ł	•	1	1	1	1	ţ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	<u>††</u>		ሻ	∱1 ≱						4	
Traffic Volume (vph)	22	1325	36	20	543	58	0	0	0	44	3	23
Future Volume (vph)	22	1325	36	20	543	58	0	0	0	44	3	23
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	5.0	5.5		5.0	5.5						5.6	
Lane Util. Factor	1.00	0.95		1.00	0.95						1.00	
Frpb, ped/bikes	1.00	1.00		1.00	0.99						0.99	
Flpb, ped/bikes	1.00	1.00		1.00	1.00						0.99	
Frt	1.00	1.00		1.00	0.99						0.96	
Flt Protected	0.95	1.00		0.95	1.00						0.97	
Satd. Flow (prot)	1770	3490		1770	3439						1700	
Flt Permitted	0.95	1.00		0.95	1.00						0.97	
Satd. Flow (perm)	1770	3490		1770	3439						1700	
Peak-hour factor, PHF	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91
Adj. Flow (vph)	24	1456	40	22	597	64	0	0	0	48	3	25
RTOR Reduction (vph)	0	1	0	0	4	0	0	0	0	0	12	0
Lane Group Flow (vph)	24	1495	0	22	657	0	0	0	0	0	64	0
Confl. Peds. (#/hr)	9		8	8		9	8		5	5		8
Confl. Bikes (#/hr)			19			16			4			1
Bus Blockages (#/hr)	0	4	0	0	4	0	0	0	0	0	0	0
Turn Type	Prot	NA		Prot	NA					Perm	NA	
Protected Phases	5	2		1	6						4	
Permitted Phases										4		
Actuated Green, G (s)	4.8	104.0		4.3	103.5						25.0	
Effective Green, g (s)	4.8	104.6		4.3	104.1						25.0	
Actuated g/C Ratio	0.03	0.70		0.03	0.69						0.17	
Clearance Time (s)	5.0	6.1		5.0	6.1						5.6	
Vehicle Extension (s)	1.0	2.5		1.0	2.5						2.5	
Lane Grp Cap (vph)	56	2433		50	2386						283	
v/s Ratio Prot	c0.01	c0.43		0.01	0.19							
v/s Ratio Perm											0.04	
v/c Ratio	0.43	0.61		0.44	0.28						0.23	
Uniform Delay, d1	71.3	12.0		71.7	8.7						54.1	
Progression Factor	1.09	0.52		0.90	1.53						1.00	
Incremental Delay, d2	1.5	0.9		1.9	0.2						0.3	
Delay (s)	79.4	7.2		66.7	13.5						54.4	
Level of Service	E	А		E	В						D	
Approach Delay (s)		8.3			15.2			0.0			54.4	
Approach LOS		А			В			А			D	
Intersection Summary												
HCM 2000 Control Delay			11.9	Н	CM 2000	Level of	Service		В			
HCM 2000 Volume to Capa	acity ratio		0.54	-	<i>.</i> .							
Actuated Cycle Length (s)			150.0		um of los				16.1			
Intersection Capacity Utiliz	ation		60.3%	IC	U Level	of Service	;		В			
Analysis Period (min)			15									
c Critical Lane Group												

HCM Signalized Intersection Capacity Analysis
10: Stelling Road/Hollenbeck Avenue & Homestead Road

	٦	-	\mathbf{i}	4	+	•	1	1	1	1	ţ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	∱ î≽		ሻ	∱1 ≱		ሻሻ	∱ }		ሻ	∱ }	
Traffic Volume (vph)	74	845	407	219	423	176	217	314	259	212	535	58
Future Volume (vph)	74	845	407	219	423	176	217	314	259	212	535	58
Ideal Flow (vphpl)	1900	2100	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	5.0	5.5		5.0	5.5		5.0	5.1		5.0	5.1	
Lane Util. Factor	1.00	0.95		1.00	0.95		0.97	0.95		1.00	0.95	
Frpb, ped/bikes	1.00	0.98		1.00	0.98		1.00	0.97		1.00	0.99	
Flpb, ped/bikes	1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00	
Frt	1.00	0.95		1.00	0.96		1.00	0.93		1.00	0.99	
Flt Protected	0.95	1.00		0.95	1.00		0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1770	3643		1770	3326		3433	3188		1770	3467	
Flt Permitted	0.95	1.00		0.95	1.00		0.95	1.00		0.95	1.00	
Satd. Flow (perm)	1770	3643		1770	3326		3433	3188		1770	3467	
Peak-hour factor, PHF	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Adj. Flow (vph)	79	899	433	233	450	187	231	334	276	226	569	62
RTOR Reduction (vph)	0	37	0	0	28	0	0	103	0	0	6	0
Lane Group Flow (vph)	79	1295	0	233	609	0	231	507	0	226	625	0
Confl. Peds. (#/hr)	23		31	31		23	29		37	37		29
Confl. Bikes (#/hr)			18			14			13			12
Turn Type	Prot	NA		Prot	NA		Prot	NA		Prot	NA	
Protected Phases	5	2		1	6		3	8		7	4	
Permitted Phases												
Actuated Green, G (s)	11.4	56.5		21.2	66.3		12.7	30.2		20.3	37.8	
Effective Green, g (s)	11.4	57.1		21.2	66.9		12.7	30.8		20.3	38.4	
Actuated g/C Ratio	0.08	0.38		0.14	0.45		0.08	0.21		0.14	0.26	
Clearance Time (s)	5.0	6.1		5.0	6.1		5.0	5.7		5.0	5.7	
Vehicle Extension (s)	1.0	2.5		1.0	2.5		1.0	2.5		1.0	2.5	
Lane Grp Cap (vph)	134	1386		250	1483		290	654		239	887	
v/s Ratio Prot	0.04	c0.36		c0.13	0.18		0.07	c0.16		c0.13	0.18	
v/s Ratio Perm												
v/c Ratio	0.59	0.93		0.93	0.41		0.80	0.77		0.95	0.70	
Uniform Delay, d1	67.0	44.6		63.7	28.2		67.4	56.3		64.3	50.7	
Progression Factor	1.05	1.01		1.00	1.00		1.00	1.00		1.00	1.00	
Incremental Delay, d2	3.4	10.9		38.3	0.8		13.2	5.5		42.6	2.4	
Delay (s)	73.6	56.0		102.0	29.0		80.6	61.8		106.9	53.0	
Level of Service	E	E		F	С		F	E		F	D	
Approach Delay (s)		57.0			48.6			67.0			67.2	
Approach LOS		E			D			E			E	
Intersection Summary												
HCM 2000 Control Delay			59.5	Н	CM 2000	Level of	Service		E			
HCM 2000 Volume to Capa	city ratio		0.90		2000				_			
Actuated Cycle Length (s)			150.0	S	um of los	t time (s)			20.6			
Intersection Capacity Utiliza	ation		100.5%			of Service			G			
Analysis Period (min)			15		5 20101				0			
c Critical Lane Group												

Lane Configurations Image of the second		۶	-	\mathbf{F}	∢	←	•	1	t	۲	5	Ļ	~
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Traffic Volume (vph) 16 52 34 458 22 489 15 1228 252 213 587 1 Future Volume (vph) 16 52 34 458 22 489 15 1228 252 213 587 1 Ideal Flow (vphp) 1900 100 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	Lane Configurations		र्भ	1	ሻ	र्भ	1	ሻ	- † †	1	ሻ	- † †	1
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		16			458	22	489		1228	252	213	587	19
$\begin{array}{c c c c c c c c c c c c c c c c c c c $													19
Lane Util. Factor1.001.000.950.951.001.000.951.001.000.951.00Frpb, ped/bikes1.000.000.001.001.000.001.001.000.001.001.000.00Flpb, ped/bikes1.000.001.001.001.001.001.001.001.001.001.001.001.000.00FltProtected0.991.000.950.961.000.951.001.000.951.001.000.95Satd. Flow (prot)1841147216811693155817703539153317703539154Peak-hour factor, PHF0.960.960.960.960.960.960.960.960.960.960.960.96Adj. Flow (prh)175435477235091.612792622226111.0Confl. Bikes (#hr)2332111.61.01.01.01.0Confl. Bikes (#hr)2332.832.83.456.956.924.077.777.Actuated Green, G (s)15.315.332.832.832.83.456.956.924.077.777.Actuated Green, G (s)15.315.332.832.83.456.956.924.077.777.Actuated Green, G (s)15.315		1900											1900
Frpb, ped/bikes 1.00 0.93 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 1.00 0.95 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00													5.8
Fipb, ped/bikes1.001.0													1.00
Fri1.000.851.001.000.851.001.000.851.001.000.85Fil Protected0.991.000.950.961.000.951.001.000.951.001.00Satd. Flow (port)1841147216811693155817703539153317703539154Fil Permitted0.990.000.950.000.951.000.951.000.951.001.000.95Satd. Flow (perm)1841147216811693155817703539153317703539154Peak-hour factor, PHF0.960.960.960.960.960.960.960.960.960.960.960.96Adj. Flow (vph)1.75435477235091612792622226112Confl. Bikes (#/hr)233221111612791382226111Confl. Bikes (#/hr)233211612791382226111Protected Phases44335216777Actuated Green, G (s)15.315.332.832.834.856.956.924.077.77777.7Actuated g/C Ratio0.100.100.020.220.220.220.220.23 </td <td></td> <td>0.98</td>													0.98
Fit Protected 0.99 1.00 0.95 0.96 1.00 0.95 1.00 1.00 0.95 1.00 1.00 Satd. Flow (prot) 1841 1472 1681 1693 1558 1770 3539 1533 1770 3539 1543 Fit Permitted 0.99 1.00 0.95 0.96 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 1.00 0.95 1.00 1.00 1.00 0.95 1.00 1.00 1.00 1.00 0.95 1.00 </td <td></td> <td>1.00</td>													1.00
Satd. Flow (prot) 1841 1472 1681 1693 1558 1770 3539 1533 1770 3539 1543 Flt Permitted 0.99 1.00 0.95 0.96 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 1.00 0.95 1.00 1.00 1.00 0.95 1.00													0.85
Fit Permitted 0.99 1.00 0.95 0.96 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 1.00 0.95 1.00 </td <td></td> <td>1.00</td>													1.00
Satd. Flow (perm)1841147216811693155817703539153317703539154Peak-hour factor, PHF0.960.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.970.960.960.960.950.													1549
Peak-hour factor, PHF0.960.9700112111													1.00
Adj. Flow (vph) 17 54 35 477 23 509 16 1279 262 222 611 22 RTOR Reduction (vph) 0 0 31 0 0 398 0 0 125 0 0 1 Lane Group Flow (vph) 0 71 4 248 252 111 16 1279 138 222 611 1 Confl. Peds. (#/hr) 2 3 3 2 1 16 1279 138 222 611 1 Confl. Bikes (#/hr) 2 3 3 2 1 6 6 6 6 6 6 6 6 6 6 7 <													1549
RTOR Reduction (vph) 0 0 31 0 0 398 0 0 125 0 0 1 Lane Group Flow (vph) 0 71 4 248 252 111 16 1279 138 222 611 1 Confl. Peds. (#/hr) 2 3 3 2 1 12 12 Turn Type Split NA Perm Prot NA Perm NA Salas 32.8 32.8 32.8 32.4 56.9 56.9 24.0 77.7 77.7 77.7													0.96
Lane Group Flow (vph) 0 71 4 248 252 111 16 1279 138 222 611 1 Confl. Peds. (#/hr) 2 3 3 2 1 12 12 12 Turn Type Split NA Perm Split NA Perm Prot NA Perm Perm Prot NA Perm Prot NA Perm Prot NA Perm Perm Prot NA Perm Perm Prot NA Perm Prot NA Perm Perm Prot NA Prot <td></td> <td>20</td>													20
Confl. Peds. (#/hr) 2 3 3 2 Confl. Bikes (#/hr) 25 1 12 Turn Type Split NA Perm Split NA Perm Prot NA Perm Prot NA Perm Prot NA Perm Prot NA Perm Protected Phases 4 4 3 3 5 2 1 6 Permitted Phases 4 3 3 5 2 1 6 Permitted Phases 4 3 3 5 2 1 6 Actuated Green, G (s) 15.3 15.3 32.8 32.8 3.4 56.9 56.9 24.0 77.7 77.7 Actuated g/C Ratio 0.10 0.10 0.22 0.22 0.02 0.38 0.38 0.16 0.52 0.5 Clearance Time (s) 5.2 5.2 5.1 5.1 5.1 4.7 5.8 5.8 4.9													10
Confl. Bikes (#/hr)25112Turn TypeSplitNAPermSplitNAPermProtNAPermProtNAPermProtected Phases44335216Permitted Phases4335216Permitted Phases4332.832.832.83.456.956.924.077.777.7Effective Green, g (s)15.315.332.832.832.83.456.956.924.077.777.7Actuated g/C Ratio0.100.100.220.220.020.380.380.160.520.5Clearance Time (s)5.25.25.15.15.14.75.85.84.95.85Vehicle Extension (s)4.04.04.04.04.04.04.04.04.04.04.04.04.0V's Ratio Protc0.040.15c0.150.01c0.36c0.130.170.070.090.07V's Ratio Perm0.380.020.680.680.330.400.950.240.780.330.0Uniform Delay, d162.960.653.753.849.372.345.331.760.521.117.Progression Factor1.001.001.001.001.001.001.001.001.001.00Incr			71			252		16	1279	138	222	611	10
Turn Type Split NA Perm Split NA Perm Prot NA Perm NA Perm NA Perm		2			3								
Protected Phases 4 4 3 3 5 2 1 6 Permitted Phases 4 3 3 5 2 1 6 Actuated Green, G (s) 15.3 15.3 32.8 32.8 32.8 3.4 56.9 56.9 24.0 77.7 77.7 Effective Green, g (s) 15.3 15.3 32.8 32.8 32.8 3.4 56.9 56.9 24.0 77.7 77.7 Actuated g/C Ratio 0.10 0.10 0.22 0.22 0.02 0.38 0.38 0.16 0.52 0.5 Clearance Time (s) 5.2 5.2 5.1 5.1 4.7 5.8 5.8 4.9 5.8 5.9 Vehicle Extension (s) 4.0 4.0 4.0 4.0 3.0 4.0 4.0 4.0 3.0 4.0 4.0 4.0 4.0 3.0 4.0 4.0 4.0 4.0 3.0 4.0 4.0 4.0 4.0 3.0 4.0 4.0 4.0 4.0 4.0 3.0 4.0 </td <td>Confl. Bikes (#/hr)</td> <td></td> <td></td> <td>25</td> <td></td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>2</td>	Confl. Bikes (#/hr)			25			1						2
Permitted Phases 4 3 2 Actuated Green, G (s) 15.3 15.3 32.8 32.8 32.8 34 56.9 56.9 24.0 77.7 77.7 Effective Green, g (s) 15.3 15.3 32.8 32.8 32.8 34. 56.9 56.9 24.0 77.7 77.7 Actuated g/C Ratio 0.10 0.10 0.22 0.22 0.22 0.02 0.38 0.38 0.16 0.52 0.52 Clearance Time (s) 5.2 5.2 5.1 5.1 4.7 5.8 5.8 4.9 5.8 5.7 Vehicle Extension (s) 4.0 4.0 4.0 4.0 3.0 4.0 4.0 4.0 Lane Grp Cap (vph) 187 150 367 370 340 40 1342 581 283 1833 80 v/s Ratio Perm 0.00 0.07 0.09 0.00 0.07 0.09 0.00 0.00 V/c Ratio		Split	NA	Perm	Split	NA	Perm	Prot	NA	Perm	Prot	NA	Perm
Actuated Green, G (s)15.315.332.832.832.832.834.56.956.924.077.777.7Effective Green, g (s)15.315.332.832.832.832.834.56.956.924.077.777.7Actuated g/C Ratio0.100.100.220.220.220.020.380.380.160.520.52Clearance Time (s)5.25.25.15.14.75.85.84.95.85.9Vehicle Extension (s)4.04.04.04.03.04.04.04.04.03.04.04.0Lane Grp Cap (vph)187150367370340401342581283183380v/s Ratio Prot $c0.04$ 0.15 $c0.15$ 0.01 $c0.36$ $c0.13$ 0.17 $c0.36$ $c0.13$ 0.17v/s Ratio Perm0.000.070.090.00.00.00.00.00.00.00.0v/c Ratio0.380.020.680.680.330.400.950.240.780.330.0Uniform Delay, d162.960.653.753.849.372.345.331.760.521.117.Progression Factor1.001.001.001.001.001.001.001.001.001.001.001.00Incremental Delay, d21.80.15.35.5	Protected Phases	4	4		3	3		5	2		1	6	
Effective Green, g (s)15.315.332.832.832.832.83.456.956.924.077.777.7Actuated g/C Ratio0.100.100.220.220.220.020.380.380.160.520.5Clearance Time (s)5.25.25.15.15.14.75.85.84.95.85.9Vehicle Extension (s)4.04.04.04.04.03.04.04.04.0Lane Grp Cap (vph)187150367370340401342581283183380v/s Ratio Protc0.040.15c0.150.01c0.36c0.130.170.17v/s Ratio Perm0.000.070.090.00v/c Ratio0.380.020.680.680.330.400.950.240.780.330.00Uniform Delay, d162.960.653.753.849.372.345.331.760.521.117.0Progression Factor1.001.001.001.001.001.001.001.001.001.00Incremental Delay, d21.80.15.35.50.86.415.61.013.30.10.0Delay (s)64.760.759.059.350.178.760.932.773.821.217.1Level of ServiceEEEDECE <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>6</td></t<>													6
Actuated g/C Ratio0.100.100.220.220.220.020.380.380.160.520.52Clearance Time (s)5.25.25.15.15.14.75.85.84.95.85.9Vehicle Extension (s)4.04.04.04.04.03.04.04.03.04.04.04.0Lane Grp Cap (vph)187150367370340401342581283183380v/s Ratio Protc0.040.15c0.150.01c0.36c0.130.170.090.0v/s Ratio Perm0.000.070.090.000.070.090.0v/c Ratio0.380.020.680.680.330.400.950.240.780.330.0Uniform Delay, d162.960.653.753.849.372.345.331.760.521.117.Progression Factor1.001.001.001.001.001.001.001.001.001.001.00Incremental Delay, d21.80.15.35.50.86.415.61.013.30.10.0Delay (s)64.760.759.059.350.178.760.932.773.821.217.Level of ServiceEEEDECECApproach Delay (s)34.834.8													77.7
Clearance Time (s) 5.2 5.2 5.1 5.1 5.1 4.7 5.8 5.8 4.9 5.8 5.7 Vehicle Extension (s) 4.0 4.0 4.0 4.0 4.0 3.0 4.0 4.0 3.0 4.0 4.0 4.0 3.0 4.0 <td></td> <td>77.7</td>													77.7
Vehicle Extension (s) 4.0 4.0 4.0 4.0 4.0 3.0 4.0 4.0 3.0 4.0 1.0 1.00 1.00 1.00 1.00 <td></td> <td>0.52</td>													0.52
Lane Grp Cap (vph)187150367370340401342581283183380v/s Ratio Protc0.040.15c0.150.01c0.36c0.130.17v/s Ratio Perm0.000.070.090.0v/c Ratio0.380.020.680.680.330.400.950.240.780.330.0Uniform Delay, d162.960.653.753.849.372.345.331.760.521.117.Progression Factor1.001.001.001.001.001.001.001.001.001.00Incremental Delay, d21.80.15.35.50.86.415.61.013.30.10.1Delay (s)64.760.759.059.350.178.760.932.773.821.217.Level of ServiceEEEDECECApproach Delay (s)34.8					5.1					5.8			5.8
v/s Ratio Prot c0.04 0.15 c0.15 0.01 c0.36 c0.13 0.17 v/s Ratio Perm 0.00 0.07 0.09 0.00 v/c Ratio 0.38 0.02 0.68 0.68 0.33 0.40 0.95 0.24 0.78 0.33 0.00 V/c Ratio 0.38 0.02 0.68 0.68 0.33 0.40 0.95 0.24 0.78 0.33 0.00 Uniform Delay, d1 62.9 60.6 53.7 53.8 49.3 72.3 45.3 31.7 60.5 21.1 17.7 Progression Factor 1.00 <th< td=""><td>Vehicle Extension (s)</td><td></td><td>4.0</td><td></td><td>4.0</td><td></td><td>4.0</td><td></td><td>4.0</td><td>4.0</td><td></td><td>4.0</td><td>4.0</td></th<>	Vehicle Extension (s)		4.0		4.0		4.0		4.0	4.0		4.0	4.0
v/s Ratio Perm 0.00 0.07 0.09 0.0 v/c Ratio 0.38 0.02 0.68 0.68 0.33 0.40 0.95 0.24 0.78 0.33 0.00 Uniform Delay, d1 62.9 60.6 53.7 53.8 49.3 72.3 45.3 31.7 60.5 21.1 17.7 Progression Factor 1.00 <	Lane Grp Cap (vph)		187	150	367	370	340	40		581	283	1833	802
v/c Ratio0.380.020.680.680.330.400.950.240.780.330.00Uniform Delay, d162.960.653.753.849.372.345.331.760.521.117.7Progression Factor1.001.001.001.001.001.001.001.001.001.001.001.00Incremental Delay, d21.80.15.35.50.86.415.61.013.30.10.0Delay (s)64.760.759.059.350.178.760.932.773.821.217.4Level of ServiceEEEDECECApproach Delay (s)63.454.656.334.8	v/s Ratio Prot		c0.04		0.15	c0.15		0.01	c0.36		c0.13	0.17	
Uniform Delay, d162.960.653.753.849.372.345.331.760.521.117.7Progression Factor1.00<	v/s Ratio Perm			0.00			0.07			0.09			0.01
Progression Factor 1.00 1	v/c Ratio			0.02				0.40			0.78		0.01
Incremental Delay, d2 1.8 0.1 5.3 5.5 0.8 6.4 15.6 1.0 13.3 0.1 0.1 Delay (s) 64.7 60.7 59.0 59.3 50.1 78.7 60.9 32.7 73.8 21.2 17.1 Level of Service E E E D E C E C Approach Delay (s) 63.4 54.6 56.3 34.8 34.8 34.8													17.5
Delay (s) 64.7 60.7 59.0 59.3 50.1 78.7 60.9 32.7 73.8 21.2 17.7 Level of Service E E E D E E C E C Approach Delay (s) 63.4 54.6 56.3 34.8													1.00
Level of ServiceEEEEDECECApproach Delay (s)63.454.656.334.8	Incremental Delay, d2			0.1					15.6				0.0
Approach Delay (s) 63.4 54.6 56.3 34.8	Delay (s)			60.7	59.0	59.3	50.1	78.7	60.9		73.8		17.6
	Level of Service			E	E		D	E		С	E		В
Approach LOS E D E C													
	Approach LOS		E			D			E			С	
Intersection Summary													
HCM 2000 Control Delay 50.8 HCM 2000 Level of Service D	<u>,</u>				Н	CM 2000	Level of S	Service		D			
HCM 2000 Volume to Capacity ratio 0.78		city ratio											
Actuated Cycle Length (s)150.0Sum of lost time (s)21.0	3									21.0			
Intersection Capacity Utilization 87.1% ICU Level of Service E		tion			IC	CU Level	of Service			E			
Analysis Period (min) 15	Analysis Period (min)			15									

	≯	-	+	•	1	
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		•	•	1	5	1
Traffic Volume (veh/h)	0	517	934	133	87	31
Future Volume (Veh/h)	0	517	934	133	87	31
Sign Control		Free	Free		Stop	
Grade		0%	0%		0%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	0	562	1015	145	95	34
Pedestrians		1			4	
Lane Width (ft)		12.0			12.0	
Walking Speed (ft/s)		4.0			4.0	
Percent Blockage		0			0	
Right turn flare (veh)						7
Median type		Raised	None			
Median storage veh)		2				
Upstream signal (ft)		171				
pX, platoon unblocked					0.97	
vC, conflicting volume	1164				1581	1020
vC1, stage 1 conf vol					1019	
vC2, stage 2 conf vol					562	
vCu, unblocked vol	1164				1583	1020
tC, single (s)	4.1				6.4	6.2
tC, 2 stage (s)					5.4	
tF (s)	2.2				3.5	3.3
p0 queue free %	100				69	88
cM capacity (veh/h)	598				306	286
Direction, Lane #	EB 1	WB 1	WB 2	SB 1		
Volume Total	562	1015	145	129		
Volume Left	0	0	0	95		
Volume Right	0	0	145	34		
cSH	1700	1700	1700	415		
Volume to Capacity	0.33	0.60	0.09	0.31		
Queue Length 95th (ft)	0	0	0	33		
Control Delay (s)	0.0	0.0	0.0	21.3		
Lane LOS				С		
Approach Delay (s)	0.0	0.0		21.3		
Approach LOS				С		
Intersection Summary						
Average Delay			1.5			
Intersection Capacity Utilization	on		60.9%	IC	U Level o	of Service
Analysis Period (min)			15			

	٦	-	$\mathbf{\hat{z}}$	∢	←	•	٠	Ť	1	1	Ļ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	<u>۲</u>	€Î,		ሻ	ef 👘			4			4	
Traffic Volume (veh/h)	28	547	11	14	892	36	28	3	53	54	0	55
Future Volume (Veh/h)	28	547	11	14	892	36	28	3	53	54	0	55
Sign Control		Free			Free			Stop			Stop	
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
Hourly flow rate (vph)	30	588	12	15	959	39	30	3	57	58	0	59
Pedestrians		1			41			34			9	
Lane Width (ft)		12.0			12.0			12.0			12.0	
Walking Speed (ft/s)		4.0			4.0			4.0			4.0	
Percent Blockage		0			3			3			1	
Right turn flare (veh)												
Median type		None			None							
Median storage veh)												
Upstream signal (ft)		1198			1012							
pX, platoon unblocked	0.67						0.67	0.67		0.67	0.67	0.67
vC, conflicting volume	1007			634			1737	1725	669	1765	1712	988
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	762			634			1855	1837	669	1897	1816	735
tC, single (s)	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
tC, 2 stage (s)												
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free %	95			98			0	93	87	0	100	79
cM capacity (veh/h)	564			922			27	45	429	26	47	278
Direction, Lane #	EB 1	EB 2	WB 1	WB 2	NB 1	SB 1						
Volume Total	30	600	15	998	90	117						
Volume Left	30	0	15	0	30	58						
Volume Right	0	12	0	39	57	59						
cSH	564	1700	922	1700	68	47						
Volume to Capacity	0.05	0.35	0.02	0.59	1.32	2.47						
Queue Length 95th (ft)	4	0	1	0	184	307						
Control Delay (s)	11.7	0.0	9.0	0.0	322.7	850.4						
Lane LOS	В		А		F	F						
Approach Delay (s)	0.6		0.1		322.7	850.4						
Approach LOS					F	F						
Intersection Summary												
Average Delay			69.7									
Intersection Capacity Utilization	ation		67.7%	IC	CU Level	of Service			С			
Analysis Period (min)			15									

	٦	-	$\mathbf{\hat{z}}$	∢	←	•	1	Ť	1	1	Ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	۲	el el		۲	∱ ⊅			\$			र्स	1
Traffic Volume (vph)	70	594	3	2	854	209	24	12	11	123	10	88
Future Volume (vph)	70	594	3	2	854	209	24	12	11	123	10	88
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	5.0	5.5		5.0	5.5			5.6			5.6	5.6
Lane Util. Factor	1.00	1.00		1.00	0.95			1.00			1.00	1.00
Frpb, ped/bikes	1.00	1.00		1.00	0.98			0.99			1.00	0.92
Flpb, ped/bikes	1.00	1.00		1.00	1.00			0.97			0.97	1.00
Frt	1.00	1.00		1.00	0.97			0.97			1.00	0.85
Flt Protected	0.95	1.00		0.95	1.00			0.97			0.96	1.00
Satd. Flow (prot)	1770	1860		1770	3350			1692			1730	1457
Flt Permitted	0.95	1.00		0.95	1.00			0.79			0.74	1.00
Satd. Flow (perm)	1770	1860		1770	3350			1374			1333	1457
Peak-hour factor, PHF	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83
Adj. Flow (vph)	84	716	4	2	1029	252	29	14	13	148	12	106
RTOR Reduction (vph)	0	0	0	0	14	0	0	9	0	0	0	58
Lane Group Flow (vph)	84	720	0	2	1267	0	0	47	0	0	160	48
Confl. Peds. (#/hr)	33		18	18		33	48		14	14		48
Confl. Bikes (#/hr)			114			10						
Turn Type	Prot	NA		Prot	NA		Perm	NA		Perm	NA	Perm
Protected Phases	5	2		1	6			8			4	
Permitted Phases							8			4		4
Actuated Green, G (s)	10.2	87.5		1.4	78.7			24.4			24.4	24.4
Effective Green, g (s)	10.2	88.1		1.4	79.3			24.4			24.4	24.4
Actuated g/C Ratio	0.08	0.68		0.01	0.61			0.19			0.19	0.19
Clearance Time (s)	5.0	6.1		5.0	6.1			5.6			5.6	5.6
Vehicle Extension (s)	1.0	2.5		1.0	2.5			2.5			2.5	2.5
Lane Grp Cap (vph)	138	1260		19	2043			257			250	273
v/s Ratio Prot	c0.05	0.39		0.00	c0.38							
v/s Ratio Perm								0.03			c0.12	0.03
v/c Ratio	0.61	0.57		0.11	0.62			0.18			0.64	0.17
Uniform Delay, d1	58.0	11.0		63.7	15.9			44.4			48.7	44.3
Progression Factor	1.00	1.00		1.38	0.24			1.00			1.00	1.00
Incremental Delay, d2	5.1	1.9		0.8	1.3			0.3			4.9	0.2
Delay (s)	63.1	12.9		88.7	5.1			44.7			53.6	44.6
Level of Service	E	В		F	А			D			D	D
Approach Delay (s)		18.1			5.2			44.7			50.0	
Approach LOS		В			А			D			D	
Intersection Summary												
HCM 2000 Control Delay			15.4	Н	CM 2000	Level of	Service		В			
HCM 2000 Volume to Capa	acity ratio		0.62									
Actuated Cycle Length (s)			130.0	S	um of lost	time (s)			16.1			
Intersection Capacity Utilization	ation		76.7%	IC	CU Level o	of Service	1		D			
Analysis Period (min)			15									
a Cultinal Laws Custom												

Lane Configurations ↑ ↑ ↑ ↓		۶	+	\mathbf{r}	4	Ļ	•	~	1	1	×	ţ	~
Traffic Volume (vph) 0 720 3 10 916 0 4 0 30 147 12 143 Future Volume (vph) 0 720 3 10 916 0 4 0 30 147 12 143 Future Volume (vph) 00 1900 100 100 180 110 100 130 117 116 10 116 10 11	Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Fulure Volume (vph) 0 720 3 10 916 0 4 0 30 147 2 143 ideal Flow (vphp) 1900	Lane Configurations				٦				4			ef 👘	
Ideal Flow (vph) 1900													
Total Lost time (s) 6.0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.85 1.00 0.85 1.00 0.85 1.00 0.85 1.00 0.85 1.00 0.85 1.00 0.87 0.78													
Lane Util. Factor 1.00 1.00 0.95 1.00 1.00 1.00 Frip, pedfikes 1.00 1.00 1.00 1.00 1.00 1.00 0.97 Fith 1.00 1.00 1.00 0.00 0.00 0.00 0.07 Fith 1.00 1.00 1.00 0.00 0.88 1.00 0.05 Stad. Flow (prol) 1.860 1.770 3539 1.631 1.770 1546 FIP protected 1.00 0.95 1.00 0.99 0.95 1.00 Stad. Flow (prol) 1.860 1.770 3539 1.631 1.770 1546 FIP predictor (ph) 0 9.78 0.78	· · · · ·	1900		1900			1900	1900		1900			1900
Frpb, ped/bikes 1.00 1.00 1.00 1.00 1.00 0.00 0.00 1.0													
Fipb, ped/bikes 1.00													
Fri 1.00 1.00 1.00 0.08 1.00 0.88 1.00 0.85 FIP Protected 1.00 0.95 1.00 0.99 0.95 1.00 Stid. Flow (port) 1860 1.770 3539 1631 1.770 1546 FIP Premitted 1.00 0.95 1.00 0.99 0.95 1.00 Sald. Flow (perm) 1860 1.770 3539 1631 1.770 1546 Peak-hour factor, PHF 0.78													
Fit Protected 1.00 0.95 1.00 0.99 0.95 1.00 Satd. Flow (prot) 1860 1770 3539 1631 1770 1546 Fit Permitted 1.00 0.95 1.00 0.99 0.95 1.00 Satd. Flow (perm) 1860 1770 3539 1631 1770 1546 Peak-hour factor, PHF 0.78 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>													
Satd. Flow (prol) 1860 1770 3539 1631 1770 1546 FIP Permitted 1.00 0.95 1.00 0.99 0.95 1.00 Satd. Flow (perm) 1860 1770 3539 1631 1770 1546 Peak-hour factor, PHF 0.78 </td <td></td>													
Fit Permitted 1.00 0.95 1.00 0.99 0.95 1.00 Satd. Flow (perm) 1860 1770 3539 1.631 1770 1546 Peak-hour factor, PHF 0.78 <													
Satd. Flow (perm) 1860 1770 3539 1631 1770 1546 Peak-hour factor, PHF 0.78 0.79 0 137 10 10 188 35 0 0 0.61 100 180 180 180 180 180 180 180 180 180 180 180 180 18													
Peak-hour factor, PHF 0.78 0.79 0.70 0.03 0.14 0.14 Clea													
Adj. Flow (vph) 0 923 4 13 1174 0 5 0 38 188 3 183 RTOR Reduction (vph) 0 0 0 0 0 0 0 0 120 0 151 0 Lane Group Flow (vph) 0 927 0 13 1174 0 0 1 0 188 35 0 Confl. Pedix (#/hr) 52 17 17 752 10 10 188 35 0 Confl. Bikes (#/hr) 137 11 11 11 10 184 4 10 10 184 11 10 10 11 10 10 10 10 11 10 11 10 10 10 10 10 10 10 10 10 10 10 10 10 11 10 10 10 10 10 10 10 11 11 10 10 10 10 10 10 10 10 10 10													
RTOR Reduction (vph) 0 0 0 0 0 42 0 0 151 0 Lane Group Flow (vph) 0 927 0 13 1174 0 0 1 0 188 35 0 Confl. Bleds. (#hr) 52 17 17 52 10 10 188 35 0 Confl. Bless (#hr) 52 17 17 52 10 10 10 10 Turn Type NA Prot NA Split NA Split NA Permitted Phases 2 1 6 3 3 4 4 Permitted Phases 2 0.06 3.4 18.0 18.0 18.0 Actuated Green, G (s) 82.6 2.0 90.6 3.4 18.0 18.0 Actuated g/C Ratio 0.64 0.02 0.70 0.03 0.14 0.14 Clearance Time (s) 5.0 3.0 5.0	-	0.78											
Lane Group Flow (vph) 0 927 0 13 1174 0 0 188 35 0 Confl. Peds. (#/hr) 52 17 17 52 10 10 Confl. Bikes (#/hr) 137 11 11 11 10 Turn Type NA Prot NA Split NA Split NA Protected Phases 2 1 6 3 3 4 4 Permited Phases													
Confl. Peds. (#/ht) 52 17 17 52 10 10 Confl. Bikes (#/hr) 137 11													
Confl. Bikes (#/hr) 137 11 Turn Type NA Prot NA Split NA Split NA Protected Phases 2 1 6 3 3 4 4 Permitted Phases 2 1 6 3 3 4 4 Permitted Phases Actuated Green, G (s) 82.6 3.0 90.6 4.4 19.0 19.0 Effective Green, g (s) 82.6 2.0 90.6 3.4 18.0 18.0 Actuated g/C Ratio 0.64 0.02 0.70 0.03 0.14 0.14 Clearance Time (s) 6.0 5.0 6.0 5.0 5.0 3.0 2.1 Vehicle Extension (s) 5.0 3.0 5.0 3.0 3.0 3.0 Lane Grp Cap (vph) 1181 2.7 2466 42 245 214 V/s Ratio Perm V/s Ratio Perm 10.0 1.00 1.00 Inc			927			1174			1	0	188	35	
Turn Type NA Prot NA Split NA Split NA Protected Phases 2 1 6 3 3 4 4 Permitted Phases		52			17			10					10
Protected Phases 2 1 6 3 3 4 4 Permitted Phases Actuated Green, G (s) 82.6 3.0 90.6 4.4 19.0 19.0 Effective Green, g (s) 82.6 2.0 90.6 3.4 18.0 18.0 Actuated g/C Ratio 0.64 0.02 0.70 0.03 0.14 0.14 Clearance Time (s) 6.0 5.0 6.0 5.0 5.0 3.0 3.0 3.0 Lane Grp Cap (vph) 1181 27 2466 42 245 214 v/s Ratio Prot c0.50 0.01 c0.33 c0.00 c0.11 0.02 v/s Ratio Perm				137			11						
Permitted Phases Actuated Green, G (s) 82.6 3.0 90.6 4.4 19.0 19.0 Effective Green, g (s) 82.6 2.0 90.6 3.4 18.0 18.0 Actuated g/C Ratio 0.64 0.02 0.70 0.03 0.14 0.14 Clearance Time (s) 6.0 5.0 6.0 5.0 5.0 Vehicle Extension (s) 5.0 3.0 3.0 3.0 Lane Grp Cap (vph) 1181 27 2466 42 245 214 v/s Ratio Prot c0.50 0.01 c0.33 c0.00 c0.11 0.02 v/s Ratio Perm					Prot	NA					Split	NA	
Actuated Green, G (s) 82.6 3.0 90.6 4.4 19.0 19.0 Effective Green, g (s) 82.6 2.0 90.6 3.4 18.0 18.0 Actuated g/C Ratio 0.64 0.02 0.70 0.03 0.14 0.14 Clearance Time (s) 6.0 5.0 6.0 5.0 5.0 3.0 Lane Grp Cap (vph) 1181 27 2466 42 245 214 V/s Ratio Pert c0.50 0.01 c0.33 c0.00 c0.11 0.02 V/s Ratio Perm v/s Ratio Perm v/s Ratio 0.78 0.48 0.48 0.03 0.77 0.16 Uniform Delay, d1 17.2 63.5 8.9 61.7 54.0 49.4 Progression Factor 0.86 1.41 0.16 1.00 1.00 1.00 Incremental Delay, d2 4.6 10.7 0.5 0.3 13.4 0.4 Level of Service B F A E			2		1	6		3	3		4	4	
Effective Green, g (s) 82.6 2.0 90.6 3.4 18.0 18.0 Actuated g/C Ratio 0.64 0.02 0.70 0.03 0.14 0.14 Clearance Time (s) 6.0 5.0 6.0 5.0 5.0 5.0 Vehicle Extension (s) 5.0 3.0 5.0 3.0 3.0 3.0 Lane Grp Cap (vph) 1181 27 2466 42 245 214 v/s Ratio Prot c0.50 0.01 c0.33 c0.00 c0.11 0.02 v/s Ratio Perm													
Actuated g/C Ratio 0.64 0.02 0.70 0.03 0.14 0.14 Clearance Time (s) 6.0 5.0 6.0 5.0 5.0 5.0 Vehicle Extension (s) 5.0 3.0 5.0 3.0 3.0 3.0 Lane Grp Cap (vph) 1181 27 2466 42 245 214 v/s Ratio Prot c0.50 0.01 c0.33 c0.00 c0.11 0.02 v/s Ratio Perm													
Clearance Time (s) 6.0 5.0 5.0 5.0 5.0 5.0 Vehicle Extension (s) 5.0 3.0 5.0 3.0 3.0 3.0 Lane Grp Cap (vph) 1181 27 2466 42 245 214 v/s Ratio Prot c0.50 0.01 c0.33 c0.00 c0.11 0.02 v/s Ratio Perm v/c Ratio 0.78 0.48 0.48 0.03 0.77 0.16 Uniform Delay, d1 17.2 63.5 8.9 61.7 54.0 49.4 Progression Factor 0.86 1.41 0.16 1.00 1.00 1.00 Incremental Delay, d2 4.6 10.7 0.5 0.3 13.4 0.4 Delay (s) 19.4 100.3 2.0 61.9 67.4 49.7 Level of Service B F A E E D Approach LOS B A E E Intersection Summary HCM 2000 Contr													
Vehicle Extension (s) 5.0 3.0 5.0 3.0 3.0 3.0 Lane Grp Cap (vph) 1181 27 2466 42 245 214 v/s Ratio Prot c0.50 0.01 c0.33 c0.00 c0.11 0.02 v/s Ratio Perm v/c Ratio 0.78 0.48 0.48 0.03 0.77 0.16 Uniform Delay, d1 17.2 63.5 8.9 61.7 54.0 49.4 Progression Factor 0.86 1.41 0.16 1.00 1.00 1.00 Incremental Delay, d2 4.6 10.7 0.5 0.3 13.4 0.4 Delay (s) 19.4 100.3 2.0 61.9 67.4 49.7 Level of Service B F A E E D Approach LOS B A E E Intersection Summary HCM 2000 Control Delay 18.3 HCM 2000 Level of Service B HCM 2000 Level of Service B Intersect													
Lane Grp Cap (vph) 1181 27 2466 42 245 214 v/s Ratio Prot c0.50 0.01 c0.33 c0.00 c0.11 0.02 v/s Ratio Perm v/c Ratio 0.78 0.48 0.48 0.03 0.77 0.16 Uniform Delay, d1 17.2 63.5 8.9 61.7 54.0 49.4 Progression Factor 0.86 1.41 0.16 1.00 1.00 1.00 Incremental Delay, d2 4.6 10.7 0.5 0.3 13.4 0.4 Delay (s) 19.4 100.3 2.0 61.9 67.4 49.7 Level of Service B F A E D Approach Delay (s) 19.4 3.1 61.9 58.6 Approach LOS B A E E D Approach LOS B A E E E D Approach LOS B A E E E E E E	• •												
v/s Ratio Prot c0.50 0.01 c0.33 c0.00 c0.11 0.02 v/s Ratio Perm													
w/s Ratio Perm v/c Ratio 0.78 0.48 0.48 0.03 0.77 0.16 Uniform Delay, d1 17.2 63.5 8.9 61.7 54.0 49.4 Progression Factor 0.86 1.41 0.16 1.00 1.00 1.00 Incremental Delay, d2 4.6 10.7 0.5 0.3 13.4 0.4 Delay (s) 19.4 100.3 2.0 61.9 67.4 49.7 Level of Service B F A E E D Approach Delay (s) 19.4 3.1 61.9 58.6 58.6 Approach LOS B A E E E Intersection Summary 18.3 HCM 2000 Level of Service B E E HCM 2000 Volume to Capacity ratio 0.77 0.77 Actuated Cycle Length (s) 130.0 Sum of lost time (s) 24.0 1 Intersection Capacity Utilization 64.8% ICU Level of Service C C 1	Lane Grp Cap (vph)												
v/c Ratio 0.78 0.48 0.48 0.03 0.77 0.16 Uniform Delay, d1 17.2 63.5 8.9 61.7 54.0 49.4 Progression Factor 0.86 1.41 0.16 1.00 1.00 1.00 Incremental Delay, d2 4.6 10.7 0.5 0.3 13.4 0.4 Delay (s) 19.4 100.3 2.0 61.9 67.4 49.7 Level of Service B F A E E D Approach Delay (s) 19.4 3.1 61.9 58.6 Approach LOS B A E E Intersection Summary 18.3 HCM 2000 Level of Service B HCM 2000 Control Delay 18.3 HCM 2000 Level of Service B HCM 2000 Volume to Capacity ratio 0.77 77 4 Actuated Cycle Length (s) 130.0 Sum of lost time (s) 24.0 Intersection Capacity Utilization 64.8% ICU Level of Service C	v/s Ratio Prot		c0.50		0.01	c0.33			c0.00		c0.11	0.02	
Uniform Delay, d1 17.2 63.5 8.9 61.7 54.0 49.4 Progression Factor 0.86 1.41 0.16 1.00 1.00 1.00 Incremental Delay, d2 4.6 10.7 0.5 0.3 13.4 0.4 Delay (s) 19.4 100.3 2.0 61.9 67.4 49.7 Level of Service B F A E E D Approach Delay (s) 19.4 3.1 61.9 58.6 Approach LOS B A E E Intersection Summary HCM 2000 Control Delay 18.3 HCM 2000 Level of Service B HCM 2000 Volume to Capacity ratio 0.77 0.77 Actuated Cycle Length (s) 130.0 Sum of lost time (s) 24.0 Intersection Capacity Utilization 64.8% ICU Level of Service C C													
Progression Factor 0.86 1.41 0.16 1.00 1.00 1.00 Incremental Delay, d2 4.6 10.7 0.5 0.3 13.4 0.4 Delay (s) 19.4 100.3 2.0 61.9 67.4 49.7 Level of Service B F A E E D Approach Delay (s) 19.4 3.1 61.9 58.6 Approach LOS B A E E Intersection Summary HCM 2000 Control Delay 18.3 HCM 2000 Level of Service B HCM 2000 Volume to Capacity ratio 0.77 0.77 Actuated Cycle Length (s) 130.0 Sum of lost time (s) 24.0 Intersection Capacity Utilization 64.8% ICU Level of Service C C													
Incremental Delay, d2 4.6 10.7 0.5 0.3 13.4 0.4 Delay (s) 19.4 100.3 2.0 61.9 67.4 49.7 Level of Service B F A E E D Approach Delay (s) 19.4 3.1 61.9 58.6 Approach Delay (s) 19.4 3.1 61.9 58.6 Approach LOS B A E E Intersection Summary HCM 2000 Control Delay 18.3 HCM 2000 Level of Service B HCM 2000 Volume to Capacity ratio 0.77 0.77 Actuated Cycle Length (s) 130.0 Sum of lost time (s) 24.0 Intersection Capacity Utilization 64.8% ICU Level of Service C C													
Delay (s) 19.4 100.3 2.0 61.9 67.4 49.7 Level of Service B F A E E D Approach Delay (s) 19.4 3.1 61.9 58.6 Approach LOS B A E E Intersection Summary B A E E HCM 2000 Control Delay 18.3 HCM 2000 Level of Service B A HCM 2000 Volume to Capacity ratio 0.77 Actuated Cycle Length (s) 130.0 Sum of lost time (s) 24.0 Intersection Capacity Utilization 64.8% ICU Level of Service C C	Progression Factor		0.86		1.41	0.16			1.00		1.00	1.00	
Level of ServiceBFAEEDApproach Delay (s)19.43.161.958.6Approach LOSBAEEIntersection SummaryHCM 2000 Control Delay18.3HCM 2000 Level of ServiceBHCM 2000 Volume to Capacity ratio0.77	Incremental Delay, d2												
Approach Delay (s)19.43.161.958.6Approach LOSBAEEIntersection SummaryIntersection SummaryIntersection Delay18.3HCM 2000 Level of ServiceBHCM 2000 Volume to Capacity ratio0.77Sum of lost time (s)24.0Actuated Cycle Length (s)130.0Sum of lost time (s)24.0Intersection Capacity Utilization64.8%ICU Level of ServiceC	Delay (s)		19.4		100.3								
Approach LOSBAEEIntersection SummaryHCM 2000 Control Delay18.3HCM 2000 Level of ServiceBHCM 2000 Volume to Capacity ratio0.77Actuated Cycle Length (s)130.0Sum of lost time (s)24.0Intersection Capacity Utilization64.8%ICU Level of ServiceC					F						E		
Intersection Summary HCM 2000 Control Delay 18.3 HCM 2000 Level of Service B HCM 2000 Volume to Capacity ratio 0.77 Actuated Cycle Length (s) 130.0 Sum of lost time (s) 24.0 Intersection Capacity Utilization 64.8% ICU Level of Service C													
HCM 2000 Control Delay18.3HCM 2000 Level of ServiceBHCM 2000 Volume to Capacity ratio0.77Actuated Cycle Length (s)130.0Sum of lost time (s)24.0Intersection Capacity Utilization64.8%ICU Level of ServiceC	Approach LOS		В			А			E			E	
HCM 2000 Volume to Capacity ratio0.77Actuated Cycle Length (s)130.0Sum of lost time (s)24.0Intersection Capacity Utilization64.8%ICU Level of ServiceC	Intersection Summary												
Actuated Cycle Length (s)130.0Sum of lost time (s)24.0Intersection Capacity Utilization64.8%ICU Level of ServiceC	HCM 2000 Control Delay				Н	CM 2000	Level of S	Service		В			
Intersection Capacity Utilization 64.8% ICU Level of Service C		city ratio											
	Actuated Cycle Length (s)			130.0									
Analysis Period (min) 15		tion			IC	CU Level	of Service			С			
	Analysis Period (min)			15									

	۶	-	\mathbf{F}	4	+	•	1	1	۲	1	Ļ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	↑		ሻ	≜ ⊅						र्भ	1
Traffic Volume (vph)	111	604	0	143	807	265	0	0	0	107	12	106
Future Volume (vph)	111	604	0	143	807	265	0	0	0	107	12	106
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	5.0	5.5		5.0	5.5						5.5	5.5
Lane Util. Factor	1.00	1.00		1.00	0.95						1.00	1.00
Frpb, ped/bikes	1.00	1.00		1.00	0.98						1.00	1.00
Flpb, ped/bikes	1.00	1.00		1.00	1.00						1.00	1.00
Frt	1.00	1.00		1.00	0.96						1.00	0.85
Flt Protected	0.95	1.00		0.95	1.00						0.96	1.00
Satd. Flow (prot)	1770	1863		1770	3347						1782	1583
Flt Permitted	0.95	1.00		0.95	1.00						0.96	1.00
Satd. Flow (perm)	1770	1863		1770	3347						1782	1583
Peak-hour factor, PHF	0.73	0.73	0.73	0.73	0.73	0.73	0.73	0.73	0.73	0.73	0.73	0.73
Adj. Flow (vph)	152	827	0	196	1105	363	0	0	0	147	16	145
RTOR Reduction (vph)	0	0	0	0	17	0	0	0	0	0	0	105
Lane Group Flow (vph)	152	827	0	196	1451	0	0	0	0	0	163	40
Confl. Peds. (#/hr)	16		27	27		16			1	1		
Confl. Bikes (#/hr)			66			11						
Turn Type	Prot	NA		Prot	NA					Split	NA	Perm
Protected Phases	1	6		5	2					4	4	
Permitted Phases												4
Actuated Green, G (s)	14.4	78.0		20.1	83.7						15.1	15.1
Effective Green, g (s)	14.4	78.6		20.1	84.3						15.3	15.3
Actuated g/C Ratio	0.11	0.60		0.15	0.65						0.12	0.12
Clearance Time (s)	5.0	6.1		5.0	6.1						5.7	5.7
Vehicle Extension (s)	1.0	2.5		1.0	2.5						2.5	2.5
Lane Grp Cap (vph)	196	1126		273	2170						209	186
v/s Ratio Prot	0.09	c0.44		0.11	c0.43						c0.09	
v/s Ratio Perm												0.03
v/c Ratio	0.78	0.73		0.72	0.67						0.78	0.22
Uniform Delay, d1	56.2	18.3		52.3	14.2						55.7	51.9
Progression Factor	0.87	0.65		0.87	1.49						1.00	1.00
Incremental Delay, d2	13.5	2.0		4.9	1.1						16.1	0.4
Delay (s)	62.2	13.9		50.4	22.3						71.8	52.3
Level of Service	E	В		D	С						E	D
Approach Delay (s)		21.4			25.6			0.0			62.6	
Approach LOS		С			С			А			E	
Intersection Summary												
HCM 2000 Control Delay			28.1	Н	CM 2000	Level of S	Service		С			
HCM 2000 Volume to Capac	city ratio		0.74									
Actuated Cycle Length (s)			130.0		um of lost				16.0			
Intersection Capacity Utilizat	tion		66.3%	IC	CU Level o	of Service			С			
Analysis Period (min)			15									

	٦	-	\mathbf{F}	∢	←	•	1	Ť	۲	1	ţ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	۲	A		۲.	A⊅			र्स	1		र्भ	1
Traffic Volume (vph)	28	669	18	2	1002	126	64	4	19	167	3	135
Future Volume (vph)	28	669	18	2	1002	126	64	4	19	167	3	135
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	2100	2100	1900	2100	2100
Total Lost time (s)	5.0	5.5		5.0	5.5			5.7	5.7		5.7	5.7
Lane Util. Factor	1.00	0.95		1.00	0.95			1.00	1.00		1.00	1.00
Frpb, ped/bikes	1.00	1.00		1.00	0.99			1.00	0.97		1.00	0.96
Flpb, ped/bikes	1.00	1.00		1.00	1.00			0.99	1.00		0.99	1.00
Frt	1.00	0.80		1.00	0.98			1.00	0.85		1.00	0.85
Flt Protected	0.95	1.00		0.95	1.00			0.96	1.00		0.95	1.00
Satd. Flow (prot)	1770	2811		1770	3437			1937	1702		1940	1682
Flt Permitted	0.95	1.00		0.95	1.00			0.36	1.00		0.65	1.00
Satd. Flow (perm)	1770	2811		1770	3437			500	1702		1329	1682
Peak-hour factor, PHF	0.69	0.69	0.69	0.69	0.69	0.69	0.69	0.69	0.69	0.69	0.69	0.69
Adj. Flow (vph)	41	970	26	3	1452	183	93	6	28	242	4	196
RTOR Reduction (vph)	0	1	0	0	7	0	0	0	22	0	0	114
Lane Group Flow (vph)	41	995	0	3	1628	0	0	99	6	0	246	82
Confl. Peds. (#/hr)	24		25	25		24	19		9	9		19
Confl. Bikes (#/hr)			67			19			2			
Bus Blockages (#/hr)	0	2	2	0	0	0	0	0	0	0	0	0
Turn Type	Prot	NA		Prot	NA	-	Perm	NA	Perm	Perm	NA	Perm
Protected Phases	1	6		5	2		1 01111	8	1 01111	1 0111	4	1 01111
Permitted Phases	•	Ū		Ū	-		8	Ū	8	4	•	4
Actuated Green, G (s)	6.7	83.4		1.6	78.3		Ũ	28.2	28.2	•	28.2	28.2
Effective Green, g (s)	6.7	84.0		1.6	78.9			28.2	28.2		28.2	28.2
Actuated g/C Ratio	0.05	0.65		0.01	0.61			0.22	0.22		0.22	0.22
Clearance Time (s)	5.0	6.1		5.0	6.1			5.7	5.7		5.7	5.7
Vehicle Extension (s)	1.0	2.5		1.0	2.5			2.5	2.5		2.5	2.5
Lane Grp Cap (vph)	91	1816		21	2085			108	369		288	364
v/s Ratio Prot	c0.02	c0.35		0.00	c0.47			100	507		200	504
v/s Ratio Perm	00.02	0.00		0.00	CO.+7			c0.20	0.00		0.19	0.05
v/c Ratio	0.45	0.55		0.14	0.78			0.92	0.02		0.85	0.23
Uniform Delay, d1	59.9	12.6		63.5	19.1			49.8	40.0		48.9	41.9
Progression Factor	1.12	0.73		0.94	1.25			1.00	1.00		1.00	1.00
Incremental Delay, d2	1.0	0.73		0.74	0.3			60.2	0.0		20.8	0.2
Delay (s)	68.1	10.1		60.1	24.1			110.0	40.0		69.8	42.1
Level of Service	E	B		E	24.1 C			F	40.0 D		67.0 E	τ <u>2</u> .1
Approach Delay (s)	L	12.4		L	24.1			94.5	D		57.5	D
Approach LOS		12.4 B			24.1 C			F			57.5 E	
		D			U						L	
Intersection Summary												
HCM 2000 Control Delay			27.7	Н	CM 2000	Level of S	Service		С			
HCM 2000 Volume to Capac	city ratio		0.80									
Actuated Cycle Length (s)			130.0		um of lost				16.2			
Intersection Capacity Utiliza	tion		71.5%	IC	CU Level o	of Service	:		С			
Analysis Period (min)			15									
c Critical Lane Group												

HCM Signalized Intersection Capacity Analysis 8: Mary Avenue & Homestead Road

	≯	+	\mathbf{F}	4	Ļ	•	•	1	1	*	ţ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ľ	∱ î,		ľ	↑ ĵ≽		1	et.		ľ	ŧ	1
Traffic Volume (vph)	64	581	172	68	860	196	115	113	34	228	92	76
Future Volume (vph)	64	581	172	68	860	196	115	113	34	228	92	76
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	5.5	5.5		5.5	5.5		5.6	5.6		5.5	5.5	5.5
Lane Util. Factor	1.00	0.95		1.00	0.95		1.00	1.00		0.95	0.95	1.00
Frpb, ped/bikes	1.00	0.92		1.00	0.95		1.00	0.93		1.00	1.00	0.75
Flpb, ped/bikes	1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00	1.00
Frt	1.00	0.97		1.00	0.97		1.00	0.97		1.00	1.00	0.85
Flt Protected	0.95	1.00		0.95	1.00		0.95	1.00		0.95	0.98	1.00
Satd. Flow (prot)	1770	3128		1770	3248		1770	1677		1681	1728	1183
Flt Permitted	0.95	1.00		0.95	1.00		0.95	1.00		0.95	0.98	1.00
Satd. Flow (perm)	1770	3128		1770	3248		1770	1677		1681	1728	1183
Peak-hour factor, PHF	0.72	0.72	0.72	0.72	0.72	0.72	0.72	0.72	0.72	0.72	0.72	0.72
Adj. Flow (vph)	89	807	239	94	1194	272	160	157	47	317	128	106
RTOR Reduction (vph)	0	0	0	0	0	0	0	0	0	0	0	0
Lane Group Flow (vph)	89	1046	0	94	1466	0	160	204	0	200	245	106
Confl. Peds. (#/hr)	119		180	180		119	104		189	189		104
Confl. Bikes (#/hr)			10			22			4			117
Bus Blockages (#/hr)	0	2	0	0	4	4	0	0	0	0	0	0
Turn Type	Prot	NA		Prot	NA		Split	NA		Split	NA	Perm
Protected Phases	1	6		5	2		3	3		4	4	
Permitted Phases												4
Actuated Green, G (s)	11.5	43.6		12.4	44.5		25.4	25.4		25.3	25.3	25.3
Effective Green, g (s)	11.5	44.2		12.4	45.1		25.4	25.4		25.9	25.9	25.9
Actuated g/C Ratio	0.09	0.34		0.10	0.35		0.20	0.20		0.20	0.20	0.20
Clearance Time (s)	5.5	6.1		5.5	6.1		5.6	5.6		6.1	6.1	6.1
Vehicle Extension (s)	1.0	2.5		1.0	2.5		1.0	1.0		2.5	2.5	2.5
Lane Grp Cap (vph)	156	1063		168	1126		345	327		334	344	235
v/s Ratio Prot	0.05	0.33		c0.05	c0.45		0.09	c0.12		0.12	c0.14	
v/s Ratio Perm												0.09
v/c Ratio	0.57	0.98		0.56	1.30		0.46	0.62		0.60	0.71	0.45
Uniform Delay, d1	56.9	42.5		56.2	42.5		46.3	47.9		47.3	48.6	45.8
Progression Factor	1.25	0.75		1.37	0.80		1.00	1.00		1.00	1.00	1.00
Incremental Delay, d2	2.6	21.7		1.3	139.6		0.4	2.7		2.4	6.4	1.0
Delay (s)	73.5	53.5		78.0	173.4		46.6	50.6		49.7	54.9	46.8
Level of Service	E	D		E	F		D	D		D	D	D
Approach Delay (s)		55.1			167.7			48.8			51.5	
Approach LOS		E			F			D			D	
Intersection Summary												
HCM 2000 Control Delay			102.6	Н	CM 2000	Level of S	Service		F			
HCM 2000 Volume to Capa	city ratio		0.93									
Actuated Cycle Length (s)			130.0	S	um of losi	t time (s)			22.1			
Intersection Capacity Utilization			103.3%			of Service			G			
Analysis Period (min)			15									
c Critical Lane Group												

	٦	-	*	4	Ļ	•	<	1	1	*	ţ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	۲	††		5	A						\$	
Traffic Volume (vph)	112	731	96	53	1132	94	0	0	0	47	60	51
Future Volume (vph)	112	731	96	53	1132	94	0	0	0	47	60	51
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	5.0	5.5		5.0	5.5						5.6	
Lane Util. Factor	1.00	0.95		1.00	0.95						1.00	
Frpb, ped/bikes	1.00	0.96		1.00	0.99						0.94	
Flpb, ped/bikes	1.00	1.00		1.00	1.00						0.94	
Frt	1.00	0.98		1.00	0.99						0.96	
Flt Protected	0.95	1.00		0.95	1.00						0.99	
Satd. Flow (prot)	1770	3307		1770	3453						1557	
Flt Permitted	0.95	1.00		0.95	1.00						0.99	
Satd. Flow (perm)	1770	3307		1770	3453						1557	
Peak-hour factor, PHF	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75
Adj. Flow (vph)	149	975	128	71	1509	125	0	0	0	63	80	68
RTOR Reduction (vph)	0	7	0	0	5	0	0	0	0	0	14	0
Lane Group Flow (vph)	149	1096	0	71	1629	0	0	0	0	0	197	0
Confl. Peds. (#/hr)	10		73	73		10	102		128	128		102
Confl. Bikes (#/hr)			11			25						10
Bus Blockages (#/hr)	0	4	0	0	4	0	0	0	0	0	0	0
Turn Type	Prot	NA	-	Prot	NA	-	-			Perm	NA	
Protected Phases	5	2		1	6					1 01111	4	
Permitted Phases	Ū	-		•	U					4	•	
Actuated Green, G (s)	13.5	80.8		7.2	74.5						25.3	
Effective Green, g (s)	13.5	81.4		7.2	75.1						25.3	
Actuated g/C Ratio	0.10	0.63		0.06	0.58						0.19	
Clearance Time (s)	5.0	6.1		5.0	6.1						5.6	
Vehicle Extension (s)	1.0	2.5		1.0	2.5						2.5	
Lane Grp Cap (vph)	183	2070		98	1994						303	
v/s Ratio Prot	c0.08	0.33		0.04	c0.47						303	
v/s Ratio Perm	0.00	0.00		0.04	00.47						0.13	
v/c Ratio	0.81	0.53		0.72	0.82						0.65	
Uniform Delay, d1	57.0	13.6		60.4	22.0						48.3	
Progression Factor	0.95	1.48		1.33	0.55						1.00	
Incremental Delay, d2	14.2	0.6		15.2	2.9						4.4	
Delay (s)	68.5	20.6		95.9	14.9						52.7	
Level of Service	E	20.0 C		F	B						52.7 D	
Approach Delay (s)		26.3			18.2			0.0			52.7	
Approach LOS		20.5 C			B			A			D	
Intersection Summary												
HCM 2000 Control Delay			23.7	H	CM 2000	Level of S	Service		С			
HCM 2000 Volume to Capa	acity ratio		0.78									
Actuated Cycle Length (s)			130.0	S	um of lost	t time (s)			16.1			
Intersection Capacity Utiliza	Intersection Capacity Utilization		75.2%			of Service			D			
Analysis Period (min)			15									
c Critical Lane Group												

HCM Signalized Intersection Capacity Analysis
10: Stelling Road/Hollenbeck Avenue & Homestead Road

	≯	+	*	4	Ļ	*	<	1	*	1	Ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	٦	∱ î≽		٦	↑ 1≽		ሻሻ	↑ 1≽		٦	↑ 1≽	
Traffic Volume (vph)	124	572	153	199	833	211	214	379	270	198	262	166
Future Volume (vph)	124	572	153	199	833	211	214	379	270	198	262	166
Ideal Flow (vphpl)	1900	2100	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	5.0	5.5		5.0	5.5		5.0	5.1		5.0	5.1	
Lane Util. Factor	1.00	0.95		1.00	0.95		0.97	0.95		1.00	0.95	
Frpb, ped/bikes	1.00	0.98		1.00	0.99		1.00	0.98		1.00	0.98	
Flpb, ped/bikes	1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00	
Frt	1.00	0.97		1.00	0.97		1.00	0.94		1.00	0.94	
Flt Protected	0.95	1.00		0.95	1.00		0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1770	3710		1770	3384		3433	3238		1770	3251	
Flt Permitted	0.95	1.00		0.95	1.00		0.95	1.00		0.95	1.00	
Satd. Flow (perm)	1770	3710		1770	3384		3433	3238		1770	3251	
Peak-hour factor, PHF	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87
Adj. Flow (vph)	143	657	176	229	957	243	246	436	310	228	301	191
RTOR Reduction (vph)	0	17	0	0	17	0	0	102	0	0	80	0
Lane Group Flow (vph)	143	816	0	229	1183	0	246	644	0	228	412	0
Confl. Peds. (#/hr)	37		65	65		37	44		37	37		44
Confl. Bikes (#/hr)			12			5			4			6
Turn Type	Prot	NA		Prot	NA		Prot	NA		Prot	NA	
Protected Phases	5	2		1	6		3	8		7	4	
Permitted Phases												
Actuated Green, G (s)	12.0	42.0		19.4	49.4		12.0	30.8		16.0	34.8	
Effective Green, g (s)	12.0	42.6		19.4	50.0		12.0	31.4		16.0	35.4	
Actuated g/C Ratio	0.09	0.33		0.15	0.38		0.09	0.24		0.12	0.27	
Clearance Time (s)	5.0	6.1		5.0	6.1		5.0	5.7		5.0	5.7	
Vehicle Extension (s)	1.0	2.5		1.0	2.5		1.0	2.5		1.0	2.5	
Lane Grp Cap (vph)	163	1215		264	1301		316	782		217	885	
v/s Ratio Prot	0.08	0.22		c0.13	c0.35		0.07	c0.20		c0.13	c0.13	
v/s Ratio Perm												
v/c Ratio	0.88	0.67		0.87	0.91		0.78	0.82		1.05	0.47	
Uniform Delay, d1	58.3	37.7		54.0	37.9		57.7	46.7		57.0	39.4	
Progression Factor	0.95	1.51		1.00	1.00		1.00	1.00		1.00	1.00	
Incremental Delay, d2	32.6	2.5		23.8	11.0		10.5	6.9		75.1	0.3	
Delay (s)	88.1	59.5		77.9	48.8		68.2	53.5		132.1	39.7	
Level of Service	F	E		E	D		E	D		F	D	
Approach Delay (s)		63.7			53.5			57.2			68.9	
Approach LOS		E			D			E			E	
Intersection Summary												
HCM 2000 Control Delay			59.5	Н	CM 2000	Level of S	Service		E			
HCM 2000 Volume to Capa	city ratio		0.91									
Actuated Cycle Length (s)			130.0		um of losi				20.6			
Intersection Capacity Utiliza	ation		93.9%	IC	CU Level	of Service			F			
Analysis Period (min)			15									
c Critical Lano Croup												

	۶	+	*	4	Ļ	*	<	1	1	*	Ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		र्भ	1	ሻ	र्भ	1	<u>۲</u>	^	1	<u>۲</u>	- † †	1
Traffic Volume (vph)	6	23	14	332	24	187	18	521	269	366	1128	17
Future Volume (vph)	6	23	14	332	24	187	18	521	269	366	1128	17
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		5.2	5.2	5.1	5.1	5.1	4.7	5.8	5.8	4.9	5.8	5.8
Lane Util. Factor		1.00	1.00	0.95	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00
Frpb, ped/bikes		1.00	0.98	1.00	1.00	0.97	1.00	1.00	0.98	1.00	1.00	0.98
Flpb, ped/bikes		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt		1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85
Flt Protected		0.99	1.00	0.95	0.96	1.00	0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (prot)		1844	1551	1681	1697	1534	1770	3539	1548	1770	3539	1546
Flt Permitted		0.99	1.00	0.95	0.96	1.00	0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (perm)		1844	1551	1681	1697	1534	1770	3539	1548	1770	3539	1546
Peak-hour factor, PHF	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Adj. Flow (vph)	6	24	15	353	26	199	19	554	286	389	1200	18
RTOR Reduction (vph)	0	0	14	0	0	165	0	0	192	0	0	8
Lane Group Flow (vph)	0	30	1	191	188	34	19	554	94	389	1200	10
Confl. Peds. (#/hr)	2		2	2		2			0			_
Confl. Bikes (#/hr)			2			13			2			5
Turn Type	Split	NA	Perm	Split	NA	Perm	Prot	NA	Perm	Prot	NA	Perm
Protected Phases	4	4		3	3	•	5	2	•	1	6	,
Permitted Phases			4			3			2			6
Actuated Green, G (s)		8.4	8.4	20.7	20.7	20.7	3.4	39.6	39.6	30.3	66.7	66.7
Effective Green, g (s)		8.4	8.4	20.7	20.7	20.7	3.4	39.6	39.6	30.3	66.7	66.7
Actuated g/C Ratio		0.07	0.07	0.17	0.17	0.17	0.03	0.33	0.33	0.25	0.56	0.56
Clearance Time (s)		5.2	5.2	5.1	5.1	5.1	4.7	5.8	5.8	4.9	5.8	5.8
Vehicle Extension (s)		4.0	4.0	4.0	4.0	4.0	3.0	4.0	4.0	3.0	4.0	4.0
Lane Grp Cap (vph)		129	108	289	292	264	50	1167	510	446	1967	859
v/s Ratio Prot		c0.02	0.00	c0.11	0.11	0.00	0.01	0.16	0.07	c0.22	c0.34	0.01
v/s Ratio Perm		0.00	0.00	0.(/	0 (4	0.02	0.20	0.47	0.06	0.07	0 (1	0.01
v/c Ratio		0.23	0.01	0.66	0.64	0.13	0.38	0.47	0.19	0.87	0.61	0.01
Uniform Delay, d1		52.8	51.9	46.4	46.2	42.0	57.3	31.9	28.7	43.0	17.9	11.9
Progression Factor		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Incremental Delay, d2		1.3	0.0	6.1	5.3	0.3 42.3	4.8	1.4 33.3	0.8 29.5	16.9 59.9	0.6	0.0 11.9
Delay (s) Level of Service		54.0	52.0 D	52.5 D	51.6 D	42.3 D	62.0 E	33.3 C	29.5 C		18.6	н.9 В
		D 53.3	U	U	48.7	U	E	32.7	C	E	B 28.5	D
Approach Delay (s) Approach LOS		55.5 D			40.7 D			52.7 C			20.5 C	
		D			D			U			C	
Intersection Summary					0110000							
HCM 2000 Control Delay			33.8	H	CM 2000	Level of S	Service		С			
HCM 2000 Volume to Capacity	<i>ratio</i>		0.68			11			01.0			
Actuated Cycle Length (s)			120.0		um of lost				21.0			
Intersection Capacity Utilizatio	n		67.9%	IC	U Level o	of Service			С			
Analysis Period (min)			15									

	≯	-	-	•	1	1
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		†	•	1	5	1
Traffic Volume (veh/h)	0	664	511	128	144	31
Future Volume (Veh/h)	0	664	511	128	144	31
Sign Control		Free	Free		Stop	
Grade		0%	0%		0%	
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94
Hourly flow rate (vph)	0	706	544	136	153	33
Pedestrians		1			4	
Lane Width (ft)		12.0			12.0	
Walking Speed (ft/s)		4.0			4.0	
Percent Blockage		0			0	
Right turn flare (veh)						7
Median type		Raised	None			
Median storage veh)		2				
Upstream signal (ft)		171				
pX, platoon unblocked					1.00	
vC, conflicting volume	684				1254	549
vC1, stage 1 conf vol					548	
vC2, stage 2 conf vol					706	
vCu, unblocked vol	684				1254	549
tC, single (s)	4.1				6.4	6.2
tC, 2 stage (s)					5.4	
tF (s)	2.2				3.5	3.3
p0 queue free %	100				62	94
cM capacity (veh/h)	906				404	533
Direction, Lane #	EB 1	WB 1	WB 2	SB 1		
Volume Total	706	544	136	186		
Volume Left	0	0	0	153		
Volume Right	0	0	136	33		
cSH	1700	1700	1700	491		
Volume to Capacity	0.42	0.32	0.08	0.38		
Queue Length 95th (ft)	0	0	0	44		
Control Delay (s)	0.0	0.0	0.0	18.0		
Lane LOS				С		
Approach Delay (s)	0.0	0.0		18.0		
Approach LOS				С		
Intersection Summary						
Average Delay			2.1			
Intersection Capacity Utilizati	on		49.8%	IC	U Level o	of Service
Analysis Period (min)			15			

	≯	-	\mathbf{F}	∢	←	*	•	1	1	1	ţ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ľ	el el		1	¢Î			\$			\$	
Traffic Volume (veh/h)	28	706	22	20	484	53	10	1	18	39	0	26
Future Volume (Veh/h)	28	706	22	20	484	53	10	1	18	39	0	26
Sign Control		Free			Free			Stop			Stop	
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Hourly flow rate (vph)	30	751	23	21	515	56	11	1	19	41	0	28
Pedestrians					9			30			8	
Lane Width (ft)					12.0			12.0			12.0	
Walking Speed (ft/s)					4.0			4.0			4.0	
Percent Blockage					1			3			1	
Right turn flare (veh)												
Median type		None			None							
Median storage veh)												
Upstream signal (ft)		1198			1012							
pX, platoon unblocked	0.88						0.88	0.88		0.88	0.88	0.88
vC, conflicting volume	579			804			1438	1474	802	1432	1457	551
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	455			804			1429	1470	802	1423	1451	424
tC, single (s)	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
tC, 2 stage (s)												
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free %	97			97			87	99	95	53	100	95
cM capacity (veh/h)	968			800			86	103	372	87	105	552
Direction, Lane #	EB 1	EB 2	WB 1	WB 2	NB 1	SB 1						
Volume Total	30	774	21	571	31	69						
Volume Left	30	0	21	0	11	41						
Volume Right	0	23	0	56	19	28						
cSH	968	1700	800	1700	164	132						
Volume to Capacity	0.03	0.46	0.03	0.34	0.19	0.52						
Queue Length 95th (ft)	2	0	2	0	17	62						
Control Delay (s)	8.8	0.0	9.6	0.0	32.0	58.9						
Lane LOS	А		А		D	F						
Approach Delay (s)	0.3		0.3		32.0	58.9						
Approach LOS					D	F						
Intersection Summary												
Average Delay			3.7									
Intersection Capacity Utiliza	ation		51.7%	IC	CU Level o	of Service			А			
Analysis Period (min)			15									

	٨	-	\mathbf{r}	4	+	•	•	Ť	1	1	Ļ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	ef 👘		<u>۲</u>	≜ ⊅			4			र्स	1
Traffic Volume (vph)	55	696	16	2	498	59	9	1	5	76	1	56
Future Volume (vph)	55	696	16	2	498	59	9	1	5	76	1	56
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	5.0	5.5		5.0	5.5			5.6			5.6	5.6
Lane Util. Factor	1.00	1.00		1.00	0.95			1.00			1.00	1.00
Frpb, ped/bikes	1.00	1.00		1.00	0.98			0.99			1.00	0.98
Flpb, ped/bikes	1.00	1.00		1.00	1.00			0.99			0.99	1.00
Frt	1.00	1.00		1.00	0.98			0.95			1.00	0.85
Flt Protected	0.95	1.00		0.95	1.00			0.97			0.95	1.00
Satd. Flow (prot)	1770	1853		1770	3415			1694			1759	1544
Flt Permitted	0.95	1.00		0.95	1.00			0.86			0.72	1.00
Satd. Flow (perm)	1770	1853		1770	3415			1501			1322	1544
Peak-hour factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	61	773	18	2	553	66	10	1	6	84	1	62
RTOR Reduction (vph)	0	0	0	0	6	0	0	5	0	0	0	51
Lane Group Flow (vph)	61	791	0	2	613	0	0	12	0	0	85	11
Confl. Peds. (#/hr)	33		16	16		33	9		4	4		9
Confl. Bikes (#/hr)			8			121						
Turn Type	Prot	NA		Prot	NA		Perm	NA		Perm	NA	Perm
Protected Phases	5	2		1	6		0	8		4	4	
Permitted Phases	7 5	00.0		14	02.0		8	22.0		4	22.0	4
Actuated Green, G (s)	7.5	88.9		1.4	82.8			23.0			23.0	23.0
Effective Green, g (s)	7.5 0.06	89.5 0.69		1.4 0.01	83.4 0.64			23.0 0.18			23.0	23.0 0.18
Actuated g/C Ratio	5.0	0.09		5.0	0.64 6.1			0.18 5.6			0.18 5.6	
Clearance Time (s) Vehicle Extension (s)	5.0 1.0	0.1 2.5		5.0 1.0	0.1 2.5			5.6 2.5			5.0 2.5	5.6
												2.5 273
Lane Grp Cap (vph) v/s Ratio Prot	102	1275		19 0.00	2190 0.18			265			233	213
	c0.03	c0.43		0.00	0.18			0.01			o0.04	0.01
v/s Ratio Perm v/c Ratio	0.60	0.62		0.11	0.28			0.01			c0.06 0.36	0.01
Uniform Delay, d1	0.00 59.8	11.0		63.7	10.20			44.4			47.1	44.3
Progression Factor	1.00	1.00		1.32	0.46			1.00			1.00	1.00
Incremental Delay, d2	6.1	2.3		0.9	0.40			0.1			0.7	0.0
Delay (s)	65.9	13.3		84.7	5.0			44.4			47.8	44.4
Level of Service	E	13.3 B		64.7 F	J.0			44.4 D			47.0 D	44.4 D
Approach Delay (s)	L	17.1		1	5.3			44.4			46.4	U
Approach LOS		B			A			D			40.4 D	
Intersection Summary		D			7			U			D	
HCM 2000 Control Delay			15.5	Ц	CM 2000	Lovelof	Sonvico		В			
HCM 2000 Volume to Capa	acity ratio		0.58	N		LEVELU	JEINICE		D			
Actuated Cycle Length (s)			130.0	S	um of lost	time (s)			16.1			
Intersection Capacity Utiliza	ation		65.5%		U Level (1		10.1 C			
Analysis Period (min)			15						U			
			15									

	۶	-	\mathbf{F}	4	-	•	1	1	1	1	ţ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		ef 👘		٦	- ††			4		ሻ	eî 👘	
Traffic Volume (vph)	0	771	4	13	497	0	1	0	19	94	3	64
Future Volume (vph)	0	771	4	13	497	0	1	0	19	94	3	64
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		6.0		6.0	6.0			6.0		6.0	6.0	
Lane Util. Factor		1.00		1.00	0.95			1.00		1.00	1.00	
Frpb, ped/bikes		1.00		1.00	1.00			1.00		1.00	0.98	
Flpb, ped/bikes		1.00		1.00	1.00			1.00		1.00	1.00	
Frt		1.00		1.00	1.00			0.87		1.00	0.86	
Flt Protected		1.00		0.95	1.00			1.00		0.95	1.00	
Satd. Flow (prot)		1860		1770	3539			1619		1770	1568	
Flt Permitted		1.00		0.95	1.00			1.00		0.95	1.00	
Satd. Flow (perm)		1860		1770	3539			1619		1770	1568	
Peak-hour factor, PHF	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85
Adj. Flow (vph)	0	907	5	15	585	0	1	0	22	111	4	75
RTOR Reduction (vph)	0	0	0	0	0	0	0	23	0	0	68	0
Lane Group Flow (vph)	0	912	0	15	585	0	0	0	0	111	11	0
Confl. Peds. (#/hr)	51		29	29		51	5					5
Confl. Bikes (#/hr)			12			135						
Turn Type		NA		Prot	NA		Split	NA		Split	NA	
Protected Phases		2		1	6		3	3		4	4	
Permitted Phases												
Actuated Green, G (s)		89.1		3.1	97.2			3.3		13.5	13.5	
Effective Green, g (s)		89.1		2.1	97.2			2.3		12.5	12.5	
Actuated g/C Ratio		0.69		0.02	0.75			0.02		0.10	0.10	
Clearance Time (s)		6.0		5.0	6.0			5.0		5.0	5.0	
Vehicle Extension (s)		5.0		3.0	5.0			3.0		3.0	3.0	
Lane Grp Cap (vph)		1274		28	2646			28		170	150	
v/s Ratio Prot		c0.49		0.01	c0.17			c0.00		c0.06	0.01	
v/s Ratio Perm												
v/c Ratio		0.72		0.54	0.22			0.01		0.65	0.07	
Uniform Delay, d1		12.6		63.5	5.0			62.7		56.7	53.5	
Progression Factor		0.84		1.25	0.55			1.00		1.00	1.00	
Incremental Delay, d2		3.0		18.2	0.2			0.2		8.7	0.2	
Delay (s)		13.7		97.3	2.9			62.9		65.3	53.7	_
Level of Service		В		F	A			E		E	D	
Approach Delay (s)		13.7			5.3			62.9			60.5	_
Approach LOS		В			А			E			E	
Intersection Summary												
HCM 2000 Control Delay			16.6	H	CM 2000	Level of S	Service		В			
HCM 2000 Volume to Capacity	ratio		0.69									
Actuated Cycle Length (s)			130.0		um of lost				24.0			
Intersection Capacity Utilization			64.2%	IC	U Level	of Service			С			
Analysis Period (min)			15									

	۶	+	\rightarrow	∢	+	•	•	1	1	1	Ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	↑		<u> </u>	≜ ⊅						स ी	1
Traffic Volume (vph)	54	735	0	80	440	73	0	0	0	84	4	60
Future Volume (vph)	54	735	0	80	440	73	0	0	0	84	4	60
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	5.0	5.5		5.0	5.5						5.5	5.5
Lane Util. Factor	1.00	1.00		1.00	0.95						1.00	1.00
Frpb, ped/bikes	1.00	1.00		1.00	0.99						1.00	1.00
Flpb, ped/bikes	1.00	1.00		1.00	1.00						1.00	1.00
Frt	1.00	1.00		1.00	0.98						1.00	0.85
Flt Protected	0.95	1.00		0.95	1.00						0.95	1.00
Satd. Flow (prot)	1770	1863		1770	3427						1778	1583
Flt Permitted	0.95	1.00		0.95	1.00						0.95	1.00
Satd. Flow (perm)	1770	1863		1770	3427						1778	1583
Peak-hour factor, PHF	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87
Adj. Flow (vph)	62	845	0	92	506	84	0	0	0	97	5	69
RTOR Reduction (vph)	0	0	0	0	6	0	0	0	0	0	0	63
Lane Group Flow (vph)	62	845	0	92	584	0	0	0	0	0	102	6
Confl. Peds. (#/hr)	8		34	34		8			5	5		
Confl. Bikes (#/hr)			8			64						
Turn Type	Prot	NA		Prot	NA					Split	NA	Perm
Protected Phases	1	6		5	2					4	4	
Permitted Phases												4
Actuated Green, G (s)	8.5	91.4		10.7	93.6						11.1	11.1
Effective Green, g (s)	8.5	92.0		10.7	94.2						11.3	11.3
Actuated g/C Ratio	0.07	0.71		0.08	0.72						0.09	0.09
Clearance Time (s)	5.0	6.1		5.0	6.1						5.7	5.7
Vehicle Extension (s)	1.0	2.5		1.0	2.5						2.5	2.5
Lane Grp Cap (vph)	115	1318		145	2483						154	137
v/s Ratio Prot	0.04	c0.45		c0.05	0.17						c0.06	
v/s Ratio Perm												0.00
v/c Ratio	0.54	0.64		0.63	0.24						0.66	0.04
Uniform Delay, d1	58.9	10.2		57.8	5.9						57.5	54.4
Progression Factor	0.81	0.38		1.58	0.33						1.00	1.00
Incremental Delay, d2	2.0	0.8		6.3	0.2						9.2	0.1
Delay (s)	49.5	4.7		97.3	2.2						66.8	54.5
Level of Service	D	А		F	А						E	D
Approach Delay (s)		7.8			15.0			0.0			61.8	
Approach LOS		А			В			А			E	
Intersection Summary												
HCM 2000 Control Delay			15.8	Н	CM 2000	Level of S	Service		В			
HCM 2000 Volume to Capac	ity ratio		0.64									
Actuated Cycle Length (s)			130.0		um of lost				16.0			
Intersection Capacity Utilizat	ion		70.2%	IC	U Level o	of Service			С			
Analysis Period (min)			15									

	٦	+	*	4	+	•	•	1	1	*	ţ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	۳	∱ î,		٦	∱ ⊅			र्च	1		र्भ	1
Traffic Volume (vph)	46	749	19	3	522	61	20	10	12	115	6	47
Future Volume (vph)	46	749	19	3	522	61	20	10	12	115	6	47
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	2100	2100	1900	2100	2100
Total Lost time (s)	5.0	5.5		5.0	5.5			5.7	5.7		5.7	5.7
Lane Util. Factor	1.00	0.95		1.00	0.95			1.00	1.00		1.00	1.00
Frpb, ped/bikes	1.00	0.99		1.00	0.98			1.00	0.96		1.00	0.93
Flpb, ped/bikes	1.00	1.00		1.00	1.00			0.97	1.00		0.97	1.00
Frt	1.00	0.80		1.00	0.98			1.00	0.85		1.00	0.85
Flt Protected	0.95	1.00		0.95	1.00			0.97	1.00		0.95	1.00
Satd. Flow (prot)	1770	2805		1770	3418			1936	1680		1914	1632
Flt Permitted	0.95	1.00		0.95	1.00			0.70	1.00		0.71	1.00
Satd. Flow (perm)	1770	2805		1770	3418			500	1680		1424	1632
Peak-hour factor, PHF	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82
Adj. Flow (vph)	56	913	23	4	637	74	24	12	15	140	7	57
RTOR Reduction (vph)	0	1	0	0	5	0	0	0	13	0	0	49
Lane Group Flow (vph)	56	935	0	4	706	0	0	36	2	0	147	8
Confl. Peds. (#/hr)	39		64	64		39	39		19	19		39
Confl. Bikes (#/hr)			26			65						
Bus Blockages (#/hr)	0	2	2	0	0	0	0	0	0	0	0	0
Turn Type	Prot	NA		Prot	NA		Perm	NA	Perm	Perm	NA	Perm
Protected Phases	1	6		5	2			8			4	
Permitted Phases							8		8	4		4
Actuated Green, G (s)	7.3	93.1		1.6	87.4			18.5	18.5		18.5	18.5
Effective Green, g (s)	7.3	93.7		1.6	88.0			18.5	18.5		18.5	18.5
Actuated g/C Ratio	0.06	0.72		0.01	0.68			0.14	0.14		0.14	0.14
Clearance Time (s)	5.0	6.1		5.0	6.1			5.7	5.7		5.7	5.7
Vehicle Extension (s)	1.0	2.5		1.0	2.5			2.5	2.5		2.5	2.5
Lane Grp Cap (vph)	99	2021		21	2313			71	239		202	232
v/s Ratio Prot	c0.03	c0.33		0.00	0.21				207		202	202
v/s Ratio Perm	00100	00100		0.00	0.2.1			0.07	0.00		c0.10	0.00
v/c Ratio	0.57	0.46		0.19	0.31			0.51	0.01		0.73	0.03
Uniform Delay, d1	59.8	7.6		63.6	8.6			51.5	47.9		53.3	48.1
Progression Factor	0.90	1.12		1.52	0.32			1.00	1.00		1.00	1.00
Incremental Delay, d2	3.6	0.6		1.3	0.3			4.1	0.0		11.6	0.0
Delay (s)	57.6	9.2		97.9	3.0			55.6	47.9		64.9	48.1
Level of Service	E	A		F	A			E	D		E	D
Approach Delay (s)	_	11.9		•	3.5			53.4			60.2	
Approach LOS		В			A			D			E	
Intersection Summary												
HCM 2000 Control Delay			14.9	H	CM 2000	Level of S	Service		В			
HCM 2000 Volume to Capac	city ratio		0.52									
Actuated Cycle Length (s)			130.0	Si	um of lost	time (s)			16.2			
Intersection Capacity Utilization	tion		67.0%			of Service			C			
Analysis Period (min)			15		2 201011	0 0 0 0 0 0			Ū			
c Critical Lane Group												

HCM Signalized Intersection Capacity Analysis 8: Mary Avenue & Homestead Road

	٦	→	*	4	+	•	•	1	1	×	ţ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ľ	∱ î,		ľ	∱ }		1	4Î		ľ	ا	1
Traffic Volume (vph)	66	720	54	23	440	143	70	57	71	264	48	67
Future Volume (vph)	66	720	54	23	440	143	70	57	71	264	48	67
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	5.5	5.5		5.5	5.5		5.6	5.6		5.5	5.5	5.5
Lane Util. Factor	1.00	0.95		1.00	0.95		1.00	1.00		0.95	0.95	1.00
Frpb, ped/bikes	1.00	0.98		1.00	0.94		1.00	0.79		1.00	1.00	0.91
Flpb, ped/bikes	1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00	1.00
Frt	1.00	0.99		1.00	0.96		1.00	0.92		1.00	1.00	0.85
Flt Protected	0.95	1.00		0.95	1.00		0.95	1.00		0.95	0.97	1.00
Satd. Flow (prot)	1770	3409		1770	3181		1770	1356		1681	1712	1436
Flt Permitted	0.95	1.00		0.95	1.00		0.95	1.00		0.95	0.97	1.00
Satd. Flow (perm)	1770	3409		1770	3181		1770	1356		1681	1712	1436
Peak-hour factor, PHF	0.76	0.76	0.76	0.76	0.76	0.76	0.76	0.76	0.76	0.76	0.76	0.76
Adj. Flow (vph)	87	947	71	30	579	188	92	75	93	347	63	88
RTOR Reduction (vph)	0	0	0	0	0	0	0	0	0	0	0	0
Lane Group Flow (vph)	87	1018	0	30	767	0	92	168	0	219	191	88
Confl. Peds. (#/hr)	113		148	148		113	57		339	339		57
Confl. Bikes (#/hr)			54			13			53			3
Bus Blockages (#/hr)	0	2	0	0	4	4	0	0	0	0	0	0
Turn Type	Prot	NA		Prot	NA		Split	NA		Split	NA	Perm
Protected Phases	1	6		5	2		3	3		4	4	
Permitted Phases												4
Actuated Green, G (s)	11.8	49.4		7.2	44.8		25.4	25.4		24.7	24.7	24.7
Effective Green, g (s)	11.8	50.0		7.2	45.4		25.4	25.4		25.3	25.3	25.3
Actuated g/C Ratio	0.09	0.38		0.06	0.35		0.20	0.20		0.19	0.19	0.19
Clearance Time (s)	5.5	6.1		5.5	6.1		5.6	5.6		6.1	6.1	6.1
Vehicle Extension (s)	1.0	2.5		1.0	2.5		1.0	1.0		2.5	2.5	2.5
Lane Grp Cap (vph)	160	1311		98	1110		345	264		327	333	279
v/s Ratio Prot	c0.05	c0.30		0.02	0.24		0.05	c0.12		c0.13	0.11	
v/s Ratio Perm												0.06
v/c Ratio	0.54	0.78		0.31	0.69		0.27	0.64		0.67	0.57	0.32
Uniform Delay, d1	56.5	35.1		59.0	36.3		44.4	48.1		48.5	47.5	44.9
Progression Factor	0.95	1.04		1.36	0.93		1.00	1.00		1.00	1.00	1.00
Incremental Delay, d2	1.9	4.2		0.6	3.4		0.2	3.7		4.6	2.0	0.5
Delay (s)	55.8	40.7		80.8	37.1		44.5	51.7		53.1	49.4	45.4
Level of Service	E	D		F	D		D	D		D	D	D
Approach Delay (s)		41.9			38.7			49.2			50.3	
Approach LOS		D			D			D			D	
Intersection Summary												
HCM 2000 Control Delay			43.2	Н	CM 2000	Level of S	Service		D			
HCM 2000 Volume to Capa	acity ratio		0.72	-					00.1			
Actuated Cycle Length (s)			130.0		um of lost				22.1			_
Intersection Capacity Utiliza	ation		100.5%	IC	U Level (of Service			G			
Analysis Period (min)			15									
c Critical Lane Group												

	٦	→	\mathbf{F}	4	Ļ	•	•	1	1	1	ţ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	۲	††		۲	A						\$	
Traffic Volume (vph)	27	1050	86	20	539	68	0	0	0	56	8	30
Future Volume (vph)	27	1050	86	20	539	68	0	0	0	56	8	30
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	5.0	5.5		5.0	5.5						5.6	
Lane Util. Factor	1.00	0.95		1.00	0.95						1.00	
Frpb, ped/bikes	1.00	0.95		1.00	0.97						0.94	
Flpb, ped/bikes	1.00	1.00		1.00	1.00						0.88	
Frt	1.00	0.99		1.00	0.98						0.96	
Flt Protected	0.95	1.00		0.95	1.00						0.97	
Satd. Flow (prot)	1770	3313		1770	3352						1422	
Flt Permitted	0.95	1.00		0.95	1.00						0.97	
Satd. Flow (perm)	1770	3313		1770	3352						1422	
Peak-hour factor, PHF	0.78	0.78	0.78	0.78	0.78	0.78	0.78	0.78	0.78	0.78	0.78	0.78
Adj. Flow (vph)	35	1346	110	26	691	87	0	0	0	72	10	38
RTOR Reduction (vph)	0	4	0	0	6	0	0	0	0	0	13	0
Lane Group Flow (vph)	35	1452	0	26	772	0	0	0	0	0	107	0
Confl. Peds. (#/hr)	74		198	198		74	123		131	131		123
Confl. Bikes (#/hr)			40			9			31			1
Bus Blockages (#/hr)	0	4	0	0	4	0	0	0	0	0	0	0
Turn Type	Prot	NA	-	Prot	NA	-	-	-	-	Perm	NA	
Protected Phases	5	2		1	6					1 01111	4	
Permitted Phases	Ū	-		•	Ū					4	•	
Actuated Green, G (s)	5.0	83.9		4.4	83.3					•	25.0	
Effective Green, g (s)	5.0	84.5		4.4	83.9						25.0	
Actuated g/C Ratio	0.04	0.65		0.03	0.65						0.19	
Clearance Time (s)	5.0	6.1		5.0	6.1						5.6	
Vehicle Extension (s)	1.0	2.5		1.0	2.5						2.5	
Lane Grp Cap (vph)	68	2153		59	2163						273	
v/s Ratio Prot	c0.02	c0.44		0.01	0.23						275	
v/s Ratio Perm	C0.02	0.77		0.01	0.25						0.08	
v/c Ratio	0.51	0.67		0.44	0.36						0.39	
Uniform Delay, d1	61.3	14.2		61.6	10.6						45.9	
Progression Factor	0.97	1.06		1.45	0.31						1.00	
Incremental Delay, d2	2.1	1.00		1.7	0.31						0.7	
Delay (s)	61.4	16.3		91.2	3.7						46.5	
Level of Service	E	но.5 В		F	 А						40.3 D	
Approach Delay (s)	L	17.4		1	6.5			0.0			46.5	
Approach LOS		B			A			A			40.3 D	
Intersection Summary												
HCM 2000 Control Delay			15.2	Н	CM 2000	Level of S	Service		В			
HCM 2000 Volume to Capa	city ratio		0.61									
Actuated Cycle Length (s)			130.0	S	um of los	t time (s)			16.1			
Intersection Capacity Utiliza	ation		62.3%	IC	U Level	of Service			В			
Analysis Period (min)			15									
c Critical Lane Group												

	≯	-	\mathbf{F}	4	+	•	1	Ť	*	1	ţ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	۳	∱ î≽		٦	∱ ₽		ሻሻ	∱ }		٦	↑ ĵ≽	
Traffic Volume (vph)	96	715	274	209	429	165	201	256	239	183	351	76
Future Volume (vph)	96	715	274	209	429	165	201	256	239	183	351	76
Ideal Flow (vphpl)	1900	2100	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	5.0	5.5		5.0	5.5		5.0	5.1		5.0	5.1	
Lane Util. Factor	1.00	0.95		1.00	0.95		0.97	0.95		1.00	0.95	
Frpb, ped/bikes	1.00	0.95		1.00	0.96		1.00	0.96		1.00	0.99	
Flpb, ped/bikes	1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00	
Frt	1.00	0.96		1.00	0.96		1.00	0.93		1.00	0.97	
Flt Protected	0.95	1.00		0.95	1.00		0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1770	3575		1770	3249		3433	3153		1770	3398	
Flt Permitted	0.95	1.00		0.95	1.00		0.95	1.00		0.95	1.00	
Satd. Flow (perm)	1770	3575		1770	3249		3433	3153		1770	3398	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	104	777	298	227	466	179	218	278	260	199	382	83
RTOR Reduction (vph)	0	28	0	0	29	0	0	138	0	0	15	0
Lane Group Flow (vph)	104	1047	0	227	616	0	218	400	0	199	450	0
Confl. Peds. (#/hr)	94		114	114		94	59		58	58		59
Confl. Bikes (#/hr)	D 1		38	. .		3	. .		3	D .		1
Turn Type	Prot	NA		Prot	NA		Prot	NA		Prot	NA	
Protected Phases	5	2		1	6		3	8		7	4	
Permitted Phases	11.0	40.4		10 (F1 0		11 F	20.4		15.0	22.7	
Actuated Green, G (s)	11.2	43.4		19.6	51.8		11.5	29.4		15.8	33.7	_
Effective Green, g (s)	11.2	44.0		19.6	52.4		11.5	30.0		15.8	34.3	
Actuated g/C Ratio	0.09 5.0	0.34 6.1		0.15	0.40 6.1		0.09 5.0	0.23 5.7		0.12 5.0	0.26 5.7	
Clearance Time (s) Vehicle Extension (s)	5.0 1.0	2.5		5.0 1.0	2.5		1.0	2.5		5.0 1.0	2.5	
	152	1210		266	1309		303	727		215	896	
Lane Grp Cap (vph) v/s Ratio Prot	0.06	c0.29		200 c0.13	0.19		0.06	c0.13		c0.11	c0.13	
v/s Ratio Perm	0.00	CU.29		CU.13	0.19		0.00	CU. 13		CO.11	CU.15	
v/c Ratio	0.68	0.86		0.85	0.47		0.72	0.55		0.93	0.50	
Uniform Delay, d1	57.7	40.2		53.8	28.6		57.7	44.1		56.5	40.6	
Progression Factor	0.88	1.37		1.00	1.00		1.00	1.00		1.00	1.00	
Incremental Delay, d2	7.5	6.5		21.6	1.00		6.7	0.7		40.4	0.3	
Delay (s)	58.0	61.5		75.4	29.8		64.3	44.8		96.9	40.9	
Level of Service	50.0 E	E		E	27.0 C		E	11.0 D		F	-10.7 D	
Approach Delay (s)	-	61.2		-	41.7		-	50.4			57.7	
Approach LOS		E			D			D			E	
Intersection Summary		_			5			5			_	
HCM 2000 Control Delay			53.3		CM 2000	Level of S	Service		D			
HCM 2000 Volume to Capa	city ratio		0.78			LEVELUL			U			
Actuated Cycle Length (s)			130.0	Si	um of lost	time (s)			20.6			
Intersection Capacity Utiliza	ation		94.8%			of Service			20.0 F			
Analysis Period (min)			^{94.070}	iC					1			
			15									

	٦	+	*	•	ł	*	<	Ť	1	1	Ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		<u>स</u> ्	1	<u>۲</u>	र्भ	1	ሻ	- ††	1	ሻ	- † †	1
Traffic Volume (vph)	5	28	22	250	23	130	18	541	292	499	1334	13
Future Volume (vph)	5	28	22	250	23	130	18	541	292	499	1334	13
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		5.2	5.2	5.1	5.1	5.1	4.7	5.8	5.8	4.9	5.8	5.8
Lane Util. Factor		1.00	1.00	0.95	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00
Frpb, ped/bikes		1.00	0.96	1.00	1.00	0.98	1.00	1.00	0.97	1.00	1.00	0.97
Flpb, ped/bikes		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt		1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85
Flt Protected		0.99	1.00	0.95	0.96	1.00	0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (prot)		1849	1525	1681	1699	1559	1770	3539	1530	1770	3539	1534
Flt Permitted		0.99	1.00	0.95	0.96	1.00	0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (perm)		1849	1525	1681	1699	1559	1770	3539	1530	1770	3539	1534
Peak-hour factor, PHF	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96
Adj. Flow (vph)	5	29	23	260	24	135	19	564	304	520	1390	14
RTOR Reduction (vph)	0	0	21	0	0	116	0	0	220	0	0	6
Lane Group Flow (vph)	0	34	2	140	144	19	19	564	84	520	1390	8
Confl. Peds. (#/hr)			9	9								1
Confl. Bikes (#/hr)			5			2			10			13
Turn Type	Split	NA	Perm	Split	NA	Perm	Prot	NA	Perm	Prot	NA	Perm
Protected Phases	. 4	4		3	3		5	2		1	6	
Permitted Phases			4			3			2			6
Actuated Green, G (s)		10.3	10.3	17.9	17.9	17.9	3.4	35.9	35.9	44.9	77.6	77.6
Effective Green, g (s)		10.3	10.3	17.9	17.9	17.9	3.4	35.9	35.9	44.9	77.6	77.6
Actuated g/C Ratio		0.08	0.08	0.14	0.14	0.14	0.03	0.28	0.28	0.35	0.60	0.60
Clearance Time (s)		5.2	5.2	5.1	5.1	5.1	4.7	5.8	5.8	4.9	5.8	5.8
Vehicle Extension (s)		4.0	4.0	4.0	4.0	4.0	3.0	4.0	4.0	3.0	4.0	4.0
Lane Grp Cap (vph)		146	120	231	233	214	46	977	422	611	2112	915
v/s Ratio Prot		c0.02		0.08	c0.08		0.01	0.16		c0.29	c0.39	
v/s Ratio Perm			0.00			0.01			0.05			0.01
v/c Ratio		0.23	0.02	0.61	0.62	0.09	0.41	0.58	0.20	0.85	0.66	0.01
Uniform Delay, d1		56.1	55.2	52.7	52.8	48.9	62.3	40.5	36.0	39.4	17.4	10.6
Progression Factor		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Incremental Delay, d2		1.1	0.1	5.1	5.5	0.2	5.9	1.0	0.3	11.0	1.6	0.0
Delay (s)		57.3	55.2	57.9	58.3	49.2	68.2	41.5	36.4	50.4	19.0	10.6
Level of Service		E	E	E	E	D	E	D	D	D	В	В
Approach Delay (s)		56.4			55.2			40.3			27.4	
Approach LOS		E			E			D			С	
Intersection Summary												
HCM 2000 Control Delay			35.0	Н	CM 2000	Level of	Service		С			
HCM 2000 Volume to Capa	city ratio		0.71									
Actuated Cycle Length (s)	5		130.0	S	um of los	t time (s)			21.0			
Intersection Capacity Utiliza	ition		71.2%			of Service			С			
Analysis Period (min)			15									
c Critical Lana Croup												

	٦	→	+	×	1	1
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		•	•	1	5	1
Traffic Volume (veh/h)	0	816	478	116	106	23
Future Volume (Veh/h)	0	816	478	116	106	23
Sign Control	Ū	Free	Free	110	Stop	20
Grade		0%	0%		0%	
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94
Hourly flow rate (vph)	0	868	509	123	113	24
Pedestrians	Ū	000	007	120	3	
Lane Width (ft)					12.0	
Walking Speed (ft/s)					4.0	
Percent Blockage					0	
Right turn flare (veh)					Ŭ	7
Median type		None	None			,
Median storage veh)						
Upstream signal (ft)		171				
pX, platoon unblocked		171			0.99	
vC, conflicting volume	635				1380	512
vC1, stage 1 conf vol	000				1000	012
vC2, stage 2 conf vol						
vCu, unblocked vol	635				1379	512
tC, single (s)	4.1				6.4	6.2
tC, 2 stage (s)					5	
tF (s)	2.2				3.5	3.3
p0 queue free %	100				28	96
cM capacity (veh/h)	946				158	561
Direction, Lane #	EB 1	WB 1	WB 2	SB 1		-
Volume Total	868	509	123	137		
Volume Left	000	0	0	113		
Volume Right	0	0	123	24		
cSH	1700	1700	1700	191		
Volume to Capacity	0.51	0.30	0.07	0.72		
Queue Length 95th (ft)	0.51	0.50	0.07	114		
Control Delay (s)	0.0	0.0	0.0	60.6		
Lane LOS	0.0	0.0	0.0	00.0 F		
Approach Delay (s)	0.0	0.0		60.6		
Approach LOS	0.0	0.0		00.0 F		
Intersection Summary						
Average Delay			5.1			
Intersection Capacity Utiliz	ration		55.5%			of Service
Analysis Period (min)	-01011		55.5% 15	iC	U LEVEI (J JEI VILE
Analysis Penou (min)			10			

	٦	-	$\mathbf{\hat{z}}$	4	+	×	٩.	Ť	۲	1	ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	4		ሻ	4			4			4	
Traffic Volume (veh/h)	26	855	43	15	427	37	10	1	14	23	0	30
Future Volume (Veh/h)	26	855	43	15	427	37	10	1	14	23	0	30
Sign Control		Free			Free			Stop			Stop	
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98
Hourly flow rate (vph)	27	872	44	15	436	38	10	1	14	23	0	31
Pedestrians					4			24			6	
Lane Width (ft)					12.0			12.0			12.0	
Walking Speed (ft/s)					4.0			4.0			4.0	
Percent Blockage					0			2			1	
Right turn flare (veh)												
Median type		None			None							
Median storage veh)												
Upstream signal (ft)		1198			1012							
pX, platoon unblocked	0.92						0.92	0.92		0.92	0.92	0.92
vC, conflicting volume	480			940			1469	1482	922	1436	1485	461
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	394			940			1466	1480	922	1430	1484	374
tC, single (s)	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
tC, 2 stage (s)												
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free %	97			98			88	99	96	75	100	95
cM capacity (veh/h)	1069			715			86	108	320	92	107	617
Direction, Lane #	EB 1	EB 2	WB 1	WB 2	NB 1	SB 1						
Volume Total	27	916	15	474	25	54						
Volume Left	27	0	15	0	10	23						
Volume Right	0	44	0	38	10	31						
cSH	1069	1700	715	1700	148	180						
Volume to Capacity	0.03	0.54	0.02	0.28	0.17	0.30						
Queue Length 95th (ft)	2	0.54	2	0.20	15	30						
Control Delay (s)	8.5	0.0	10.1	0.0	34.3	33.2						
Lane LOS	0.5 A	0.0	B	0.0	D	55.2 D						
Approach Delay (s)	0.2		0.3		34.3	33.2						
Approach LOS	0.2		0.5		54.5 D	55.2 D						
Intersection Summary												
Average Delay			2.0									
Intersection Capacity Utiliz	ation		2.0 59.0%	10	CU Level o	of Sorvice			В			
Analysis Period (min)	auun			IC		JI SEIVICE			D			
Analysis Periou (min)			15									

	٦	+	\mathbf{F}	*	+	•	1	1	1	1	Ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	eî 👘		<u> </u>	≜ ⊅			4			र्च	1
Traffic Volume (vph)	53	786	16	4	440	74	12	0	6	39	1	45
Future Volume (vph)	53	786	16	4	440	74	12	0	6	39	1	45
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	5.0	5.5		5.0	5.5			5.6			5.6	5.6
Lane Util. Factor	1.00	1.00		1.00	0.95			1.00			1.00	1.00
Frpb, ped/bikes	1.00	1.00		1.00	0.99			1.00			1.00	0.98
Flpb, ped/bikes	1.00	1.00		1.00	1.00			1.00			1.00	1.00
Frt	1.00	1.00		1.00	0.98			0.95			1.00	0.85
Flt Protected	0.95	1.00		0.95	1.00			0.97			0.95	1.00
Satd. Flow (prot)	1770	1855		1770	3432			1718			1776	1559
Flt Permitted	0.95	1.00		0.95	1.00			0.85			0.73	1.00
Satd. Flow (perm)	1770	1855		1770	3432			1501			1362	1559
Peak-hour factor, PHF	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98
Adj. Flow (vph)	54	802	16	4	449	76	12	0	6	40	1	46
RTOR Reduction (vph)	0	0	0	0	7	0	0	15	0	0	0	39
Lane Group Flow (vph)	54	818	0	4	518	0	0	3	0	0	41	7
Confl. Peds. (#/hr)	8		8	8		8	2					2
Confl. Bikes (#/hr)			16			25						
Turn Type	Prot	NA		Prot	NA		Perm	NA		Perm	NA	Perm
Protected Phases	5	2		1	6			8			4	
Permitted Phases							8			4		4
Actuated Green, G (s)	7.5	110.3		1.4	104.2			21.6			21.6	21.6
Effective Green, g (s)	7.5	110.9		1.4	104.8			21.6			21.6	21.6
Actuated g/C Ratio	0.05	0.74		0.01	0.70			0.14			0.14	0.14
Clearance Time (s)	5.0	6.1		5.0	6.1			5.6			5.6	5.6
Vehicle Extension (s)	1.0	2.5		1.0	2.5			2.5			2.5	2.5
Lane Grp Cap (vph)	88	1371		16	2397			216			196	224
v/s Ratio Prot	c0.03	c0.44		0.00	0.15							
v/s Ratio Perm								0.00			c0.03	0.00
v/c Ratio	0.61	0.60		0.25	0.22			0.01			0.21	0.03
Uniform Delay, d1	69.8	9.1		73.8	8.0			55.1			56.7	55.2
Progression Factor	1.00	1.00		1.41	1.17			1.00			1.00	1.00
Incremental Delay, d2	8.6	1.9		2.9	0.2			0.0			0.4	0.0
Delay (s)	78.4	11.0		106.8	9.6			55.1			57.1	55.2
Level of Service	E	В		F	А			E			E	E
Approach Delay (s)		15.2			10.3			55.1			56.1	
Approach LOS		В			В			E			E	
Intersection Summary												
HCM 2000 Control Delay			16.3	Н	CM 2000	Level of 3	Service		В			
HCM 2000 Volume to Capac	city ratio		0.55									
Actuated Cycle Length (s)			150.0		um of lost				16.1			
Intersection Capacity Utilization	tion		61.0%	IC	CU Level o	of Service			В			
Analysis Period (min)			15									

	۶	+	\mathbf{F}	4	Ļ	•	<	1	1	*	ţ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		eî 👘		۳.	- † †			4		ሻ	eî 👘	
Traffic Volume (vph)	0	833	8	27	419	0	5	0	18	293	13	96
Future Volume (vph)	0	833	8	27	419	0	5	0	18	293	13	96
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		6.0		6.0	6.0			6.0		6.0	6.0	
Lane Util. Factor		1.00		1.00	0.95			1.00		1.00	1.00	
Frpb, ped/bikes		1.00		1.00	1.00			1.00		1.00	0.99	
Flpb, ped/bikes		1.00		1.00	1.00			1.00		1.00	1.00	
Frt		1.00		1.00	1.00			0.89		1.00	0.87	
Flt Protected		1.00		0.95	1.00			0.99		0.95	1.00	
Satd. Flow (prot)		1859		1770	3539			1645		1770	1595	
Flt Permitted		1.00		0.95	1.00			0.99		0.95	1.00	
Satd. Flow (perm)		1859		1770	3539			1645		1770	1595	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	0	905	9	29	455	0	5	0	20	318	14	104
RTOR Reduction (vph)	0	0	0	0	0	0	0	25	0	0	83	0
Lane Group Flow (vph)	0	914	0	29	455	0	0	0	0	318	35	0
Confl. Peds. (#/hr)	8		6	6		8	2					2
Confl. Bikes (#/hr)			18			29						
Turn Type		NA		Prot	NA		Split	NA		Split	NA	
Protected Phases		2		1	6		3	3		4	4	
Permitted Phases												
Actuated Green, G (s)		89.5		5.2	99.7			3.3		31.0	31.0	
Effective Green, g (s)		89.5		4.2	99.7			2.3		30.0	30.0	
Actuated g/C Ratio		0.60		0.03	0.66			0.02		0.20	0.20	
Clearance Time (s)		6.0		5.0	6.0			5.0		5.0	5.0	
Vehicle Extension (s)		5.0		3.0	5.0			3.0		3.0	3.0	
Lane Grp Cap (vph)		1109		49	2352			25		354	319	
v/s Ratio Prot		c0.49		c0.02	0.13			c0.00		c0.18	0.02	
v/s Ratio Perm												
v/c Ratio		0.82		0.59	0.19			0.02		0.90	0.11	
Uniform Delay, d1		24.0		72.1	9.7			72.7		58.5	49.1	
Progression Factor		0.74		0.95	0.75			1.00		1.00	1.00	
Incremental Delay, d2		6.2		17.6	0.2			0.2		24.2	0.2	
Delay (s)		23.9		86.3	7.5			73.0		82.7	49.2	
Level of Service		С		F	А			E		F	D	
Approach Delay (s)		23.9			12.2			73.0			73.7	
Approach LOS		С			В			E			E	
Intersection Summary												
HCM 2000 Control Delay			33.2	Н	CM 2000	Level of S	Service		С			
HCM 2000 Volume to Capac	city ratio		0.82		2000							
Actuated Cycle Length (s)			150.0	S	um of losi	t time (s)			24.0			
Intersection Capacity Utilizat	tion		77.2%			of Service			D			
Analysis Period (min)			15		3 _ 3. 61 4							
			10									

	٦	+	•	4	+	•	≺	1	1	1	Ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	<u>۲</u>	↑		<u>۲</u>	≜ †≱						4	1
Traffic Volume (vph)	43	1031	0	69	391	46	0	0	0	5 9	5	51
Future Volume (vph)	43	1031	0	69	391	46	0	0	0	59	5	51
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	5.0	5.5		5.0	5.5						5.5	5.5
Lane Util. Factor	1.00	1.00		1.00	0.95						1.00	1.00
Frpb, ped/bikes	1.00	1.00		1.00	0.99						1.00	1.00
Flpb, ped/bikes	1.00	1.00		1.00	1.00						1.00	1.00
Frt	1.00	1.00		1.00	0.98						1.00	0.85
Flt Protected	0.95	1.00		0.95	1.00						0.96	1.00
Satd. Flow (prot)	1770	1863		1770	3459						1780	1583
Flt Permitted	0.95	1.00		0.95	1.00						0.96	1.00
Satd. Flow (perm)	1770	1863		1770	3459						1780	1583
Peak-hour factor, PHF	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Adj. Flow (vph)	46	1097	0	73	416	49	0	0	0	63	5	54
RTOR Reduction (vph)	0	0	0	0	7	0	0	0	0	0	0	50
Lane Group Flow (vph)	46	1097	0	73	458	0	0	0	0	0	68	4
Confl. Peds. (#/hr)	9		5	5		9				2		
Confl. Bikes (#/hr)			14			23						
Turn Type	Prot	NA		Prot	NA					Split	NA	Perm
Protected Phases	1	6		5	2					4	4	
Permitted Phases												4
Actuated Green, G (s)	48.2	113.1		10.3	75.2						9.8	9.8
Effective Green, g (s)	48.2	113.7		10.3	75.8						10.0	10.0
Actuated g/C Ratio	0.32	0.76		0.07	0.51						0.07	0.07
Clearance Time (s)	5.0	6.1		5.0	6.1						5.7	5.7
Vehicle Extension (s)	1.0	2.5		1.0	2.5						2.5	2.5
Lane Grp Cap (vph)	568	1412		121	1747						118	105
v/s Ratio Prot	0.03	c0.59		c0.04	0.13						c0.04	
v/s Ratio Perm												0.00
v/c Ratio	0.08	0.78		0.60	0.26						0.58	0.03
Uniform Delay, d1	35.5	10.7		67.9	21.2						67.9	65.5
Progression Factor	0.84	0.62		1.30	0.80						1.00	1.00
Incremental Delay, d2	0.0	2.6		5.7	0.1						5.5	0.1
Delay (s)	29.9	9.2		93.7	17.0						73.4	65.6
Level of Service	С	А		F	В						E	E
Approach Delay (s)		10.0			27.4			0.0			70.0	
Approach LOS		В			С			А			E	
Intersection Summary												
HCM 2000 Control Delay			19.3	Н	CM 2000	Level of S	Service		В			
HCM 2000 Volume to Capa	city ratio		0.75									
Actuated Cycle Length (s)			150.0	S	um of lost	t time (s)			16.0			
Intersection Capacity Utilization	ntion		73.2%	IC	CU Level	of Service			D			
Analysis Period (min)			15									
a Critical Lana Croup												

	۶	+	$\mathbf{\hat{z}}$	*	+	•	1	1	1	1	ţ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	۲	A⊅		٦	A			र्भ	1		र्स	7
Traffic Volume (vph)	32	1027	25	13	458	41	6	3	13	44	12	41
Future Volume (vph)	32	1027	25	13	458	41	6	3	13	44	12	41
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	2100	2100	1900	2100	2100
Total Lost time (s)	5.0	5.5		5.0	5.5			5.7	5.7		5.7	5.7
Lane Util. Factor	1.00	0.95		1.00	0.95			1.00	1.00		1.00	1.00
Frpb, ped/bikes	1.00	1.00		1.00	0.99			1.00	1.00		1.00	0.98
Flpb, ped/bikes	1.00	1.00		1.00	1.00			1.00	1.00		1.00	1.00
Frt	1.00	0.80		1.00	0.99			1.00	0.85		1.00	0.85
Flt Protected	0.95	1.00		0.95	1.00			0.97	1.00		0.96	1.00
Satd. Flow (prot)	1770	2817		1770	3478			1990	1750		1981	1716
Flt Permitted	0.95	1.00		0.95	1.00			0.81	1.00		0.77	1.00
Satd. Flow (perm)	1770	2817		1770	3478			500	1750		1579	1716
Peak-hour factor, PHF	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
Adj. Flow (vph)	34	1104	27	14	492	44	6	3	14	47	13	44
RTOR Reduction (vph)	0	1	0	0	3	0	0	0	13	0	0	41
Lane Group Flow (vph)	34	1130	0	14	533	0	0	9	1	0	60	3
Confl. Peds. (#/hr)	8		6	6		8	1					1
Confl. Bikes (#/hr)			24			24						2
Bus Blockages (#/hr)	0	2	2	0	0	0	0	0	0	0	0	0
Turn Type	Prot	NA		Prot	NA		Perm	NA	Perm	Perm	NA	Perm
Protected Phases	1	6		5	2			8			4	
Permitted Phases							8		8	4		4
Actuated Green, G (s)	6.7	118.3		3.2	114.8			11.7	11.7		11.7	11.7
Effective Green, g (s)	6.7	118.9		3.2	115.4			11.7	11.7		11.7	11.7
Actuated g/C Ratio	0.04	0.79		0.02	0.77			0.08	0.08		0.08	0.08
Clearance Time (s)	5.0	6.1		5.0	6.1			5.7	5.7		5.7	5.7
Vehicle Extension (s)	1.0	2.5		1.0	2.5			2.5	2.5		2.5	2.5
Lane Grp Cap (vph)	79	2232		37	2675			39	136		123	133
v/s Ratio Prot	c0.02	c0.40		0.01	0.15			07	100		120	100
v/s Ratio Perm	00.02	00.10		0.01	0.10			0.02	0.00		c0.04	0.00
v/c Ratio	0.43	0.51		0.38	0.20			0.23	0.00		0.49	0.03
Uniform Delay, d1	69.8	5.4		72.4	4.7			64.9	63.8		66.3	63.9
Progression Factor	1.08	1.76		0.81	1.14			1.00	1.00		1.00	1.00
Incremental Delay, d2	0.9	0.5		2.1	0.2			2.2	0.0		2.2	0.1
Delay (s)	76.3	10.0		61.1	5.5			67.1	63.8		68.5	63.9
Level of Service	, o.s	B		E	0.0 A			E	E		E	E
Approach Delay (s)		11.9		L	7.0			65.1			66.6	L
Approach LOS		B			7.0 A			E			E	
Intersection Summary												
HCM 2000 Control Delay			14.2	н	CM 2000	Level of 9	Service		В			
HCM 2000 Volume to Capa	city ratio		0.51		2000	Leverors			D			
Actuated Cycle Length (s)			150.0	S	um of lost	time (s)			16.2			
Intersection Capacity Utiliza	ation		56.3%		CU Level				B			
Analysis Period (min)			15									
c Critical Lane Group			10									

HCM Signalized Intersection Capacity Analysis 8: Mary Avenue & Homestead Road

	۶	+	*	4	Ļ	•	•	1	1	*	ţ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	٦	∱ î≽		٦	↑ ĵ≽		٦	et 🗧		٦	र्भ	1
Traffic Volume (vph)	58	1019	5	15	457	178	4	9	12	458	12	100
Future Volume (vph)	58	1019	5	15	457	178	4	9	12	458	12	100
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	5.5	5.5		5.5	5.5		5.6	5.6		5.5	5.5	5.5
Lane Util. Factor	1.00	0.95		1.00	0.95		1.00	1.00		0.95	0.95	1.00
Frpb, ped/bikes	1.00	1.00		1.00	0.98		1.00	0.98		1.00	1.00	0.98
Flpb, ped/bikes	1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00	1.00
Frt	1.00	1.00		1.00	0.96		1.00	0.92		1.00	1.00	0.85
Flt Protected	0.95	1.00		0.95	1.00		0.95	1.00		0.95	0.96	1.00
Satd. Flow (prot)	1770	3522		1770	3308		1770	1678		1681	1691	1552
Flt Permitted	0.95	1.00		0.95	1.00		0.95	1.00		0.95	0.96	1.00
Satd. Flow (perm)	1770	3522		1770	3308		1770	1678		1681	1691	1552
Peak-hour factor, PHF	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Adj. Flow (vph)	62	1084	5	16	486	189	4	10	13	487	13	106
RTOR Reduction (vph)	0	0	0	0	0	0	0	0	0	0	0	0
Lane Group Flow (vph)	62	1089	0	16	675	0	4	23	0	307	193	106
Confl. Peds. (#/hr)	12		13	13		12	3		8	8		3
Confl. Bikes (#/hr)			16			15			2			3
Bus Blockages (#/hr)	0	2	0	0	4	4	0	0	0	0	0	0
Turn Type	Prot	NA		Prot	NA		Split	NA		Split	NA	Perm
Protected Phases	1	6		5	2		3	3		4	4	
Permitted Phases												4
Actuated Green, G (s)	8.9	65.1		4.8	61.0		26.0	26.0		30.8	30.8	30.8
Effective Green, g (s)	8.9	65.7		4.8	61.6		26.0	26.0		31.4	31.4	31.4
Actuated g/C Ratio	0.06	0.44		0.03	0.41		0.17	0.17		0.21	0.21	0.21
Clearance Time (s)	5.5	6.1		5.5	6.1		5.6	5.6		6.1	6.1	6.1
Vehicle Extension (s)	1.0	2.5		1.0	2.5		1.0	1.0		2.5	2.5	2.5
Lane Grp Cap (vph)	105	1542		56	1358		306	290		351	353	324
v/s Ratio Prot	c0.04	c0.31		0.01	0.20		0.00	c0.01		c0.18	0.11	
v/s Ratio Perm												0.07
v/c Ratio	0.59	0.71		0.29	0.50		0.01	0.08		0.87	0.55	0.33
Uniform Delay, d1	68.8	34.3		70.9	32.7		51.4	52.0		57.4	52.9	50.3
Progression Factor	1.13	0.61		1.68	0.32		1.00	1.00		1.00	1.00	1.00
Incremental Delay, d2	5.2	2.5		1.0	1.3		0.0	0.0		20.6	1.4	0.4
Delay (s)	82.9	23.3		119.9	11.9		51.4	52.0		78.0	54.3	50.8
Level of Service	F	С		F	В		D	D		E	D	D
Approach Delay (s)		26.6			14.4			51.9			65.7	
Approach LOS		С			В			D			E	
Intersection Summary												
HCM 2000 Control Delay			33.0	Н	CM 2000	Level of S	Service		С			
HCM 2000 Volume to Capa	city ratio		0.63									
Actuated Cycle Length (s)			150.0	Si	um of losi	t time (s)			22.1			
Intersection Capacity Utiliza	ation		72.9%	IC	U Level	of Service			С			
Analysis Period (min)			15									
c Critical Lane Group												

	۶	-	\mathbf{r}	∢	-	•	1	Ť	1	1	ţ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	5	††		٦	† 1>						4	
Traffic Volume (vph)	24	1427	39	22	585	62	0	0	0	47	3	25
Future Volume (vph)	24	1427	39	22	585	62	0	0	0	47	3	25
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	5.0	5.5		5.0	5.5						5.6	
Lane Util. Factor	1.00	0.95		1.00	0.95						1.00	
Frpb, ped/bikes	1.00	1.00		1.00	0.99						0.99	
Flpb, ped/bikes	1.00	1.00		1.00	1.00						0.99	
Frt	1.00	1.00		1.00	0.99						0.96	
Flt Protected	0.95	1.00		0.95	1.00						0.97	
Satd. Flow (prot)	1770	3490		1770	3439						1699	
Flt Permitted	0.95	1.00		0.95	1.00						0.97	
Satd. Flow (perm)	1770	3490		1770	3439						1699	
Peak-hour factor, PHF	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91
Adj. Flow (vph)	26	1568	43	24	643	68	0	0	0	52	3	27
RTOR Reduction (vph)	0	1	0	0	4	0	0	0	0	0	12	0
Lane Group Flow (vph)	26	1610	0	24	707	0	0	0	0	0	70	0
Confl. Peds. (#/hr)	10		9	9		10	9		5	5		9
Confl. Bikes (#/hr)			20			17			4			1
Bus Blockages (#/hr)	0	4	0	0	4	0	0	0	0	0	0	0
Turn Type	Prot	NA		Prot	NA					Perm	NA	
Protected Phases	5	2		1	6						4	
Permitted Phases										4		
Actuated Green, G (s)	4.9	103.9		4.4	103.4						25.0	
Effective Green, g (s)	4.9	104.5		4.4	104.0						25.0	
Actuated g/C Ratio	0.03	0.70		0.03	0.69						0.17	
Clearance Time (s)	5.0	6.1		5.0	6.1						5.6	
Vehicle Extension (s)	1.0	2.5		1.0	2.5						2.5	
Lane Grp Cap (vph)	57	2431		51	2384						283	
v/s Ratio Prot	c0.01	c0.46		0.01	0.21							
v/s Ratio Perm											0.04	
v/c Ratio	0.46	0.66		0.47	0.30						0.25	
Uniform Delay, d1	71.2	12.8		71.7	8.9						54.3	
Progression Factor	1.07	0.64		0.89	1.60						1.00	
Incremental Delay, d2	1.6	1.1		2.0	0.3						0.3	
Delay (s)	77.8	9.2		65.8	14.5						54.7	
Level of Service	E	А		E	В						D	
Approach Delay (s)		10.3			16.2			0.0			54.7	
Approach LOS		В			В			А			D	
Intersection Summary												
HCM 2000 Control Delay			13.6	Н	CM 2000	Level of S	Service		В			
HCM 2000 Volume to Capac	city ratio		0.58									
Actuated Cycle Length (s)	J		150.0	S	um of lost	time (s)			16.1			
Intersection Capacity Utilizat	tion		63.7%			of Service			В			
Analysis Period (min)			15									
c Critical Lane Group												

HCM Signalized Intersection Capacity Analysis
10: Stelling Road/Hollenbeck Avenue & Homestead Road

	٦	-	\mathbf{F}	4	Ļ	•	•	1	1	1	ţ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	۳	∱ î≽		٦	↑ 1,-		ሻሻ	∱ }		٦	≜ ⊅	
Traffic Volume (vph)	80	910	438	236	456	190	234	338	279	228	576	62
Future Volume (vph)	80	910	438	236	456	190	234	338	279	228	576	62
Ideal Flow (vphpl)	1900	2100	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	5.0	5.5		5.0	5.5		5.0	5.1		5.0	5.1	
Lane Util. Factor	1.00	0.95		1.00	0.95		0.97	0.95		1.00	0.95	
Frpb, ped/bikes	1.00	0.98		1.00	0.98		1.00	0.96		1.00	0.99	
Flpb, ped/bikes	1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00	
Frt	1.00	0.95		1.00	0.96		1.00	0.93		1.00	0.99	
Flt Protected	0.95	1.00		0.95	1.00		0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1770	3639		1770	3322		3433	3181		1770	3467	
Flt Permitted	0.95	1.00		0.95	1.00		0.95	1.00		0.95	1.00	
Satd. Flow (perm)	1770	3639		1770	3322		3433	3181		1770	3467	
Peak-hour factor, PHF	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Adj. Flow (vph)	85	968	466	251	485	202	249	360	297	243	613	66
RTOR Reduction (vph)	0	38	0	0	28	0	0	101	0	0	5	0
Lane Group Flow (vph)	85	1396	0	251	659	0	249	556	0	243	674	0
Confl. Peds. (#/hr)	25		33	33		25	31		40	40		31
Confl. Bikes (#/hr)			19			15			14			13
Turn Type	Prot	NA		Prot	NA		Prot	NA		Prot	NA	
Protected Phases	5	2		1	6		3	8		7	4	
Permitted Phases												
Actuated Green, G (s)	11.6	54.4		22.2	65.0		13.0	30.6		21.0	38.6	
Effective Green, g (s)	11.6	55.0		22.2	65.6		13.0	31.2		21.0	39.2	
Actuated g/C Ratio	0.08	0.37		0.15	0.44		0.09	0.21		0.14	0.26	
Clearance Time (s)	5.0	6.1		5.0	6.1		5.0	5.7		5.0	5.7	
Vehicle Extension (s)	1.0	2.5		1.0	2.5		1.0	2.5		1.0	2.5	
Lane Grp Cap (vph)	136	1334		261	1452		297	661		247	906	
v/s Ratio Prot	0.05	c0.38		c0.14	0.20		0.07	c0.17		c0.14	0.19	
v/s Ratio Perm												
v/c Ratio	0.62	1.05		0.96	0.45		0.84	0.84		0.98	0.74	
Uniform Delay, d1	67.1	47.5		63.5	29.6		67.5	57.0		64.3	50.8	
Progression Factor	1.01	1.03		1.00	1.00		1.00	1.00		1.00	1.00	
Incremental Delay, d2	4.9	34.9		44.7	1.0		17.6	9.3		52.2	3.2	
Delay (s)	72.7	83.7		108.2	30.6		85.0	66.3		116.6	54.0	
Level of Service	E	F		F	С		F	E		F	D	
Approach Delay (s)		83.1			51.4			71.5			70.5	
Approach LOS		F			D			E			E	
Intersection Summary												
HCM 2000 Control Delay			71.0	H	CM 2000	Level of S	Service		E			
HCM 2000 Volume to Capa	city ratio		0.97									
Actuated Cycle Length (s)	- -		150.0	Si	um of lost	t time (s)			20.6			
Intersection Capacity Utiliza	ation		104.7%			of Service			G			
Analysis Period (min)			15									
a Critical Lana Crease												

		04414									5	
	≯	→	\mathbf{F}	4	+	•	1	t	۲	1	Ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		र्भ	1	ľ	र्स	1	٦	- † †	1	7	- † †	1
Traffic Volume (vph)	16	52	34	458	22	489	15	1228	252	213	587	19
Future Volume (vph)	16	52	34	458	22	489	15	1228	252	213	587	19
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		5.2	5.2	5.1	5.1	5.1	4.7	5.8	5.8	4.9	5.8	5.8
Lane Util. Factor		1.00	1.00	0.95	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00
Frpb, ped/bikes		1.00	0.93	1.00	1.00	0.98	1.00	1.00	0.97	1.00	1.00	0.98
Flpb, ped/bikes		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt		1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85
Flt Protected		0.99	1.00	0.95	0.96	1.00	0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (prot)		1841	1472	1681	1693	1558	1770	3539	1533	1770	3539	1549
Flt Permitted		0.99	1.00	0.95	0.96	1.00	0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (perm)		1841	1472	1681	1693	1558	1770	3539	1533	1770	3539	1549
Peak-hour factor, PHF	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96
Adj. Flow (vph)	17	54	35	477	23	509	16	1279	262	222	611	20
RTOR Reduction (vph)	0	0	31	0	0	398	0	0	125	0	0	10
Lane Group Flow (vph)	0	71	4	248	252	111	16	1279	138	222	611	10
Confl. Peds. (#/hr)	2		3	3		2						
Confl. Bikes (#/hr)			25			1			12			2
Turn Type	Split	NA	Perm	Split	NA	Perm	Prot	NA	Perm	Prot	NA	Perm
Protected Phases	4	4		3	3		5	2		1	6	
Permitted Phases			4	-	-	3	-	_	2		-	6
Actuated Green, G (s)		15.3	15.3	32.8	32.8	32.8	3.4	56.9	56.9	24.0	77.7	77.7
Effective Green, g (s)		15.3	15.3	32.8	32.8	32.8	3.4	56.9	56.9	24.0	77.7	77.7
Actuated g/C Ratio		0.10	0.10	0.22	0.22	0.22	0.02	0.38	0.38	0.16	0.52	0.52
Clearance Time (s)		5.2	5.2	5.1	5.1	5.1	4.7	5.8	5.8	4.9	5.8	5.8
Vehicle Extension (s)		4.0	4.0	4.0	4.0	4.0	3.0	4.0	4.0	3.0	4.0	4.0
Lane Grp Cap (vph)		187	150	367	370	340	40	1342	581	283	1833	802
v/s Ratio Prot		c0.04		0.15	c0.15	0.0	0.01	c0.36		c0.13	0.17	002
v/s Ratio Perm		00101	0.00	0110	00110	0.07	0.01	00100	0.09	00110	0117	0.01
v/c Ratio		0.38	0.02	0.68	0.68	0.33	0.40	0.95	0.24	0.78	0.33	0.01
Uniform Delay, d1		62.9	60.6	53.7	53.8	49.3	72.3	45.3	31.7	60.5	21.1	17.5
Progression Factor		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Incremental Delay, d2		1.8	0.1	5.3	5.5	0.8	6.4	15.6	1.0	13.3	0.1	0.0
Delay (s)		64.7	60.7	59.0	59.3	50.1	78.7	60.9	32.7	73.8	21.2	17.6
Level of Service		E	E	E	E	D	E	E	С	E	С	В
Approach Delay (s)		63.4			54.6			56.3			34.8	
Approach LOS		E			D			E			С	
Intersection Summary												
HCM 2000 Control Delay			50.8	Н	CM 2000	Level of S	Service		D			
HCM 2000 Volume to Capac	city ratio		0.78		2000				-			
Actuated Cycle Length (s)			150.0	S	um of los	t time (s)			21.0			
Intersection Capacity Utilizat	tion		87.1%			of Service			E			
Analysis Period (min)			15		, _,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				_			
			10									

	٦	+	t	×	1	4	
Movement	EBL	EBT	WBT	WBR	SBL	SBR	
Lane Configurations		†	†	1	۲	1	
Traffic Volume (veh/h)	0	517	934	133	87	31	
Future Volume (Veh/h)	0	517	934	133	87	31	
Sign Control		Free	Free		Stop		
Grade		0%	0%		0%		
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	
Hourly flow rate (vph)	0	562	1015	145	95	34	
Pedestrians		1			4		
Lane Width (ft)		12.0			12.0		
Walking Speed (ft/s)		4.0			4.0		
Percent Blockage		0			0		
Right turn flare (veh)						7	
Median type		Raised	None				
Median storage veh)		2					
Upstream signal (ft)		171	1027				
pX, platoon unblocked	0.56				0.57	0.56	
vC, conflicting volume	1164				1581	1020	
vC1, stage 1 conf vol					1019		
vC2, stage 2 conf vol					562		
vCu, unblocked vol	900				1538	642	
tC, single (s)	4.1				6.4	6.2	
tC, 2 stage (s)					5.4		
tF (s)	2.2				3.5	3.3	
p0 queue free %	100				63	87	
cM capacity (veh/h)	421				260	264	
Direction, Lane #	EB 1	WB 1	WB 2	SB 1			
Volume Total	562	1015	145	129			
Volume Left	0	0	0	95			
Volume Right	0	0	145	34			
cSH	1700	1700	1700	353			
Volume to Capacity	0.33	0.60	0.09	0.37			
Queue Length 95th (ft)	0	0	0	41			
Control Delay (s)	0.0	0.0	0.0	25.0			
Lane LOS				D			
Approach Delay (s)	0.0	0.0		25.0			
Approach LOS				D			
Intersection Summary							
Average Delay			1.7				
Intersection Capacity Utiliz	zation		60.9%	IC	U Level o	of Service	
Analysis Period (min)			15				

	٦	→	*	4	Ļ	•	•	1	1	1	Ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	٦	et		٦	et			4			\$	
Traffic Volume (vph)	28	547	11	14	892	36	28	3	53	54	0	55
Future Volume (vph)	28	547	11	14	892	36	28	3	53	54	0	55
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	5.0	6.1		5.0	6.1			5.6			5.6	
Lane Util. Factor	1.00	1.00		1.00	1.00			1.00			1.00	
Frpb, ped/bikes	1.00	1.00		1.00	1.00			0.82			0.99	
Flpb, ped/bikes	1.00	1.00		1.00	1.00			1.00			0.92	
Frt	1.00	1.00		1.00	0.99			0.91			0.93	
Flt Protected	0.95	1.00		0.95	1.00			0.98			0.98	
Satd. Flow (prot)	1770	1854		1770	1849			1373			1538	
Flt Permitted	0.95	1.00		0.95	1.00			0.79			0.72	
Satd. Flow (perm)	1770	1854		1770	1849			1096			1137	
Peak-hour factor, PHF	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
Adj. Flow (vph)	30	588	12	15	959	39	30	3	57	58	0	59
RTOR Reduction (vph)	0	0	0	0	1	0	0	51	0	0	108	0
Lane Group Flow (vph)	30	600	0	15	997	0	0	39	0	0	9	0
Confl. Peds. (#/hr)	9		34	34		9	1		41	41		1
Confl. Bikes (#/hr)			90			10						
Turn Type	Prot	NA		Prot	NA		Perm	NA		Perm	NA	
Protected Phases	5	2		1	6			8			4	
Permitted Phases							8			4		
Actuated Green, G (s)	4.9	86.1		2.8	84.0			9.9			9.9	
Effective Green, g (s)	4.9	86.1		2.8	84.0			9.9			9.9	
Actuated g/C Ratio	0.04	0.66		0.02	0.65			0.08			0.08	
Clearance Time (s)	5.0	6.1		5.0	6.1			5.6			5.6	
Vehicle Extension (s)	1.0	2.5		1.0	2.5			2.5			2.5	
Lane Grp Cap (vph)	66	1227		38	1194			83			86	
v/s Ratio Prot	c0.02	0.32		0.01	c0.54							
v/s Ratio Perm								c0.04			0.01	
v/c Ratio	0.45	0.49		0.39	0.84			0.47			0.10	
Uniform Delay, d1	61.2	11.0		62.8	17.7			57.5			55.9	
Progression Factor	1.00	1.00		1.07	0.69			1.00			1.00	
Incremental Delay, d2	1.8	1.4		2.0	5.8			3.1			0.4	
Delay (s)	63.0	12.4		69.1	18.0			60.6			56.3	
Level of Service	E	В		E	В			E			E	
Approach Delay (s)		14.8			18.8			60.6			56.3	
Approach LOS		В			В			E			E	
Intersection Summary												
HCM 2000 Control Delay			21.8	H	CM 2000	Level of S	Service		С			
HCM 2000 Volume to Capa	acity ratio		0.72									
Actuated Cycle Length (s)	,		130.0	S	um of lost	time (s)			22.8			
Intersection Capacity Utiliza	ation		69.0%		CU Level o				С			
Analysis Period (min)			15									
c Critical Lane Group												

Kimley-Horn and Associates, Inc. HCM Signalized Intersection Capacity Analysis

										~ ~		
	٦	-	\mathbf{F}	∢	-	•	1	Ť	۲	5	Ļ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	eî 🗧		ľ	A⊅			\$			र्स	1
Traffic Volume (vph)	70	594	3	2	854	209	24	12	11	123	10	88
Future Volume (vph)	70	594	3	2	854	209	24	12	11	123	10	88
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	5.0	5.5		5.0	5.5			5.6			5.6	5.6
Lane Util. Factor	1.00	1.00		1.00	0.95			1.00			1.00	1.00
Frpb, ped/bikes	1.00	1.00		1.00	0.98			0.99			1.00	0.92
Flpb, ped/bikes	1.00	1.00		1.00	1.00			0.97			0.97	1.00
Frt	1.00	1.00		1.00	0.97			0.97			1.00	0.85
Flt Protected	0.95	1.00		0.95	1.00			0.97			0.96	1.00
Satd. Flow (prot)	1770	1860		1770	3350			1692			1730	1457
Flt Permitted	0.95	1.00		0.95	1.00			0.79			0.74	1.00
Satd. Flow (perm)	1770	1860		1770	3350			1371			1334	1457
Peak-hour factor, PHF	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83
Adj. Flow (vph)	84	716	4	2	1029	252	29	14	13	148	12	106
RTOR Reduction (vph)	0	0	0	0	14	0	0	9	0	0	0	0
Lane Group Flow (vph)	84	720	0	2	1267	0	0	47	0	0	160	106
Confl. Peds. (#/hr)	33		18	18		33	48		14	14		48
Confl. Bikes (#/hr)			114			10						
Turn Type	Prot	NA		Prot	NA		Perm	NA		Perm	NA	Perm
Protected Phases	5	2		1	6			8			4	
Permitted Phases							8			4		4
Actuated Green, G (s)	10.0	87.6		1.4	79.0			24.3			24.3	24.3
Effective Green, g (s)	10.0	88.2		1.4	79.6			24.3			24.3	24.3
Actuated g/C Ratio	0.08	0.68		0.01	0.61			0.19			0.19	0.19
Clearance Time (s)	5.0	6.1		5.0	6.1			5.6			5.6	5.6
Vehicle Extension (s)	1.0	2.5		1.0	2.5			2.5			2.5	2.5
Lane Grp Cap (vph)	136	1261		19	2051			256			249	272
v/s Ratio Prot	c0.05	0.39		0.00	c0.38							
v/s Ratio Perm								0.03			c0.12	0.07
v/c Ratio	0.62	0.57		0.11	0.62			0.18			0.64	0.39
Uniform Delay, d1	58.1	11.0		63.7	15.7			44.5			48.8	46.3
Progression Factor	1.06	0.63		1.36	0.28			1.00			1.00	1.00
Incremental Delay, d2	5.4	1.8		0.8	1.2			0.3			4.9	0.7
Delay (s)	66.8	8.6		87.6	5.6			44.8			53.8	47.0
Level of Service	E	A		F	A			D			D	D
Approach Delay (s)		14.7			5.7			44.8			51.1	
Approach LOS		В			А			D			D	
Intersection Summary												
HCM 2000 Control Delay			14.6	Н	CM 2000	Level of S	Service		В			
HCM 2000 Volume to Capac	city ratio		0.62									
Actuated Cycle Length (s)			130.0		um of lost				16.1			
Intersection Capacity Utilizat	ion		76.7%	IC	CU Level o	ot Service			D			
Analysis Period (min)			15									
c Critical Lano Group												

	≯	-	$\mathbf{\hat{z}}$	4	+	•	1	Ť	1	1	Ļ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4		ň	<u>†</u> †			4		5	4	
Traffic Volume (vph)	0	720	3	10	916	0	4	0	30	147	2	143
Future Volume (vph)	0	720	3	10	916	0	4	0	30	147	2	143
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		6.0		6.0	6.0			6.0		6.0	6.0	
Lane Util. Factor		1.00		1.00	0.95			1.00		1.00	1.00	
Frpb, ped/bikes		1.00		1.00	1.00			1.00		1.00	0.97	
Flpb, ped/bikes		1.00		1.00	1.00			1.00		1.00	1.00	
Frt		1.00		1.00	1.00			0.88		1.00	0.85	
Flt Protected		1.00		0.95	1.00			0.99		0.95	1.00	
Satd. Flow (prot)		1860		1770	3539			1631		1770	1546	
Flt Permitted		1.00		0.95	1.00			0.99		0.95	1.00	
Satd. Flow (perm)		1860		1770	3539			1631		1770	1546	
Peak-hour factor, PHF	0.78	0.78	0.78	0.78	0.78	0.78	0.78	0.78	0.78	0.78	0.78	0.78
Adj. Flow (vph)	0	923	4	13	1174	0	5	0	38	188	3	183
RTOR Reduction (vph)	0	0	0	0	0	0	0	42	0	0	0	0
Lane Group Flow (vph)	0	927	0	13	1174	0	0	1	0	188	186	0
Confl. Peds. (#/hr)	52	, 21	17	17		52	10	•	Ū	100	100	10
Confl. Bikes (#/hr)	01		137			11						
Turn Type		NA		Prot	NA		Split	NA		Split	NA	
Protected Phases		2		1	6		3	3		4	4	
Permitted Phases												
Actuated Green, G (s)		81.0		3.0	89.0			4.4		20.6	20.6	
Effective Green, g (s)		81.0		2.0	89.0			3.4		19.6	19.6	
Actuated g/C Ratio		0.62		0.02	0.68			0.03		0.15	0.15	
Clearance Time (s)		6.0		5.0	6.0			5.0		5.0	5.0	
Vehicle Extension (s)		5.0		3.0	5.0			3.0		3.0	3.0	
Lane Grp Cap (vph)		1158		27	2422			42		266	233	
v/s Ratio Prot		c0.50		0.01	c0.33			c0.00		0.11	c0.12	
v/s Ratio Perm												
v/c Ratio		0.80		0.48	0.48			0.03		0.71	0.80	
Uniform Delay, d1		18.4		63.5	9.7			61.7		52.5	53.3	
Progression Factor		0.76		1.21	0.27			1.00		1.00	1.00	
Incremental Delay, d2		5.1		10.2	0.5			0.3		8.3	17.1	
Delay (s)		19.1		87.0	3.1			61.9		60.8	70.4	
Level of Service		В		F	А			E		E	E	
Approach Delay (s)		19.1			4.1			61.9			65.6	
Approach LOS		В			А			E			E	
Intersection Summary												
HCM 2000 Control Delay			19.6	Н	CM 2000	Level of S	Service		В			
HCM 2000 Volume to Capacity	ratio		0.78									
Actuated Cycle Length (s)			130.0	S	um of lost	t time (s)			24.0			
Intersection Capacity Utilization	ſ		64.8%	IC	CU Level o	of Service			С			
Analysis Period (min)			15									
c Critical Lane Group												

Kimley-Horn and Associates, Inc. HCM Signalized Intersection Capacity Analysis ٭

4

Î

`•

1

t

1

Ł

4

4

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	↑	1	ሻ	≜ ⊅						र्भ	1
Traffic Volume (vph)	111	604	144	143	807	265	0	0	0	107	12	106
Future Volume (vph)	111	604	144	143	807	265	0	0	0	107	12	106
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	5.0	5.5	6.1	5.0	5.5						5.5	5.5
Lane Util. Factor	1.00	1.00	1.00	1.00	0.95						1.00	1.00
Frpb, ped/bikes	1.00	1.00	0.92	1.00	0.98						1.00	1.00
Flpb, ped/bikes	1.00	1.00	1.00	1.00	1.00						1.00	1.00
Frt	1.00	1.00	0.85	1.00	0.96						1.00	0.85
Flt Protected	0.95	1.00	1.00	0.95	1.00						0.96	1.00
Satd. Flow (prot)	1770	1863	1452	1770	3347						1782	1583
Flt Permitted	0.95	1.00	1.00	0.95	1.00						0.96	1.00
Satd. Flow (perm)	1770	1863	1452	1770	3347						1782	1583
Peak-hour factor, PHF	0.73	0.73	0.73	0.73	0.73	0.73	0.73	0.73	0.73	0.73	0.73	0.73
Adj. Flow (vph)	152	827	197	196	1105	363	0	0	0	147	16	145
RTOR Reduction (vph)	0	0	0	0	19	0	0	0	0	0	0	105
Lane Group Flow (vph)	152	827	197	196	1449	0	0	0	0	0	163	40
Confl. Peds. (#/hr)	16		27	27		16			1	1		
Confl. Bikes (#/hr)			66			11						
Turn Type	Prot	NA	Perm	Prot	NA					Split	NA	Perm
Protected Phases	1	6		5	2					4	4	
Permitted Phases			6									4
Actuated Green, G (s)	13.3	79.9	79.9	18.2	84.8						15.1	15.1
Effective Green, g (s)	13.3	80.5	79.9	18.2	85.4						15.3	15.3
Actuated g/C Ratio	0.10	0.62	0.61	0.14	0.66						0.12	0.12
Clearance Time (s)	5.0	6.1	6.1	5.0	6.1						5.7	5.7
Vehicle Extension (s)	1.0	2.5	2.5	1.0	2.5						2.5	2.5
Lane Grp Cap (vph)	181	1153	892	247	2198						209	186
v/s Ratio Prot	c0.09	c0.44		c0.11	0.43						c0.09	
v/s Ratio Perm			0.14									0.03
v/c Ratio	0.84	0.72	0.22	0.79	0.66						0.78	0.22
Uniform Delay, d1	57.3	17.0	11.2	54.1	13.5						55.7	51.9
Progression Factor	0.87	0.63	0.78	1.26	0.25						1.00	1.00
Incremental Delay, d2	20.0	1.4	0.1	10.6	1.1						16.1	0.4
Delay (s)	70.0	12.1	8.8	78.8	4.5						71.8	52.3
Level of Service	E	В	А	E	А						E	D
Approach Delay (s)		19.1			13.2			0.0			62.6	
Approach LOS		В			В			А			E	
Intersection Summary												
HCM 2000 Control Delay			20.2	H	CM 2000	Level of S	Service		С			
HCM 2000 Volume to Capa	city ratio		0.74									
Actuated Cycle Length (s)			130.0	Si	um of lost	time (s)			16.0			
Intersection Capacity Utiliza	ition		66.3%	IC	CU Level o	of Service			С			
Analysis Period (min)			15									
c Critical Lane Group												

	٦	-	$\mathbf{\hat{z}}$	4	+	•	1	Ť	۲	1	Ļ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	†î≽		ሻ	↑1 }		ሻ	4Î		5	4Î	
Traffic Volume (vph)	28	669	18	2	1002	126	64	4	19	167	3	135
Future Volume (vph)	28	669	18	2	1002	126	64	4	19	167	3	135
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	2100	2100	1900	2100	2100
Total Lost time (s)	5.0	5.5		5.0	5.5		4.0	5.7		4.0	5.7	
Lane Util. Factor	1.00	0.95		1.00	0.95		1.00	1.00		1.00	1.00	
Frpb, ped/bikes	1.00	1.00		1.00	0.99		1.00	0.97		1.00	0.96	
Flpb, ped/bikes	1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00	
Frt	1.00	0.80		1.00	0.98		1.00	0.88		1.00	0.85	
Flt Protected	0.95	1.00		0.95	1.00		0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1770	2811		1770	3436		1770	1757		1770	1689	
Flt Permitted	0.95	1.00		0.95	1.00		0.95	1.00		0.95	1.00	
Satd. Flow (perm)	1770	2811		1770	3436		1770	500		1770	1689	
Peak-hour factor, PHF	0.69	0.69	0.69	0.69	0.69	0.69	0.69	0.69	0.69	0.69	0.69	0.69
Adj. Flow (vph)	41	970	26	3	1452	183	93	6	28	242	4	196
RTOR Reduction (vph)	0	1	0	0	6	0	0	26	0	0	151	0
Lane Group Flow (vph)	41	995	0	3	1629	0	93	8	0	242	49	0
Confl. Peds. (#/hr)	24	775	25	25	1027	24	19	0	9	242	77	19
Confl. Bikes (#/hr)	27		67	20		19	17		2	,		17
Bus Blockages (#/hr)	0	2	2	0	0	0	0	0	0	0	0	0
Turn Type	Prot	NA	2	Prot	NA	0	Prot	NA	0	Prot	NA	0
Protected Phases	1	6		5	2		3	NA 8		7	4	
Permitted Phases	1	0		5	Z		3	0		1	4	
Actuated Green, G (s)	6.4	80.4		1.6	75.6		11.2	8.0		19.2	16.0	
Effective Green, g (s)	0.4 6.4	81.0		1.6	76.2		11.2	8.0		19.2	16.0	
Actuated g/C Ratio	0.4	0.62		0.01	0.59		0.09	0.06		0.15	0.12	
Clearance Time (s)	5.0	6.1		5.0	6.1		4.0	5.7		4.0	5.7	
Vehicle Extension (s)	1.0	2.5		1.0	2.5		3.0	2.5		4.0	2.5	
		1751										
Lane Grp Cap (vph)	87			21	2014		152	108		261	207	_
v/s Ratio Prot	c0.02	c0.35		0.00	c0.47		0.05	0.00		c0.14	c0.03	
v/s Ratio Perm	0.47	0 57		0.1.4	0.01		0 / 1	0.07		0.00	0.04	_
v/c Ratio	0.47	0.57		0.14	0.81		0.61	0.07		0.93	0.24	
Uniform Delay, d1	60.2	14.3		63.5	21.2		57.3	57.5		54.7	51.5	_
Progression Factor	0.83	1.36		1.33	0.40		1.00	1.00		1.00	1.00	
Incremental Delay, d2	1.1	1.0		0.1	0.3		7.1	0.2		36.3	0.4	_
Delay (s)	51.2	20.4		84.5	8.8		64.4	57.7		91.0	51.9	
Level of Service	D	C		F	A		E	E		F	D	_
Approach Delay (s)		21.7			9.0			62.6			73.3	
Approach LOS		С			A			E			E	
Intersection Summary												
HCM 2000 Control Delay			23.9	Н	CM 2000	Level of S	Service		С			
HCM 2000 Volume to Capa	acity ratio		0.78									
Actuated Cycle Length (s)	,		130.0	S	um of lost	t time (s)			20.2			
Intersection Capacity Utiliz	ation		63.8%		CU Level o				B			
Analysis Period (min)			15									
c Critical Lane Group												

	٨	-	$\mathbf{\hat{z}}$	-	-	•	1	1	1	4	Ļ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	۲	≜ ⊅		۲	∱1 ≱		۲	¢Î		ľ	र्स	1
Traffic Volume (vph)	64	581	172	68	860	196	115	113	34	228	92	76
Future Volume (vph)	64	581	172	68	860	196	115	113	34	228	92	76
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	5.5	5.5		5.5	5.5		5.6	5.6		5.5	5.5	5.5
Lane Util. Factor	1.00	0.95		1.00	0.95		1.00	1.00		0.95	0.95	1.00
Frpb, ped/bikes	1.00	0.92		1.00	0.95		1.00	0.93		1.00	1.00	0.75
Flpb, ped/bikes	1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00	1.00
Frt	1.00	0.97		1.00	0.97		1.00	0.97		1.00	1.00	0.85
Flt Protected	0.95	1.00		0.95	1.00		0.95	1.00		0.95	0.98	1.00
Satd. Flow (prot)	1770	3128		1770	3248		1770	1677		1681	1728	1181
Flt Permitted	0.95	1.00		0.95	1.00		0.95	1.00		0.95	0.98	1.00
Satd. Flow (perm)	1770	3128		1770	3248		1770	1677		1681	1728	1181
Peak-hour factor, PHF	0.72	0.72	0.72	0.72	0.72	0.72	0.72	0.72	0.72	0.72	0.72	0.72
Adj. Flow (vph)	89	807	239	94	1194	272	160	157	47	317	128	106
RTOR Reduction (vph)	0	0	0	0	0	0	0	0	0	0	0	0
Lane Group Flow (vph)	89	1046	0	94	1466	0	160	204	0	200	245	106
Confl. Peds. (#/hr)	119		180	180		119	104		189	189		104
Confl. Bikes (#/hr)			10			22			4			117
Bus Blockages (#/hr)	0	2	0	0	4	4	0	0	0	0	0	0
Turn Type	Prot	NA		Prot	NA		Split	NA		Split	NA	Perm
Protected Phases	1	6		5	2		3	3		4	4	
Permitted Phases												4
Actuated Green, G (s)	11.0	43.7		12.0	44.7		26.0	26.0		25.0	25.0	25.0
Effective Green, g (s)	11.0	44.3		12.0	45.3		26.0	26.0		25.6	25.6	25.6
Actuated g/C Ratio	0.08	0.34		0.09	0.35		0.20	0.20		0.20	0.20	0.20
Clearance Time (s)	5.5	6.1		5.5	6.1		5.6	5.6		6.1	6.1	6.1
Vehicle Extension (s)	1.0	2.5		1.0	2.5		1.0	1.0		2.5	2.5	2.5
Lane Grp Cap (vph)	149	1065		163	1131		354	335		331	340	232
v/s Ratio Prot	0.05	0.33		c0.05	c0.45		0.09	c0.12		0.12	c0.14	-
v/s Ratio Perm												0.09
v/c Ratio	0.60	0.98		0.58	1.30		0.45	0.61		0.60	0.72	0.46
Uniform Delay, d1	57.4	42.5		56.6	42.4		45.7	47.4		47.6	48.9	46.1
Progression Factor	0.92	0.89		1.12	0.50		1.00	1.00		1.00	1.00	1.00
Incremental Delay, d2	3.4	20.9		1.7	137.1		0.3	2.1		2.6	6.9	1.0
Delay (s)	56.3	58.7		65.2	158.3		46.1	49.5		50.2	55.7	47.1
Level of Service	E	E		E	F		D	D		D	E	D
Approach Delay (s)		58.5			152.7			48.0			52.1	
Approach LOS		E			F			D			D	
Intersection Summary												
HCM 2000 Control Delay			97.2	H	CM 2000	Level of S	Service		F			
HCM 2000 Volume to Capa	city ratio		0.93		2000	Lovorore			•			
Actuated Cycle Length (s)	ing radio		130.0	S	um of losi	t time (s)			22.1			
Intersection Capacity Utiliza	ition		103.3%			of Service			G			
Analysis Period (min)			15		201010				0			
c Critical Lane Group												

timing Plan: AM Peak

1 ٠ Ť t $\mathbf{\tilde{}}$ EBL EBT EBR WBL WBT WBR NBL NBT NBR SBL SBT Movement SBR **↑**↑ Lane Configurations ٦ ٦ ۴Þ 4 Traffic Volume (vph) 112 96 53 94 0 0 0 47 60 51 731 1132 Future Volume (vph) 112 731 96 53 1132 94 0 0 0 47 60 51 1900 1900 Ideal Flow (vphpl) 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 Total Lost time (s) 5.0 5.5 5.0 5.5 5.6 Lane Util. Factor 1.00 0.95 1.00 0.95 1.00 Frpb, ped/bikes 0.99 0.94 1.00 0.96 1.00 0.94 Flpb, ped/bikes 1.00 1.00 1.00 1.00 0.96 Frt 1.00 0.98 1.00 0.99 0.99 Flt Protected 0.95 1.00 0.95 1.00 Satd. Flow (prot) 1770 3307 1770 3453 1557 Flt Permitted 0.99 0.95 1.00 0.95 1.00 Satd. Flow (perm) 1770 3307 1770 3453 1557 Peak-hour factor, PHF 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 Adj. Flow (vph) 149 975 128 71 1509 125 0 80 68 0 0 63 **RTOR Reduction (vph)** 0 0 0 5 0 0 0 0 0 13 0 7 Lane Group Flow (vph) 149 1096 0 71 1629 0 0 0 198 0 0 0 Confl. Peds. (#/hr) 73 10 73 10 102 128 128 102 Confl. Bikes (#/hr) 11 25 10 Bus Blockages (#/hr) 0 0 0 0 0 4 0 4 0 0 0 0 Turn Type Prot NA Prot NA Perm NA **Protected Phases** 2 5 1 6 4 Permitted Phases 4 13.6 80.8 7.4 74.6 Actuated Green, G (s) 25.1 Effective Green, g (s) 81.4 7.4 75.2 25.1 13.6 Actuated g/C Ratio 0.10 0.63 0.06 0.58 0.19 Clearance Time (s) 5.0 6.1 5.0 6.1 5.6 Vehicle Extension (s) 1.0 2.5 1.0 2.5 2.5 Lane Grp Cap (vph) 185 2070 100 1997 300 v/s Ratio Prot c0.08 0.33 0.04 c0.47 v/s Ratio Perm 0.13 v/c Ratio 0.81 0.53 0.71 0.82 0.66 Uniform Delay, d1 56.9 13.6 60.2 21.9 48.5 **Progression Factor** 1.14 0.90 1.00 0.83 0.70 Incremental Delay, d2 12.8 0.6 13.0 2.8 4.8 Delay (s) 60.1 16.0 67.0 18.1 53.3 Level of Service В Ε В Ε D 0.0 Approach Delay (s) 21.3 20.1 53.3 Approach LOS С С А D Intersection Summary С HCM 2000 Control Delay 22.8 HCM 2000 Level of Service HCM 2000 Volume to Capacity ratio 0.78 Actuated Cycle Length (s) Sum of lost time (s) 130.0 16.1 Intersection Capacity Utilization 75.2% ICU Level of Service D Analysis Period (min) 15 c Critical Lane Group

10: Stelling Road/Hollenbeck Avenue & Homestead Road

	۶	-	\mathbf{F}	4	←	•	1	Ť	۲	1	Ļ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	۲	∱ ⊅		ሻ	A		ኘኘ	A⊅		۲	A⊅	
Traffic Volume (vph)	124	572	153	199	833	211	214	379	270	198	262	166
Future Volume (vph)	124	572	153	199	833	211	214	379	270	198	262	166
Ideal Flow (vphpl)	1900	2100	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	5.0	5.5		5.0	5.5		5.0	5.1		5.0	5.1	
Lane Util. Factor	1.00	0.95		1.00	0.95		0.97	0.95		1.00	0.95	
Frpb, ped/bikes	1.00	0.98		1.00	0.99		1.00	0.98		1.00	0.98	
Flpb, ped/bikes	1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00	
Frt	1.00	0.97		1.00	0.97		1.00	0.94		1.00	0.94	
Flt Protected	0.95	1.00		0.95	1.00		0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1770	3710		1770	3384		3433	3238		1770	3251	
Flt Permitted	0.95	1.00		0.95	1.00		0.95	1.00		0.95	1.00	
Satd. Flow (perm)	1770	3710		1770	3384		3433	3238		1770	3251	
Peak-hour factor, PHF	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87
Adj. Flow (vph)	143	657	176	229	957	243	246	436	310	228	301	191
RTOR Reduction (vph)	0	18	0	0	17	0	0	101	0	0	79	0
Lane Group Flow (vph)	143	815	0	229	1183	0	246	645	0	228	413	0
Confl. Peds. (#/hr)	37		65	65		37	44		37	37		44
Confl. Bikes (#/hr)			12			5			4			6
Turn Type	Prot	NA		Prot	NA		Prot	NA		Prot	NA	
Protected Phases	5	2		1	6		3	8		7	4	
Permitted Phases												
Actuated Green, G (s)	11.2	41.8		18.9	49.5		12.0	30.5		17.0	35.5	
Effective Green, g (s)	11.2	42.4		18.9	50.1		12.0	31.1		17.0	36.1	
Actuated g/C Ratio	0.09	0.33		0.15	0.39		0.09	0.24		0.13	0.28	
Clearance Time (s)	5.0	6.1		5.0	6.1		5.0	5.7		5.0	5.7	
Vehicle Extension (s)	1.0	2.5		1.0	2.5		1.0	2.5		1.0	2.5	
Lane Grp Cap (vph)	152	1210		257	1304		316	774		231	902	
v/s Ratio Prot	0.08	0.22		c0.13	c0.35		0.07	c0.20		c0.13	c0.13	
v/s Ratio Perm												
v/c Ratio	0.94	0.67		0.89	0.91		0.78	0.83		0.99	0.46	
Uniform Delay, d1	59.1	37.8		54.5	37.8		57.7	47.0		56.4	38.9	
Progression Factor	1.18	0.65		1.00	1.00		1.00	1.00		1.00	1.00	
Incremental Delay, d2	50.0	2.6		28.9	10.8		10.5	7.5		54.9	0.3	
Delay (s)	119.4	27.1		83.4	48.5		68.2	54.5		111.3	39.1	
Level of Service	F	С		F	D		Е	D		F	D	
Approach Delay (s)		40.7			54.1			57.9			62.0	
Approach LOS		D			D			E			E	
Intersection Summary												
HCM 2000 Control Delay			53.2	H	CM 2000	Level of S	Service		D			
HCM 2000 Volume to Capa	acity ratio		0.90									
Actuated Cycle Length (s)	-		130.0	S	um of losi	t time (s)			20.6			
Intersection Capacity Utiliz	ation		93.9%		CU Level				F			
Analysis Period (min)			15									
c Critical Lane Group												

c Critical Lane Group

	ootinii Expy a vincyara Di/Homesteaa												
	٦	-	$\mathbf{\hat{v}}$	∢	←	•	1	Ť	1	1	Ļ	~	
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations		ا	1	۲	र्स	1	۲	<u></u>	1	7	<u></u>	1	
Traffic Volume (vph)	6	23	14	332	24	187	18	521	269	366	1128	17	
Future Volume (vph)	6	23	14	332	24	187	18	521	269	366	1128	17	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	
Total Lost time (s)		5.2	5.2	5.1	5.1	5.1	4.7	5.8	5.8	4.9	5.8	5.8	
Lane Util. Factor		1.00	1.00	0.95	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	
Frpb, ped/bikes		1.00	0.98	1.00	1.00	0.97	1.00	1.00	0.98	1.00	1.00	0.98	
Flpb, ped/bikes		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Frt		1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85	
Flt Protected		0.99	1.00	0.95	0.96	1.00	0.95	1.00	1.00	0.95	1.00	1.00	
Satd. Flow (prot)		1844	1551	1681	1697	1534	1770	3539	1548	1770	3539	1546	
Flt Permitted		0.99	1.00	0.95	0.96	1.00	0.95	1.00	1.00	0.95	1.00	1.00	
Satd. Flow (perm)		1844	1551	1681	1697	1534	1770	3539	1548	1770	3539	1546	
Peak-hour factor, PHF	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	
Adj. Flow (vph)	6	24	15	353	26	199	19	554	286	389	1200	18	
RTOR Reduction (vph)	0	0	14	0	0	165	0	0	192	0	0	8	
Lane Group Flow (vph)	0	30	1	191	188	34	19	554	94	389	1200	10	
Confl. Peds. (#/hr)	2		2	2		2							
Confl. Bikes (#/hr)			2			13			2			5	
Turn Type	Split	NA	Perm	Split	NA	Perm	Prot	NA	Perm	Prot	NA	Perm	
Protected Phases	4	4		3	3		5	2		1	6		
Permitted Phases			4			3			2			6	
Actuated Green, G (s)		8.4	8.4	20.7	20.7	20.7	3.4	39.6	39.6	30.3	66.7	66.7	
Effective Green, g (s)		8.4	8.4	20.7	20.7	20.7	3.4	39.6	39.6	30.3	66.7	66.7	
Actuated g/C Ratio		0.07	0.07	0.17	0.17	0.17	0.03	0.33	0.33	0.25	0.56	0.56	
Clearance Time (s)		5.2	5.2	5.1	5.1	5.1	4.7	5.8	5.8	4.9	5.8	5.8	
Vehicle Extension (s)		4.0	4.0	4.0	4.0	4.0	3.0	4.0	4.0	3.0	4.0	4.0	
Lane Grp Cap (vph)		129	108	289	292	264	50	1167	510	446	1967	859	
v/s Ratio Prot		c0.02		c0.11	0.11		0.01	0.16		c0.22	c0.34		
v/s Ratio Perm			0.00			0.02			0.06			0.01	
v/c Ratio		0.23	0.01	0.66	0.64	0.13	0.38	0.47	0.19	0.87	0.61	0.01	
Uniform Delay, d1		52.8	51.9	46.4	46.2	42.0	57.3	31.9	28.7	43.0	17.9	11.9	
Progression Factor		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Incremental Delay, d2		1.3	0.0	6.1	5.3	0.3	4.8	1.4	0.8	16.9	0.6	0.0	
Delay (s)		54.0	52.0	52.5	51.6	42.3	62.0	33.3	29.5	59.9	18.6	11.9	
Level of Service		D	D	D	D	D	E	С	С	E	В	В	
Approach Delay (s)		53.3			48.7			32.7			28.5		
Approach LOS		D			D			С			С		
Intersection Summary													
HCM 2000 Control Delay			33.8	H	CM 2000	Level of S	Service		С				
HCM 2000 Volume to Capac	ity ratio		0.68										
Actuated Cycle Length (s)			120.0		um of los				21.0				
Intersection Capacity Utilizat	ion		67.9%	IC	U Level	of Service			С				
Analysis Period (min)			15										
c Critical Lana Croup													

Kimley-Horn and Associates, Inc. HCM Signalized Intersection Capacity Analysis Synchro 9 Report Page 1

	۶	+	Ļ	×	1	~
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		•	†	1	ሻ	1
Traffic Volume (veh/h)	0	664	511	128	144	31
Future Volume (Veh/h)	0	664	511	128	144	31
Sign Control		Free	Free		Stop	
Grade		0%	0%		0%	
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94
Hourly flow rate (vph)	0	706	544	136	153	33
Pedestrians		1			4	
Lane Width (ft)		12.0			12.0	
Walking Speed (ft/s)		4.0			4.0	
Percent Blockage		0			0	
Right turn flare (veh)		-			-	7
Median type		Raised	None			
Median storage veh)		2				
Upstream signal (ft)		171	1027			
pX, platoon unblocked	0.93	.,			0.93	0.93
vC, conflicting volume	684				1254	549
vC1, stage 1 conf vol					548	017
vC2, stage 2 conf vol					706	
vCu, unblocked vol	622				1233	477
tC, single (s)	4.1				6.4	6.2
tC, 2 stage (s)					5.4	0.2
tF (s)	2.2				3.5	3.3
p0 queue free %	100				62	94
cM capacity (veh/h)	888				402	545
Direction, Lane #	EB 1	WB 1		SB 1	102	010
Volume Total	706	544	WB 2 136	186		
Volume Left	706	544 0	130	180		
	0	0	136	33		
Volume Right cSH	1700	1700	1700	488		
Volume to Capacity	0.42	0.32	0.08	0.38		
Queue Length 95th (ft)	0	0	0	44		
Control Delay (s)	0.0	0.0	0.0	18.1 C		
Lane LOS	0.0	0.0				
Approach Delay (s)	0.0	0.0		18.1 C		
Approach LOS				C		
Intersection Summary						
Average Delay			2.1			
Intersection Capacity Utilization	ation		49.8%	IC	U Level o	of Service
Analysis Period (min)			15			

5. Homestead Ct/I			a non	lesteat	INOac	4			um	ing r iun.		WT Cuk
	۶	-	\mathbf{F}	∢	-	•	1	Ť	1	1	ţ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	1	el el		ľ	el el			÷			\$	
Traffic Volume (vph)	28	706	22	20	484	53	10	1	18	39	0	26
Future Volume (vph)	28	706	22	20	484	53	10	1	18	39	0	26
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	5.0	6.1		5.0	6.1			5.6			5.6	
Lane Util. Factor	1.00	1.00		1.00	1.00			1.00			1.00	
Frpb, ped/bikes	1.00	1.00		1.00	0.99			0.93			1.00	
Flpb, ped/bikes	1.00	1.00		1.00	1.00			1.00			0.95	
Frt	1.00	1.00		1.00	0.99			0.92			0.95	
Flt Protected	0.95	1.00		0.95	1.00			0.98			0.97	
Satd. Flow (prot)	1770	1852		1770	1823			1562			1617	
Flt Permitted	0.95	1.00		0.95	1.00			0.87			0.80	
Satd. Flow (perm)	1770	1852		1770	1823			1384			1331	
Peak-hour factor, PHF	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Adj. Flow (vph)	30	751	23	21	515	56	11	1	19	41	0	28
RTOR Reduction (vph)	0	1	0	0	2	0	0	18	0	0	66	0
Lane Group Flow (vph)	30	773	0	21	569	0	0	13	0	0	3	0
Confl. Peds. (#/hr)	8		30	30		8			9	9		
Confl. Bikes (#/hr)			10			84						
Turn Type	Prot	NA		Prot	NA		Perm	NA		Perm	NA	
Protected Phases	5	2		1	6			8			4	
Permitted Phases							8			4		
Actuated Green, G (s)	4.9	92.7		4.2	92.0			6.1			6.1	
Effective Green, g (s)	4.9	92.7		4.2	92.0			6.1			6.1	
Actuated g/C Ratio	0.04	0.71		0.03	0.71			0.05			0.05	
Clearance Time (s)	5.0	6.1		5.0	6.1			5.6			5.6	
Vehicle Extension (s)	1.0	2.5		1.0	2.5			2.5			2.5	
Lane Grp Cap (vph)	66	1320		57	1290			64			62	
v/s Ratio Prot	c0.02	c0.42		0.01	0.31							
v/s Ratio Perm								c0.01			0.00	
v/c Ratio	0.45	0.59		0.37	0.44			0.20			0.05	
Uniform Delay, d1	61.2	9.2		61.6	8.1			59.6			59.2	
Progression Factor	1.00	1.00		0.78	1.43			1.00			1.00	
Incremental Delay, d2	1.8	1.9		1.4	1.1			1.1			0.3	
Delay (s)	63.0	11.1		49.7	12.7			60.7			59.4	
Level of Service	E	В		D	В			E			E	
Approach Delay (s)		13.0			14.0			60.7			59.4	
Approach LOS		В			В			E			E	
Intersection Summary												
HCM 2000 Control Delay			16.5	Н	CM 2000	Level of	Service		В			
HCM 2000 Volume to Capa	acity ratio		0.54									
Actuated Cycle Length (s)	Ī		130.0	S	um of lost	t time (s)			22.8			
Intersection Capacity Utiliz	ation		54.8%	IC	U Level o	of Service	;		А			
Analysis Period (min)			15									
c Critical Lane Group												

Kimley-Horn and Associates, Inc. HCM Signalized Intersection Capacity Analysis

4: Barranca Drive/	Delleville	= vvay		lestea		1			um	ing Fian.	SCHOOL P	IVI FEAK
	٦	-	\mathbf{i}	∢	-	•	1	1	1	1	ţ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ľ	eî Î		۲	↑ ⊅			\$			ę	1
Traffic Volume (vph)	55	696	16	2	498	59	9	1	5	76	1	56
Future Volume (vph)	55	696	16	2	498	59	9	1	5	76	1	56
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	5.0	5.5		5.0	5.5			5.6			5.6	5.6
Lane Util. Factor	1.00	1.00		1.00	0.95			1.00			1.00	1.00
Frpb, ped/bikes	1.00	1.00		1.00	0.98			0.99			1.00	0.98
Flpb, ped/bikes	1.00	1.00		1.00	1.00			0.99			0.99	1.00
Frt	1.00	1.00		1.00	0.98			0.95			1.00	0.85
Flt Protected	0.95	1.00		0.95	1.00			0.97			0.95	1.00
Satd. Flow (prot)	1770	1853		1770	3415			1694			1759	1544
Flt Permitted	0.95	1.00		0.95	1.00			0.86			0.72	1.00
Satd. Flow (perm)	1770	1853		1770	3415			1501			1322	1544
Peak-hour factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	61	773	18	2	553	66	10	1	6	84	1	62
RTOR Reduction (vph)	0	1	0	0	6	0	0	5	0	0	0	0
Lane Group Flow (vph)	61	790	0	2	613	0	0	12	0	0	85	62
Confl. Peds. (#/hr)	33		16	16		33	9		4	4		9
Confl. Bikes (#/hr)			8			121						
Turn Type	Prot	NA		Prot	NA		Perm	NA		Perm	NA	Perm
Protected Phases	5	2		1	6			8			4	
Permitted Phases							8			4		4
Actuated Green, G (s)	7.2	88.9		1.4	83.1			23.0			23.0	23.0
Effective Green, g (s)	7.2	89.5		1.4	83.7			23.0			23.0	23.0
Actuated g/C Ratio	0.06	0.69		0.01	0.64			0.18			0.18	0.18
Clearance Time (s)	5.0	6.1		5.0	6.1			5.6			5.6	5.6
Vehicle Extension (s)	1.0	2.5		1.0	2.5			2.5			2.5	2.5
Lane Grp Cap (vph)	98	1275		19	2198			265			233	273
v/s Ratio Prot	c0.03	c0.43		0.00	0.18							
v/s Ratio Perm								0.01			c0.06	0.04
v/c Ratio	0.62	0.62		0.11	0.28			0.05			0.36	0.23
Uniform Delay, d1	60.1	11.0		63.7	10.0			44.4			47.1	45.9
Progression Factor	1.12	0.49		1.10	0.55			1.00			1.00	1.00
Incremental Delay, d2	7.6	2.0		0.9	0.3			0.1			0.7	0.3
Delay (s)	74.9	7.4		70.9	5.9			44.4			47.8	46.2
Level of Service	E	А		E	А			D			D	D
Approach Delay (s)		12.3			6.1			44.4			47.1	
Approach LOS		В			А			D			D	
Intersection Summary												
HCM 2000 Control Delay			13.4	H	CM 2000	Level of S	Service		В			
HCM 2000 Volume to Capa	city ratio		0.58		2000				_			
Actuated Cycle Length (s)			130.0	Si	um of lost	time (s)			16.1			
Intersection Capacity Utiliza	ation		65.5%			of Service			C			
Analysis Period (min)			15		3 23.014	2 2			Ŭ			
c Critical Lane Group												

	۶	-	\mathbf{i}	4	-	*	•	1	1	1	ţ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		¢Î		٦	<u></u>			\$		۲	eî 🗧	
Traffic Volume (vph)	0	771	4	13	497	0	1	0	19	94	3	64
Future Volume (vph)	0	771	4	13	497	0	1	0	19	94	3	64
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		6.0		6.0	6.0			6.0		6.0	6.0	
Lane Util. Factor		1.00		1.00	0.95			1.00		1.00	1.00	
Frpb, ped/bikes		1.00		1.00	1.00			1.00		1.00	0.98	
Flpb, ped/bikes		1.00		1.00	1.00			1.00		1.00	1.00	
Frt		1.00		1.00	1.00			0.87		1.00	0.86	
Flt Protected		1.00		0.95	1.00			1.00		0.95	1.00	
Satd. Flow (prot)		1860		1770	3539			1619		1770	1568	
Flt Permitted		1.00		0.95	1.00			1.00		0.95	1.00	
Satd. Flow (perm)		1860		1770	3539			1619		1770	1568	
Peak-hour factor, PHF	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85
Adj. Flow (vph)	0	907	5	15	585	0	1	0	22	111	4	75
RTOR Reduction (vph)	0	0	0	0	0	0	0	23	0	0	0	0
Lane Group Flow (vph)	0	912	0	15	585	0	0	0	0	111	79	0
Confl. Peds. (#/hr)	51		29	29		51	5					5
Confl. Bikes (#/hr)			12			135						
Turn Type		NA		Prot	NA		Split	NA		Split	NA	
Protected Phases		2		1	6		3	3		4	4	
Permitted Phases												
Actuated Green, G (s)		89.1		3.1	97.2			3.3		13.5	13.5	
Effective Green, g (s)		89.1		2.1	97.2			2.3		12.5	12.5	
Actuated g/C Ratio		0.69		0.02	0.75			0.02		0.10	0.10	
Clearance Time (s)		6.0		5.0	6.0			5.0		5.0	5.0	
Vehicle Extension (s)		5.0		3.0	5.0			3.0		3.0	3.0	
Lane Grp Cap (vph)		1274		28	2646			28		170	150	
v/s Ratio Prot		c0.49		0.01	c0.17			c0.00		c0.06	0.05	
v/s Ratio Perm		0.70		0.54				0.01		0.45	0.50	
v/c Ratio		0.72		0.54	0.22			0.01		0.65	0.53	_
Uniform Delay, d1		12.6		63.5	5.0			62.7		56.7	55.9	
Progression Factor		0.45		1.17	0.38			1.00		1.00	1.00	
Incremental Delay, d2		3.0		18.1	0.2			0.2		8.7	3.3	
Delay (s)		8.6		92.5	2.1			62.9		65.3	59.2	_
Level of Service		A		F	A			E		E	E	
Approach Delay (s)		8.6			4.3			62.9			62.8	_
Approach LOS		А			А			E			E	
Intersection Summary												
HCM 2000 Control Delay		13.8	H	CM 2000	Level of S	Service		В				
HCM 2000 Volume to Capacity ratio		0.69	_					0.1.0				
Actuated Cycle Length (s)			130.0		um of lost				24.0			
Intersection Capacity Utilization	n		64.2%	IC	U Level o	of Service			С			
Analysis Period (min)			15									

Kimley-Horn and Associates, Inc. HCM Signalized Intersection Capacity Analysis

0. 05 ND On-ramp/Demardo Avende & Homestead Road												
	٦	-	$\mathbf{\hat{v}}$	∢	←	•	1	1	1	5	Ļ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	۲ ۲	•	1	1	∱ î,						ا	1
Traffic Volume (vph)	54	735	89	80	440	73	0	0	0	84	4	60
Future Volume (vph)	54	735	89	80	440	73	0	0	0	84	4	60
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	5.0	5.5	6.1	5.0	5.5						5.5	5.5
Lane Util. Factor	1.00	1.00	1.00	1.00	0.95						1.00	1.00
Frpb, ped/bikes	1.00	1.00	0.92	1.00	0.99						1.00	1.00
Flpb, ped/bikes	1.00	1.00	1.00	1.00	1.00						1.00	1.00
Frt	1.00	1.00	0.85	1.00	0.98						1.00	0.85
Flt Protected	0.95	1.00	1.00	0.95	1.00						0.95	1.00
Satd. Flow (prot)	1770	1863	1463	1770	3427						1778	1583
Flt Permitted	0.95	1.00	1.00	0.95	1.00						0.95	1.00
Satd. Flow (perm)	1770	1863	1463	1770	3427						1778	1583
Peak-hour factor, PHF	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87
Adj. Flow (vph)	62	845	102	92	506	84	0	0	0	97	5	69
RTOR Reduction (vph)	0	0	0	0	7	0	0	0	0	0	0	63
Lane Group Flow (vph)	62	845	102	92	583	0	0	0	0	0	102	6
Confl. Peds. (#/hr)	8		34	34		8	-	-	5	5		-
Confl. Bikes (#/hr)			8			64						
Turn Type	Prot	NA	Perm	Prot	NA					Split	NA	Perm
Protected Phases	1	6		5	2					4	4	
Permitted Phases	•	0	6	Ū	-							4
Actuated Green, G (s)	7.5	91.3	91.3	10.8	94.6						11.1	11.1
Effective Green, g (s)	7.5	91.9	91.3	10.8	95.2						11.3	11.3
Actuated g/C Ratio	0.06	0.71	0.70	0.08	0.73						0.09	0.09
Clearance Time (s)	5.0	6.1	6.1	5.0	6.1						5.7	5.7
Vehicle Extension (s)	1.0	2.5	2.5	1.0	2.5						2.5	2.5
Lane Grp Cap (vph)	102	1316	1027	147	2509						154	137
v/s Ratio Prot	0.04	c0.45	1027	c0.05	0.17						c0.06	101
v/s Ratio Perm	0.01	00.10	0.07	00.00	0.17						00.00	0.00
v/c Ratio	0.61	0.64	0.10	0.63	0.23						0.66	0.04
Uniform Delay, d1	59.8	10.2	6.2	57.6	5.6						57.5	54.4
Progression Factor	0.83	0.35	0.39	1.34	0.37						1.00	1.00
Incremental Delay, d2	5.4	0.7	0.0	5.7	0.2						9.2	0.1
Delay (s)	54.9	4.3	2.5	82.7	2.3						66.8	54.5
Level of Service	D	A	A	F	A						E	D
Approach Delay (s)	_	7.2		-	13.2			0.0			61.8	_
Approach LOS		A			В			A			E	
					5						_	
Intersection Summary			1.1.1	, .	014 0000	1	2 !		5			
HCM 2000 Control Delay			14.4	H	CM 2000	Level of S	Service		В			
HCM 2000 Volume to Capacity ratio			0.64	6					44.0			
Actuated Cycle Length (s)			130.0	Sum of lost time (s) ICU Level of Service					16.0			
Intersection Capacity Utiliza	ation		70.2%	IC	U Level	of Service			С			
Analysis Period (min)			15									

Kimley-Horn and Associates, Inc. HCM Signalized Intersection Capacity Analysis

	٦	-	\mathbf{F}	∢	-	•	1	Ť	1	1	ţ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	۲	≜ †î≽		ľ	A		۲	et 🗧		۲	ef 🗧	
Traffic Volume (vph)	46	749	19	3	522	61	20	10	12	115	6	47
Future Volume (vph)	46	749	19	3	522	61	20	10	12	115	6	47
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	2100	2100	1900	2100	2100
Total Lost time (s)	5.0	5.5		5.0	5.5		4.0	5.7		4.0	5.7	
Lane Util. Factor	1.00	0.95		1.00	0.95		1.00	1.00		1.00	1.00	
Frpb, ped/bikes	1.00	0.99		1.00	0.98		1.00	0.98		1.00	0.94	
Flpb, ped/bikes	1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00	
Frt	1.00	0.80		1.00	0.98		1.00	0.92		1.00	0.87	
Flt Protected	0.95	1.00		0.95	1.00		0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1770	2805		1770	3417		1770	1845		1770	1677	
Flt Permitted	0.95	1.00		0.95	1.00		0.95	1.00		0.95	1.00	
Satd. Flow (perm)	1770	2805		1770	3417		1770	500		1770	1677	
Peak-hour factor, PHF	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82
Adj. Flow (vph)	56	913	23	4	637	74	24	12	15	140	7	57
RTOR Reduction (vph)	0	1	0	0	5	0	0	14	0	0	49	0
Lane Group Flow (vph)	56	935	0	4	706	0	24	13	0	140	15	0
Confl. Peds. (#/hr)	39		64	64		39	39		19	19		39
Confl. Bikes (#/hr)			26			65						
Bus Blockages (#/hr)	0	2	2	0	0	0	0	0	0	0	0	0
Turn Type	Prot	NA		Prot	NA		Prot	NA		Prot	NA	
Protected Phases	1	6		5	2		3	8		7	4	
Permitted Phases												
Actuated Green, G (s)	6.8	84.7		1.6	79.5		5.0	8.0		14.9	17.9	
Effective Green, g (s)	6.8	85.3		1.6	80.1		5.0	8.0		14.9	17.9	
Actuated g/C Ratio	0.05	0.66		0.01	0.62		0.04	0.06		0.11	0.14	
Clearance Time (s)	5.0	6.1		5.0	6.1		4.0	5.7		4.0	5.7	
Vehicle Extension (s)	1.0	2.5		1.0	2.5		3.0	2.5		3.0	2.5	
Lane Grp Cap (vph)	92	1840		21	2105		68	113		202	230	
v/s Ratio Prot	c0.03	c0.33		0.00	0.21		0.01	c0.01		c0.08	0.01	
v/s Ratio Perm												
v/c Ratio	0.61	0.51		0.19	0.34		0.35	0.11		0.69	0.06	
Uniform Delay, d1	60.3	11.5		63.6	12.1		60.9	57.7		55.4	48.8	
Progression Factor	1.03	0.88		1.06	0.75		1.00	1.00		1.00	1.00	
Incremental Delay, d2	6.3	0.8		1.3	0.4		3.1	0.3		9.8	0.1	
Delay (s)	68.2	10.9		68.4	9.4		64.1	58.0		65.2	48.9	
Level of Service	E	В		E	А		E	E		E	D	
Approach Delay (s)		14.2			9.7			60.8			60.1	
Approach LOS		В			А			E			E	
Intersection Summary			10 5		014 0000	Laurinef	2					
HCM 2000 Control Delay			18.5	H	CM 2000	Level of :	Service		В			
HCM 2000 Volume to Capa	icity ratio		0.52	<u> </u>		the a (-)			20.2			
Actuated Cycle Length (s)	tion		130.0		um of lost				20.2			
Intersection Capacity Utiliza	alion		61.5%	IC	CU Level o	DI Service			В			
Analysis Period (min)			15									
c Critical Lane Group												

	٠	+	*	4	Ļ	*	<	1	*	×	Ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	<u>۲</u>	≜ ⊅		<u>۲</u>	≜ †≱		ሻ	ef 👘		٦.	र्भ	1
Traffic Volume (vph)	66	720	54	23	440	143	70	57	71	264	48	67
Future Volume (vph)	66	720	54	23	440	143	70	57	71	264	48	67
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	5.5	5.5		5.5	5.5		5.6	5.6		5.5	5.5	5.5
Lane Util. Factor	1.00	0.95		1.00	0.95		1.00	1.00		0.95	0.95	1.00
Frpb, ped/bikes	1.00	0.98		1.00	0.94		1.00	0.79		1.00	1.00	0.91
Flpb, ped/bikes	1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00	1.00
Frt	1.00	0.99		1.00	0.96		1.00	0.92		1.00	1.00	0.85
Flt Protected	0.95	1.00		0.95	1.00		0.95	1.00		0.95	0.97	1.00
Satd. Flow (prot)	1770	3408		1770	3181		1770	1356		1681	1712	1436
Flt Permitted	0.95	1.00		0.95	1.00		0.95	1.00		0.95	0.97	1.00
Satd. Flow (perm)	1770	3408		1770	3181		1770	1356		1681	1712	1436
Peak-hour factor, PHF	0.76	0.76	0.76	0.76	0.76	0.76	0.76	0.76	0.76	0.76	0.76	0.76
Adj. Flow (vph)	87	947	71	30	579	188	92	75	93	347	63	88
RTOR Reduction (vph)	0	0	0	0	0	0	0	0	0	0	0	0
Lane Group Flow (vph)	87	1018	0	30	767	0	92	168	0	219	191	88
Confl. Peds. (#/hr)	113		148	148		113	57		339	339		57
Confl. Bikes (#/hr)			54			13			53			3
Bus Blockages (#/hr)	0	2	0	0	4	4	0	0	0	0	0	0
Turn Type	Prot	NA		Prot	NA		Split	NA		Split	NA	Perm
Protected Phases	1	6		5	2		3	3		4	4	
Permitted Phases												4
Actuated Green, G (s)	11.0	48.8		7.2	45.0		26.0	26.0		24.7	24.7	24.7
Effective Green, g (s)	11.0	49.4		7.2	45.6		26.0	26.0		25.3	25.3	25.3
Actuated g/C Ratio	0.08	0.38		0.06	0.35		0.20	0.20		0.19	0.19	0.19
Clearance Time (s)	5.5	6.1		5.5	6.1		5.6	5.6		6.1	6.1	6.1
Vehicle Extension (s)	1.0	2.5		1.0	2.5		1.0	1.0		2.5	2.5	2.5
Lane Grp Cap (vph)	149	1295		98	1115		354	271		327	333	279
v/s Ratio Prot	c0.05	c0.30		0.02	0.24		0.05	c0.12		c0.13	0.11	
v/s Ratio Perm												0.06
v/c Ratio	0.58	0.79		0.31	0.69		0.26	0.62		0.67	0.57	0.32
Uniform Delay, d1	57.3	35.6		59.0	36.1		43.9	47.5		48.5	47.5	44.9
Progression Factor	0.96	0.86		1.37	0.55		1.00	1.00		1.00	1.00	1.00
Incremental Delay, d2	3.4	4.4		0.6	3.3		0.1	3.0		4.6	2.0	0.5
Delay (s)	58.6	35.0		81.6	23.2		44.0	50.4		53.1	49.4	45.4
Level of Service	E	D		F	С		D	D		D	D	D
Approach Delay (s)		36.9			25.4			48.2			50.3	
Approach LOS		D			С			D			D	
Intersection Summary												
HCM 2000 Control Delay			37.1	Н	CM 2000	Level of S	Service		D			
HCM 2000 Volume to Capa	acity ratio		0.72									
Actuated Cycle Length (s)	,		130.0	S	um of losi	t time (s)			22.1			
Intersection Capacity Utiliza	ation		100.5%			of Service			G			
Analysis Period (min)			15									
c Critical Lane Group												

Movement EBI EBT EBR WBL WBT WBR NBL NBT NBR SBL SBT SBT Lane Configurations 1 <t< th=""></t<>
Lane ConfigurationsImage: Application of the second system of the s
$\begin{array}{c c c c c c c c c c c c c c c c c c c $
Traffic Volume (vph) 27 1050 86 20 539 68 0 0 0 56 8 33 Ideal Flow (vphp) 1900 100 100
Ideal Flow (vphpl) 1900 1
Total Lost time (s)5.05.55.05.55.6Lane Util. Factor1.000.951.000.951.00Frpb, ped/bikes1.000.951.000.970.94Flpb, ped/bikes1.001.001.000.970.94Fit1.000.991.000.980.96Fit Protected0.951.000.951.000.97Satd. Flow (prot)17703313177033521422Fit Permitted0.951.000.951.000.97Satd. Flow (perm)17703313177033521422Peak-hour factor, PHF0.780.780.780.780.780.78Adj. Flow (vph)351346110266918700013Lane Group Flow (vph)040060001071211312Confl. Peds. (#/hr)7419819874123131131121213113112Confl. Bikes (#/hr)04004000000107Turn TypeProtNAProtNAPermitted44444444444444444444444444444444 </td
Lane Util. Factor 1.00 0.95 1.00 0.95 1.00 0.97 Frpb, ped/bikes 1.00 1.00 1.00 1.00 0.97 0.94 Flpb, ped/bikes 1.00 0.99 1.00 0.98 0.96 Frt 1.00 0.99 1.00 0.98 0.96 Fit Protected 0.95 1.00 0.95 1.00 0.97 Satd. Flow (port) 1770 3313 1770 3352 1422 Peak-hour factor, PHF 0.78 0.72 10 0 0
Frpb, ped/bikes 1.00 0.95 1.00 0.97 0.94 Flpb, ped/bikes 1.00 1.00 1.00 1.00 0.88 Frt 1.00 0.99 1.00 0.98 0.96 Flt Protected 0.95 1.00 0.95 1.00 0.97 Satd. Flow (prot) 1770 3313 1770 3352 1422 Flt Permitted 0.95 1.00 0.95 1.00 0.97 Satd. Flow (perm) 1770 3313 1770 3352 1422 Peak-hour factor, PHF 0.78
Flipb, ped/bikes 1.00 1.00 1.00 0.00 0.98 Frt 1.00 0.99 1.00 0.98 0.96 Flt Protected 0.95 1.00 0.95 1.00 0.97 Satd. Flow (prot) 1770 3313 1770 3352 1422 Flt Permitted 0.95 1.00 0.95 1.00 0.97 Satd. Flow (prot) 1770 3313 1770 3352 1422 Peak-hour factor, PHF 0.78
Frt 1.00 0.99 1.00 0.98 0.96 Flt Protected 0.95 1.00 0.95 1.00 0.97 Satd. Flow (prot) 1770 3313 1770 3352 1422 Flt Permitted 0.95 1.00 0.95 1.00 0.97 Satd. Flow (prot) 1770 3313 1770 3352 1422 Peak-hour factor, PHF 0.78
Flt Protected 0.95 1.00 0.95 1.00 0.97 Satd. Flow (prot) 1770 3313 1770 3352 1422 Flt Permitted 0.95 1.00 0.95 1.00 0.97 1422 Satd. Flow (perm) 1770 3313 1770 3352 1422 Peak-hour factor, PHF 0.78 <t< td=""></t<>
Satd. Flow (prot) 1770 3313 1770 3352 1422 Flt Permitted 0.95 1.00 0.95 1.00 0.95 1.00 0.97 1422 Peak-hour factor, PHF 0.78 <t< td=""></t<>
Fit Permitted 0.95 1.00 0.95 1.00 0.97 Satd. Flow (perm) 1770 3313 1770 3352 1422 Peak-hour factor, PHF 0.78 <t< td=""></t<>
Satd. Flow (perm) 1770 3313 1770 3352 1422 Peak-hour factor, PHF 0.78 0.79 0.73 107 0.79
Peak-hour factor, PHF 0.78 0.79 0.71 0.79 0.79
Adj. Flow (vph) 35 1346 110 26 691 87 0 0 0 72 10 33 RTOR Reduction (vph) 0 4 0 0 6 0 0 0 0 13 13 Lane Group Flow (vph) 35 1452 0 26 772 0 0 0 0 107 Confl. Peds. (#/hr) 74 198 198 74 123 131 131 121 Confl. Bikes (#/hr) 74 198 198 74 123 131 131 121 Confl. Bikes (#/hr) 0 40 0 0 0 0 0 0 0 Bus Blockages (#/hr) 0 4 0 0 4 0
RTOR Reduction (vph) 0 4 0 0 6 0 0 0 0 13 Lane Group Flow (vph) 35 1452 0 26 772 0 0 0 0 107 Confl. Peds. (#/hr) 74 198 198 74 123 131 131 121 Confl. Bikes (#/hr) 74 198 198 74 0 0 0 0 0 0 107 Bus Blockages (#/hr) 0 40 9 31 123 131 131 124 Turn Type Prot NA Prot NA Permitted Phases 5 2 1 6 4 Permitted Phases 5 2 1 6 4<
Lane Group Flow (vph) 35 1452 0 26 772 0 0 0 0 107 Confl. Peds. (#/hr) 74 198 198 74 123 131 131 121 Confl. Bikes (#/hr) 74 198 198 74 123 131 131 121 Bus Blockages (#/hr) 0 40 9 31 121
Confl. Peds. (#/hr) 74 198 198 74 123 131 131 12 Confl. Bikes (#/hr) 40 9 31 31 12 131 131 12 Bus Blockages (#/hr) 0 4 0 0 4 0 0 0 0 0 Turn Type Prot NA Prot NA Perm NA Protected Phases 5 2 1 6 4 4 Permitted Phases 5 2 1 6 4 4 4 Actuated Green, G (s) 5.0 83.9 4.4 83.3 25.0 25.0 Effective Green, g (s) 5.0 84.5 4.4 83.9 25.0 25.0
Confl. Bikes (#/hr) 40 9 31 Bus Blockages (#/hr) 0 4 0 0 4 0<
Bus Blockages (#/hr) 0 4 0 0 4 0
Turn Type Prot NA Prot NA Protected Phases 5 2 1 6 4 Permitted Phases 4 4 4 4 Actuated Green, G (s) 5.0 83.9 4.4 83.3 25.0 Effective Green, g (s) 5.0 84.5 4.4 83.9 25.0
Protected Phases 5 2 1 6 4 Permitted Phases 4 <t< td=""></t<>
Permitted Phases 4 Actuated Green, G (s) 5.0 83.9 4.4 83.3 25.0 Effective Green, g (s) 5.0 84.5 4.4 83.9 25.0
Actuated Green, G (s) 5.0 83.9 4.4 83.3 25.0 Effective Green, g (s) 5.0 84.5 4.4 83.9 25.0
Effective Green, g (s) 5.0 84.5 4.4 83.9 25.0
Actuated a/C Ratio 0.04 0.65 0.03 0.65 0.19
0
Clearance Time (s) 5.0 6.1 5.0 5.0 5.0
Vehicle Extension (s) 1.0 2.5 1.0 2.5 2.5
Lane Grp Cap (vph) 68 2153 59 2163 273
v/s Ratio Prot c0.02 c0.44 0.01 0.23
v/s Ratio Perm 0.08
v/c Ratio 0.51 0.67 0.44 0.36 0.39
Uniform Delay, d1 61.3 14.2 61.6 10.6 45.9
Progression Factor 1.13 0.61 0.94 1.85 1.00
Incremental Delay, d2 2.1 1.3 1.7 0.4 0.7
Delay (s) 71.1 9.9 59.7 20.0 46.5
Level of Service E A E C D
Approach Delay (s) 11.4 21.3 0.0 46.5
Approach LOSBCAD
Approach LOS B C A D
Approach LOS B C A D Intersection Summary
Approach LOSBCADIntersection SummaryHCM 2000 Control Delay16.4HCM 2000 Level of ServiceB
Approach LOSBCADIntersection SummaryHCM 2000 Control Delay16.4HCM 2000 Level of ServiceBHCM 2000 Volume to Capacity ratio0.61Actuated Cycle Length (s)130.0Sum of lost time (s)16.1Intersection Capacity Utilization62.3%ICU Level of ServiceB
Approach LOSBCADIntersection SummaryHCM 2000 Control Delay16.4HCM 2000 Level of ServiceBHCM 2000 Volume to Capacity ratio0.61

10: Stelling Road/Hollenbeck Avenue & Homestead Road

	≯	-	\mathbf{F}	4	+	•	•	Ť	۲	1	Ļ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	۲	≜î ≽		۲	† 12		ኘኘ	∱1 ≱		ň	¥⊅	
Traffic Volume (vph)	96	715	274	209	429	165	201	256	239	183	351	76
Future Volume (vph)	96	715	274	209	429	165	201	256	239	183	351	76
Ideal Flow (vphpl)	1900	2100	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	5.0	5.5		5.0	5.5		5.0	5.1		5.0	5.1	
Lane Util. Factor	1.00	0.95		1.00	0.95		0.97	0.95		1.00	0.95	
Frpb, ped/bikes	1.00	0.95		1.00	0.96		1.00	0.96		1.00	0.99	
Flpb, ped/bikes	1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00	
Frt	1.00	0.96		1.00	0.96		1.00	0.93		1.00	0.97	
Flt Protected	0.95	1.00		0.95	1.00		0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1770	3576		1770	3249		3433	3153		1770	3398	
Flt Permitted	0.95	1.00		0.95	1.00		0.95	1.00		0.95	1.00	
Satd. Flow (perm)	1770	3576		1770	3249		3433	3153		1770	3398	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	104	777	298	227	466	179	218	278	260	199	382	83
RTOR Reduction (vph)	0	29	0	0	28	0	0	136	0	0	15	0
Lane Group Flow (vph)	104	1046	0	227	617	0	218	402	0	199	450	0
Confl. Peds. (#/hr)	94		114	114		94	59		58	58		59
Confl. Bikes (#/hr)			38			3			3			1
Turn Type	Prot	NA		Prot	NA		Prot	NA		Prot	NA	
Protected Phases	5	2		1	6		3	8		7	4	
Permitted Phases												
Actuated Green, G (s)	11.8	45.4		17.6	51.2		11.2	29.4		15.8	34.0	
Effective Green, g (s)	11.8	46.0		17.6	51.8		11.2	30.0		15.8	34.6	
Actuated g/C Ratio	0.09	0.35		0.14	0.40		0.09	0.23		0.12	0.27	
Clearance Time (s)	5.0	6.1		5.0	6.1		5.0	5.7		5.0	5.7	
Vehicle Extension (s)	1.0	2.5		1.0	2.5		1.0	2.5		1.0	2.5	
Lane Grp Cap (vph)	160	1265		239	1294		295	727		215	904	
v/s Ratio Prot	0.06	c0.29		c0.13	0.19		0.06	c0.13		c0.11	c0.13	
v/s Ratio Perm												
v/c Ratio	0.65	0.83		0.95	0.48		0.74	0.55		0.93	0.50	
Uniform Delay, d1	57.1	38.4		55.8	29.0		58.0	44.1		56.5	40.4	
Progression Factor	0.99	0.56		1.00	1.00		1.00	1.00		1.00	1.00	
Incremental Delay, d2	5.4	4.9		43.5	1.3		8.1	0.7		40.4	0.3	
Delay (s)	62.0	26.4		99.2	30.3		66.1	44.8		96.9	40.7	
Level of Service	E	С		F	С		E	D		F	D	
Approach Delay (s)		29.6			48.2			50.9			57.5	
Approach LOS		С			D			D			E	
Intersection Summary												
HCM 2000 Control Delay			44.3	H	CM 2000	Level of S	Service		D			
HCM 2000 Volume to Capad	city ratio		0.78									
Actuated Cycle Length (s)			130.0	Si	um of los	time (s)			20.6			
Intersection Capacity Utiliza	tion		94.8%	IC	U Level	of Service			F			
Analysis Period (min)			15									
c Critical Lane Group												

Homestead Road Safe Routes to School 1: Foothill Expy & Vineyard/Homestead Road

	۶	-	\mathbf{F}	•	+	•	1	1	1	1	ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		ન ી	1	ሻ	र्भ	1	ሻ	- † †	1	<u>۲</u>	- † †	1
Traffic Volume (vph)	5	28	22	250	23	130	18	541	292	499	1334	13
Future Volume (vph)	5	28	22	250	23	130	18	541	292	499	1334	13
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		5.2	5.2	5.1	5.1	5.1	4.7	5.8	5.8	4.9	5.8	5.8
Lane Util. Factor		1.00	1.00	0.95	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00
Frpb, ped/bikes		1.00	0.96	1.00	1.00	0.98	1.00	1.00	0.97	1.00	1.00	0.97
Flpb, ped/bikes		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt		1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85
Flt Protected		0.99	1.00	0.95	0.96	1.00	0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (prot)		1849	1525	1681	1699	1559	1770	3539	1530	1770	3539	1534
Flt Permitted		0.99	1.00	0.95	0.96	1.00	0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (perm)		1849	1525	1681	1699	1559	1770	3539	1530	1770	3539	1534
Peak-hour factor, PHF	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96
Adj. Flow (vph)	5	29	23	260	24	135	19	564	304	520	1390	14
RTOR Reduction (vph)	0	0	21	0	0	116	0	0	220	0	0	6
Lane Group Flow (vph)	0	34	2	140	144	19	19	564	84	520	1390	8
Confl. Peds. (#/hr)			9	9								1
Confl. Bikes (#/hr)			5			2			10			13
Turn Type	Split	NA	Perm	Split	NA	Perm	Prot	NA	Perm	Prot	NA	Perm
Protected Phases	. 4	4		3	3		5	2		1	6	
Permitted Phases			4			3			2			6
Actuated Green, G (s)		10.3	10.3	17.9	17.9	17.9	3.4	35.9	35.9	44.9	77.6	77.6
Effective Green, g (s)		10.3	10.3	17.9	17.9	17.9	3.4	35.9	35.9	44.9	77.6	77.6
Actuated g/C Ratio		0.08	0.08	0.14	0.14	0.14	0.03	0.28	0.28	0.35	0.60	0.60
Clearance Time (s)		5.2	5.2	5.1	5.1	5.1	4.7	5.8	5.8	4.9	5.8	5.8
Vehicle Extension (s)		4.0	4.0	4.0	4.0	4.0	3.0	4.0	4.0	3.0	4.0	4.0
Lane Grp Cap (vph)		146	120	231	233	214	46	977	422	611	2112	915
v/s Ratio Prot		c0.02		0.08	c0.08		0.01	0.16		c0.29	c0.39	
v/s Ratio Perm			0.00			0.01			0.05			0.01
v/c Ratio		0.23	0.02	0.61	0.62	0.09	0.41	0.58	0.20	0.85	0.66	0.01
Uniform Delay, d1		56.1	55.2	52.7	52.8	48.9	62.3	40.5	36.0	39.4	17.4	10.6
Progression Factor		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Incremental Delay, d2		1.1	0.1	5.1	5.5	0.2	5.9	1.0	0.3	11.0	1.6	0.0
Delay (s)		57.3	55.2	57.9	58.3	49.2	68.2	41.5	36.4	50.4	19.0	10.6
Level of Service		E	E	Е	E	D	E	D	D	D	В	В
Approach Delay (s)		56.4			55.2			40.3			27.4	
Approach LOS		E			E			D			С	
Intersection Summary												
HCM 2000 Control Delay			35.0	Н	CM 2000	Level of S	Service		С			
HCM 2000 Volume to Capa	city ratio		0.71									
Actuated Cycle Length (s)			130.0	S	um of los	t time (s)			21.0			
Intersection Capacity Utiliza	tion		71.2%	IC	CU Level	of Service			С			
Analysis Period (min)			15									
c Critical Lane Group												

c Critical Lane Group

۶

.

+

		-			*	*	
Movement	EBL	EBT	WBT	WBR	SBL	SBR	
Lane Configurations		†	1	1	۲.	1	
Traffic Volume (veh/h)	0	816	478	116	106	23	
Future Volume (Veh/h)	0	816	478	116	106	23	
Sign Control		Free	Free		Stop		
Grade		0%	0%		0%		
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94	
Hourly flow rate (vph)	0	868	509	123	113	24	
Pedestrians					3		
Lane Width (ft)					12.0		
Walking Speed (ft/s)					4.0		
Percent Blockage					0		
Right turn flare (veh)						7	
Median type		None	None				
Median storage veh)							
Upstream signal (ft)		171	1027				
pX, platoon unblocked	0.94				0.94	0.94	
vC, conflicting volume	635				1380	512	
vC1, stage 1 conf vol							
vC2, stage 2 conf vol							
vCu, unblocked vol	577				1355	446	
tC, single (s)	4.1				6.4	6.2	
tC, 2 stage (s)							
tF (s)	2.2				3.5	3.3	
p0 queue free %	100				27	96	
cM capacity (veh/h)	932				155	573	
Direction, Lane #	EB 1	WB 1	WB 2	SB 1			
Volume Total	868	509	123	137			
Volume Left	0	0	0	113 24			
Volume Right	0	0	123				
cSH Volume to Conseitu	1700	1700	1700	188			
Volume to Capacity	0.51	0.30	0.07	0.73			
Queue Length 95th (ft)	0	0	0	117			
Control Delay (s)	0.0	0.0	0.0	63.1			
Lane LOS	0.0	0.0		F			
Approach Delay (s)	0.0	0.0		63.1			
Approach LOS				F			
Intersection Summary							
Average Delay			5.3				
Intersection Capacity Utili	zation		55.5%	IC	U Level o	of Service	ć
Analysis Period (min)			15				
,							

∠

EBR 43 43 1900	WBL 15 15 1900 5.0 1.00 1.00	WBT 427 427 1900 6.1	WBR 37 37 1900	NBL 10 10	NBT	NBR 14	SBL 23	SBT	SBR
43	15 15 1900 5.0 1.00	427 427 1900 6.1	37	10	1		23		
43	15 1900 5.0 1.00	427 1900 6.1	37	10			23	0	
	1900 5.0 1.00	1900 6.1			1	11			30
1900	5.0 1.00	6.1	1900	1000		14	23	0	30
	1.00			1900	1900	1900	1900	1900	1900
		1 00			5.6			5.6	
	1.00				1.00			1.00	
									0.98
									31
									0
		472		0	13			6	0
	24					4	4		
18			16						
				Perm			Perm		
	1	6			8			4	
				8			4		
					161			159	
	0.01	0.26							
									_
	F								
									_
		A			Ł			Ł	
	Н	CM 2000	Level of S	Service		В			
150.0						22.8			
	IC	CU Level o	of Service			В			
15									
	0.98 44 0 24 18 3 4 4 0 4 3 4 4 0 4 4 5 4 5 4 5 5 6 3 3% 15	1.00 1.00 1.00 0.95 1770 0.95 1770 0.98 0.98 44 15 0 0 0 0 0 0 0 0 0 1770 0.98 0.998 0.998 0.998 0.998 0.998 0.998 0.998 0.998 0.998 0.998 0.01 1.01 33 0.01 0.02 5.0 1.0 33 0.01 33 0.01 33 0.01 3.5 83.2 F 17.4 14 0.61 0.50 63.3% <	1.00 1.00 1.00 1.00 1.00 0.99 0.95 1.00 1770 1835 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 44 15 436 0 0 2 0 15 472 24 24 24 18	1.00 1.00 1.00 0.99 0.95 1.00 1770 1835 0.95 1.00 1770 1835 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 44 15 436 38 0 0 2 0 0 15 472 0 24 24 6 16 1 6 16 16 1 6 16 16 10 2.8 101.9 1 2.8 101.9 1 6 2.8 101.9 1 1 0.02 0.68 1 1 0.03 1.0 2.5 1 33 1246 0.0 1 1 0.45 0.38 1 1 1 72.8 10.4 1 1 1 1.09 0.46 3.5 1 3 <td>1.00 1.00 1.00 0.99 1.00 0.99 0.95 1.00 1770 1835 0.95 1.00 1770 1835 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.94 436 38 10 0 0 2 0 0 0 15 472 0 0 24 24 6 10 10 24 24 6 10 10 28 101.9 16 10 10 2.8 101.9 14 10 10 2.8 101.9 10 10 10 2.8 101.9 10 10 10 3.3 1246 10 10 10 0.01 0.26 10 10 10 1.00 2.5 10 10 10 1.01</td> <td>1.00 1.00 0.98 1.00 0.09 0.92 0.95 1.00 0.98 1770 1835 1652 0.95 1.00 0.98 1770 1835 1493 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.91 44 15 436 38 10 1 0 0 2 0 0 12 0 13 20 15 472 0 0 13 1493 24 24 6 16 16 16 16 1 6 8 0.11 16.2 16 16 0.02 0.68 0.11 5.6 1.01 16 16 0.01 0.26 2.5 2.5 16 0.45</td> <td>1.00 1.00 1.00 1.00 1.00 0.99 0.92 0.95 1.00 0.98 1770 1835 1652 0.95 1.00 0.89 1770 1835 1493 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 44 15 436 38 10 1 0 0 2 0 0 12 0 1 6 38 10 1 14 0 0 2 0 13 0 24 24 6 4 1 1 6 8 0.11 1 1 6 8 0.11 1 0.02 0.68 0.11 1 1</td> <td>1.00 1.00 0.98 </td> <td>1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 1.00 0.99 0.92 0.92 0.95 1.00 0.98 0.98 0.98 1770 1835 1652 1670 0.95 1.00 0.89 0.98 0.98 1770 1835 1493 1473 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 44 15 436 38 10 1 14 23 0 0 0 2 0 0 12 0 0 48 0 15 472 0 0 13 0 0 6 24 24 6 8 4 4 16 6</td>	1.00 1.00 1.00 0.99 1.00 0.99 0.95 1.00 1770 1835 0.95 1.00 1770 1835 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.94 436 38 10 0 0 2 0 0 0 15 472 0 0 24 24 6 10 10 24 24 6 10 10 28 101.9 16 10 10 2.8 101.9 14 10 10 2.8 101.9 10 10 10 2.8 101.9 10 10 10 3.3 1246 10 10 10 0.01 0.26 10 10 10 1.00 2.5 10 10 10 1.01	1.00 1.00 0.98 1.00 0.09 0.92 0.95 1.00 0.98 1770 1835 1652 0.95 1.00 0.98 1770 1835 1493 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.91 44 15 436 38 10 1 0 0 2 0 0 12 0 13 20 15 472 0 0 13 1493 24 24 6 16 16 16 16 1 6 8 0.11 16.2 16 16 0.02 0.68 0.11 5.6 1.01 16 16 0.01 0.26 2.5 2.5 16 0.45	1.00 1.00 1.00 1.00 1.00 0.99 0.92 0.95 1.00 0.98 1770 1835 1652 0.95 1.00 0.89 1770 1835 1493 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 44 15 436 38 10 1 0 0 2 0 0 12 0 1 6 38 10 1 14 0 0 2 0 13 0 24 24 6 4 1 1 6 8 0.11 1 1 6 8 0.11 1 0.02 0.68 0.11 1 1	1.00 1.00 0.98	1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 1.00 0.99 0.92 0.92 0.95 1.00 0.98 0.98 0.98 1770 1835 1652 1670 0.95 1.00 0.89 0.98 0.98 1770 1835 1493 1473 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 44 15 436 38 10 1 14 23 0 0 0 2 0 0 12 0 0 48 0 15 472 0 0 13 0 0 6 24 24 6 8 4 4 16 6

c Critical Lane Group

	۶	-	\mathbf{r}	*	+	•	1	1	1	1	Ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	4		ሻ	↑ 1≽			4			र्स	1
Traffic Volume (vph)	53	786	16	4	440	74	12	0	6	39	1	45
Future Volume (vph)	53	786	16	4	440	74	12	0	6	39	1	45
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	5.0	5.5		5.0	5.5			5.6			5.6	5.6
Lane Util. Factor	1.00	1.00		1.00	0.95			1.00			1.00	1.00
Frpb, ped/bikes	1.00	1.00		1.00	0.99			1.00			1.00	0.98
Flpb, ped/bikes	1.00	1.00		1.00	1.00			1.00			1.00	1.00
Frt	1.00	1.00		1.00	0.98			0.95			1.00	0.85
Flt Protected	0.95	1.00		0.95	1.00			0.97			0.95	1.00
Satd. Flow (prot)	1770	1855		1770	3432			1718			1776	1559
Flt Permitted	0.95	1.00		0.95	1.00			0.85			0.73	1.00
Satd. Flow (perm)	1770	1855		1770	3432			1501			1362	1559
Peak-hour factor, PHF	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98
Adj. Flow (vph)	54	802	16	4	449	76	12	0	6	40	1	46
RTOR Reduction (vph)	0	0	0	0	8	0	0	15	0	0	0	0
Lane Group Flow (vph)	54	818	0	4	518	0	0	3	0	0	41	46
Confl. Peds. (#/hr)	8		8	8		8	2					2
Confl. Bikes (#/hr)			16			25						
Turn Type	Prot	NA		Prot	NA		Perm	NA		Perm	NA	Perm
Protected Phases	5	2		1	6			8			4	
Permitted Phases							8			4		4
Actuated Green, G (s)	7.3	110.3		1.4	104.4			21.6			21.6	21.6
Effective Green, g (s)	7.3	110.9		1.4	105.0			21.6			21.6	21.6
Actuated g/C Ratio	0.05	0.74		0.01	0.70			0.14			0.14	0.14
Clearance Time (s)	5.0	6.1		5.0	6.1			5.6			5.6	5.6
Vehicle Extension (s)	1.0	2.5		1.0	2.5			2.5			2.5	2.5
Lane Grp Cap (vph)	86	1371		16	2402			216			196	224
v/s Ratio Prot	c0.03	c0.44		0.00	0.15							
v/s Ratio Perm	0 (0	0 (0		0.05				0.00			c0.03	0.03
v/c Ratio	0.63	0.60		0.25	0.22			0.01			0.21	0.21
Uniform Delay, d1	70.0	9.1		73.8	7.9			55.1			56.7	56.6
Progression Factor	1.18	0.34		1.47	0.50			1.00			1.00	1.00
Incremental Delay, d2	7.6	1.5		2.9	0.2			0.0			0.4	0.3
Delay (s)	90.1	4.5		111.3	4.2			55.1			57.1	57.0
Level of Service	F	A		F	A			E			E	E
Approach Delay (s)		9.8			5.0			55.1			57.0	
Approach LOS		А			А			E			E	
Intersection Summary												
HCM 2000 Control Delay			11.4	Н	CM 2000	Level of	Service		В			
HCM 2000 Volume to Capa	acity ratio		0.55									
Actuated Cycle Length (s)			150.0		um of lost				16.1			
Intersection Capacity Utiliza	ation		61.0%	IC	CU Level o	of Service			В			
Analysis Period (min)			15									
c Critical Lano Croup												

c Critical Lane Group

Homestead Road Safe Routes to School 5: Maxine Avenue/85 SB Off-ramp & Homestead Road

	≯	-	~	4	-	•	•	t	1	1	ţ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		eî 👘		۲	<u></u>			\$		۲	eî.	
Traffic Volume (vph)	0	833	8	27	419	0	5	0	18	293	13	96
Future Volume (vph)	0	833	8	27	419	0	5	0	18	293	13	96
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		6.0		6.0	6.0			6.0		6.0	6.0	
Lane Util. Factor		1.00		1.00	0.95			1.00		1.00	1.00	
Frpb, ped/bikes		1.00		1.00	1.00			1.00		1.00	0.99	
Flpb, ped/bikes		1.00		1.00	1.00			1.00		1.00	1.00	
Frt		1.00		1.00	1.00			0.89		1.00	0.87	
Flt Protected		1.00		0.95	1.00			0.99		0.95	1.00	
Satd. Flow (prot)		1859		1770	3539			1645		1770	1595	
Flt Permitted		1.00		0.95	1.00			0.99		0.95	1.00	
Satd. Flow (perm)		1859		1770	3539			1645		1770	1595	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	0	905	9	29	455	0	5	0	20	318	14	104
RTOR Reduction (vph)	0	0	0	0	0	0	0	25	0	0	0	0
Lane Group Flow (vph)	0	914	0	29	455	0	0	0	0	318	118	0
Confl. Peds. (#/hr)	8		6	6		8	2					2
Confl. Bikes (#/hr)			18			29						
Turn Type		NA		Prot	NA		Split	NA		Split	NA	
Protected Phases		2		1	6		3	3		4	4	
Permitted Phases												
Actuated Green, G (s)		89.5		5.2	99.7			3.3		31.0	31.0	
Effective Green, g (s)		89.5		4.2	99.7			2.3		30.0	30.0	
Actuated g/C Ratio		0.60		0.03	0.66			0.02		0.20	0.20	
Clearance Time (s)		6.0		5.0	6.0			5.0		5.0	5.0	
Vehicle Extension (s)		5.0		3.0	5.0			3.0		3.0	3.0	
Lane Grp Cap (vph)		1109		49	2352			25		354	319	
v/s Ratio Prot		c0.49		c0.02	0.13			c0.00		c0.18	0.07	
v/s Ratio Perm				0.50	0.40						0.07	
v/c Ratio		0.82		0.59	0.19			0.02		0.90	0.37	
Uniform Delay, d1		24.0		72.1	9.7			72.7		58.5	51.8	
Progression Factor		0.55		0.83	0.59			1.00		1.00	1.00	_
Incremental Delay, d2		6.2		17.6	0.2			0.2		24.2	0.7	
Delay (s)		19.4		77.6 E	5.9 A			73.0 E		82.7 F	52.6 D	
Level of Service Approach Delay (s)		B 19.4		E	A 10.2			F 73.0		Г	74.6	
		19.4 B			10.2 B			73.0 E			74.0 E	
Approach LOS		D			D			E			E	
Intersection Summary												
HCM 2000 Control Delay			30.6	H	CM 2000	Level of S	Service		С			
HCM 2000 Volume to Capacity	/ ratio		0.82	-					0.1.5			
Actuated Cycle Length (s)			150.0		um of losi				24.0			
Intersection Capacity Utilization	n		77.2%	IC	U Level	of Service			D			
Analysis Period (min)			15									

c Critical Lane Group

	٦	+	\mathbf{r}	4	ł	•	≺	1	1	1	Ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ľ	•	1	7	∱ î,						ب	1
Traffic Volume (vph)	43	1031	58	69	391	46	0	0	0	59	5	51
Future Volume (vph)	43	1031	58	69	391	46	0	0	0	59	5	51
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	5.0	5.5	6.1	5.0	5.5						5.5	5.5
Lane Util. Factor	1.00	1.00	1.00	1.00	0.95						1.00	1.00
Frpb, ped/bikes	1.00	1.00	0.97	1.00	0.99						1.00	1.00
Flpb, ped/bikes	1.00	1.00	1.00	1.00	1.00						1.00	1.00
Frt	1.00	1.00	0.85	1.00	0.98						1.00	0.85
Flt Protected	0.95	1.00	1.00	0.95	1.00						0.96	1.00
Satd. Flow (prot)	1770	1863	1541	1770	3459						1780	1583
Flt Permitted	0.95	1.00	1.00	0.95	1.00						0.96	1.00
Satd. Flow (perm)	1770	1863	1541	1770	3459						1780	1583
Peak-hour factor, PHF	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Adj. Flow (vph)	46	1097	62	73	416	49	0	0	0	63	5	54
RTOR Reduction (vph)	0	0	0	0	9	0	0	0	0	0	0	50
Lane Group Flow (vph)	46	1097	62	73	456	0	0	0	0	0	68	4
Confl. Peds. (#/hr)	9		5	5		9				2		
Confl. Bikes (#/hr)			14			23						
Turn Type	Prot	NA	Perm	Prot	NA					Split	NA	Perm
Protected Phases	1	6		5	2					4	4	
Permitted Phases			6									4
Actuated Green, G (s)	49.4	113.0	113.0	10.4	74.0						9.8	9.8
Effective Green, g (s)	49.4	113.6	113.0	10.4	74.6						10.0	10.0
Actuated g/C Ratio	0.33	0.76	0.75	0.07	0.50						0.07	0.07
Clearance Time (s)	5.0	6.1	6.1	5.0	6.1						5.7	5.7
Vehicle Extension (s)	1.0	2.5	2.5	1.0	2.5						2.5	2.5
Lane Grp Cap (vph)	582	1410	1160	122	1720						118	105
v/s Ratio Prot	0.03	c0.59		c0.04	0.13						c0.04	
v/s Ratio Perm			0.04									0.00
v/c Ratio	0.08	0.78	0.05	0.60	0.27						0.58	0.03
Uniform Delay, d1	34.6	10.8	4.8	67.8	21.8						67.9	65.5
Progression Factor	0.70	0.61	0.56	0.91	0.50						1.00	1.00
Incremental Delay, d2	0.0	2.6	0.1	5.1	0.1						5.5	0.1
Delay (s)	24.3	9.1	2.7	66.7	10.9						73.4	65.6
Level of Service	С	А	А	E	В						E	E
Approach Delay (s)		9.3			18.5			0.0			70.0	
Approach LOS		A			В			А			E	
Intersection Summary												
HCM 2000 Control Delay			15.9	Н	CM 2000	Level of S	Service		В			
HCM 2000 Volume to Capa	city ratio		0.75									
Actuated Cycle Length (s)	,		150.0	Si	um of lost	t time (s)			16.0			
Intersection Capacity Utiliza	tion		73.2%			of Service			D			
Analysis Period (min)	-		15						_			
c Critical Lane Group												

c Critical Lane Group

	٦	-	*	4	+	•	≺	1	1	1	Ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	1	Åî≽		1	A		ľ	el 🗧		ľ	et	
Traffic Volume (vph)	32	1027	25	13	458	41	6	3	13	44	12	41
Future Volume (vph)	32	1027	25	13	458	41	6	3	13	44	12	41
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	2100	2100	1900	2100	2100
Total Lost time (s)	5.0	5.5		5.0	5.5		4.0	5.7		4.0	5.7	
Lane Util. Factor	1.00	0.95		1.00	0.95		1.00	1.00		1.00	1.00	
Frpb, ped/bikes	1.00	1.00		1.00	0.99		1.00	1.00		1.00	0.99	
Flpb, ped/bikes	1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00	
Frt	1.00	0.80		1.00	0.99		1.00	0.88		1.00	0.88	
Flt Protected	0.95	1.00		0.95	1.00		0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1770	2817		1770	3478		1770	1804		1770	1795	
Flt Permitted	0.95	1.00		0.95	1.00		0.95	1.00		0.95	1.00	
Satd. Flow (perm)	1770	2817		1770	3478		1770	500		1770	1795	
Peak-hour factor, PHF	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
Adj. Flow (vph)	34	1104	27	14	492	44	6	3	14	47	13	44
RTOR Reduction (vph)	0	1	0	0	3	0	0	13	0	0	40	0
Lane Group Flow (vph)	34	1130	0	14	533	0	6	4	0	47	17	0
Confl. Peds. (#/hr)	8		6	6		8	1					1
Confl. Bikes (#/hr)			24			24						2
Bus Blockages (#/hr)	0	2	2	0	0	0	0	0	0	0	0	0
Turn Type	Prot	NA		Prot	NA		Prot	NA		Prot	NA	
Protected Phases	1	6		5	2		3	8		7	4	
Permitted Phases												
Actuated Green, G (s)	6.7	109.3		3.2	105.8		1.4	9.2		7.5	15.3	
Effective Green, g (s)	6.7	109.9		3.2	106.4		1.4	9.2		7.5	15.3	
Actuated g/C Ratio	0.04	0.73		0.02	0.71		0.01	0.06		0.05	0.10	
Clearance Time (s)	5.0	6.1		5.0	6.1		4.0	5.7		4.0	5.7	
Vehicle Extension (s)	1.0	2.5		1.0	2.5		3.0	2.5		3.0	2.5	
Lane Grp Cap (vph)	79	2063		37	2467		16	110		88	183	
v/s Ratio Prot	c0.02	c0.40		0.01	0.15		0.00	0.00		c0.03	c0.01	
v/s Ratio Perm												
v/c Ratio	0.43	0.55		0.38	0.22		0.38	0.04		0.53	0.10	
Uniform Delay, d1	69.8	9.0		72.4	7.5		73.9	66.2		69.5	61.1	
Progression Factor	1.13	0.52		1.01	0.45		1.00	1.00		1.00	1.00	
Incremental Delay, d2	0.9	0.7		2.1	0.2		14.1	0.1		6.1	0.2	
Delay (s)	79.7	5.3		75.5	3.6		88.0	66.3		75.7	61.2	
Level of Service	E	А		E	А		F	E		E	E	
Approach Delay (s)		7.5			5.4			72.0			67.8	
Approach LOS		А			А			E			E	
Intersection Summary												
HCM 2000 Control Delay			11.1	H	CM 2000	Level of S	Service		В			
HCM 2000 Volume to Capac	city ratio		0.52									
Actuated Cycle Length (s)	,		150.0	Si	um of lost	t time (s)			20.2			
Intersection Capacity Utilization	tion		48.1%			of Service			А			
Analysis Period (min)			15									
c Critical Lane Group												

	≯	+	\mathbf{F}	4	+	•	<	Ť	1	1	ţ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ľ	≜ î≽		1	A⊅		1	el el		1	ب	1
Traffic Volume (vph)	58	1019	5	15	457	178	4	9	12	458	12	100
Future Volume (vph)	58	1019	5	15	457	178	4	9	12	458	12	100
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	5.5	5.5		5.5	5.5		5.6	5.6		5.5	5.5	5.5
Lane Util. Factor	1.00	0.95		1.00	0.95		1.00	1.00		0.95	0.95	1.00
Frpb, ped/bikes	1.00	1.00		1.00	0.98		1.00	0.98		1.00	1.00	0.98
Flpb, ped/bikes	1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00	1.00
Frt	1.00	1.00		1.00	0.96		1.00	0.92		1.00	1.00	0.85
Flt Protected	0.95	1.00		0.95	1.00		0.95	1.00		0.95	0.96	1.00
Satd. Flow (prot)	1770	3522		1770	3308		1770	1678		1681	1691	1552
Flt Permitted	0.95	1.00		0.95	1.00		0.95	1.00		0.95	0.96	1.00
Satd. Flow (perm)	1770	3522		1770	3308		1770	1678		1681	1691	1552
Peak-hour factor, PHF	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Adj. Flow (vph)	62	1084	5	16	486	189	4	10	13	487	13	106
RTOR Reduction (vph)	0	0	0	0	0	0	0	0	0	0	0	0
Lane Group Flow (vph)	62	1089	0	16	675	0	4	23	0	307	193	106
Confl. Peds. (#/hr)	12		13	13		12	3		8	8		3
Confl. Bikes (#/hr)			16			15			2			3
Bus Blockages (#/hr)	0	2	0	0	4	4	0	0	0	0	0	0
Turn Type	Prot	NA		Prot	NA		Split	NA		Split	NA	Perm
Protected Phases	1	6		5	2		3	3		. 4	4	
Permitted Phases												4
Actuated Green, G (s)	9.0	64.7		4.8	60.5		26.0	26.0		31.2	31.2	31.2
Effective Green, g (s)	9.0	65.3		4.8	61.1		26.0	26.0		31.8	31.8	31.8
Actuated g/C Ratio	0.06	0.44		0.03	0.41		0.17	0.17		0.21	0.21	0.21
Clearance Time (s)	5.5	6.1		5.5	6.1		5.6	5.6		6.1	6.1	6.1
Vehicle Extension (s)	1.0	2.5		1.0	2.5		1.0	1.0		2.5	2.5	2.5
Lane Grp Cap (vph)	106	1533		56	1347		306	290		356	358	329
v/s Ratio Prot	c0.04	c0.31		0.01	0.20		0.00	c0.01		c0.18	0.11	
v/s Ratio Perm												0.07
v/c Ratio	0.58	0.71		0.29	0.50		0.01	0.08		0.86	0.54	0.32
Uniform Delay, d1	68.7	34.6		70.9	33.1		51.4	52.0		57.0	52.6	50.0
Progression Factor	1.24	0.69		1.40	0.50		1.00	1.00		1.00	1.00	1.00
Incremental Delay, d2	4.6	2.5		1.0	1.3		0.0	0.0		18.7	1.2	0.4
Delay (s)	89.8	26.3		100.1	17.7		51.4	52.0		75.7	53.8	50.4
Level of Service	F	С		F	В		D	D		E	D	D
Approach Delay (s)		29.7			19.6			51.9			64.3	
Approach LOS		С			В			D			E	
Intersection Summary												
HCM 2000 Control Delay			35.6	H	CM 2000	Level of S	Service		D			
HCM 2000 Volume to Capac	city ratio		0.63									
Actuated Cycle Length (s)	,		150.0	Si	um of lost	time (s)			22.1			
Intersection Capacity Utilization	tion		72.9%			of Service			С			
Analysis Period (min)			15									
c Critical Lane Group												

	۶	-	\mathbf{r}	•	+	•	1	1	1	1	ţ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	<u>۲</u>	††		ľ	A						\$	
Traffic Volume (vph)	24	1427	39	22	585	62	0	0	0	47	3	25
Future Volume (vph)	24	1427	39	22	585	62	0	0	0	47	3	25
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	5.0	5.5		5.0	5.5						5.6	
Lane Util. Factor	1.00	0.95		1.00	0.95						1.00	
Frpb, ped/bikes	1.00	1.00		1.00	0.99						0.99	
Flpb, ped/bikes	1.00	1.00		1.00	1.00						0.99	
Frt	1.00	1.00		1.00	0.99						0.96	
Flt Protected	0.95	1.00		0.95	1.00						0.97	
Satd. Flow (prot)	1770	3490		1770	3439						1699	
Flt Permitted	0.95	1.00		0.95	1.00						0.97	
Satd. Flow (perm)	1770	3490		1770	3439						1699	
Peak-hour factor, PHF	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91
Adj. Flow (vph)	26	1568	43	24	643	68	0	0	0	52	3	27
RTOR Reduction (vph)	0	1	0	0	4	0	0	0	0	0	12	0
Lane Group Flow (vph)	26	1610	0	24	707	0	0	0	0	0	70	0
Confl. Peds. (#/hr)	10		9	9		10	9		5	5		9
Confl. Bikes (#/hr)			20			17			4			1
Bus Blockages (#/hr)	0	4	0	0	4	0	0	0	0	0	0	0
Turn Type	Prot	NA		Prot	NA					Perm	NA	
Protected Phases	5	2		1	6						4	
Permitted Phases										4		
Actuated Green, G (s)	4.9	103.9		4.4	103.4						25.0	
Effective Green, g (s)	4.9	104.5		4.4	104.0						25.0	
Actuated g/C Ratio	0.03	0.70		0.03	0.69						0.17	
Clearance Time (s)	5.0	6.1		5.0	6.1						5.6	
Vehicle Extension (s)	1.0	2.5		1.0	2.5						2.5	
Lane Grp Cap (vph)	57	2431		51	2384						283	
v/s Ratio Prot	c0.01	c0.46		0.01	0.21							
v/s Ratio Perm											0.04	
v/c Ratio	0.46	0.66		0.47	0.30						0.25	
Uniform Delay, d1	71.2	12.8		71.7	8.9						54.3	
Progression Factor	1.25	0.29		1.03	1.31						1.00	
Incremental Delay, d2	1.6	1.1		2.0	0.3						0.3	
Delay (s)	90.4	4.9		75.9	11.9						54.7	
Level of Service	F	А		E	В						D	
Approach Delay (s)		6.2			14.0			0.0			54.7	
Approach LOS		А			В			А			D	
Intersection Summary												
HCM 2000 Control Delay		10.2	H	CM 2000	Level of S	Service		В				
HCM 2000 Volume to Capacity ratio			0.58									
Actuated Cycle Length (s)			150.0	S	um of losi	t time (s)			16.1			
Intersection Capacity Utilization			63.7%	IC	CU Level	of Service			В			
Analysis Period (min)			15									
c Critical Lane Group												

Homestead Road Safe Routes to School

10: Stelling Road/Hollenbeck Avenue & Homestead Road

Near-Term Combined Timing Plan: PM COMMUTE PEAK

	۶	-	\mathbf{i}	4	-	•	1	1	1	1	ţ	∢
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	1	∱ î∌		1	A⊅		ሻሻ	∱ ₽		1	A⊅	
Traffic Volume (vph)	80	910	438	236	456	190	234	338	279	228	576	62
Future Volume (vph)	80	910	438	236	456	190	234	338	279	228	576	62
Ideal Flow (vphpl)	1900	2100	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	5.0	5.5		5.0	5.5		5.0	5.1		5.0	5.1	
Lane Util. Factor	1.00	0.95		1.00	0.95		0.97	0.95		1.00	0.95	
Frpb, ped/bikes	1.00	0.98		1.00	0.98		1.00	0.96		1.00	0.99	
Flpb, ped/bikes	1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00	
Frt	1.00	0.95		1.00	0.96		1.00	0.93		1.00	0.99	
Flt Protected	0.95	1.00		0.95	1.00		0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1770	3639		1770	3322		3433	3181		1770	3467	
Flt Permitted	0.95	1.00		0.95	1.00		0.95	1.00		0.95	1.00	
Satd. Flow (perm)	1770	3639		1770	3322		3433	3181		1770	3467	
Peak-hour factor, PHF	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Adj. Flow (vph)	85	968	466	251	485	202	249	360	297	243	613	66
RTOR Reduction (vph)	0	38	0	0	28	0	0	101	0	0	5	0
Lane Group Flow (vph)	85	1396	0	251	659	0	249	556	0	243	674	0
Confl. Peds. (#/hr)	25		33	33		25	31		40	40		31
Confl. Bikes (#/hr)			19			15			14			13
Turn Type	Prot	NA		Prot	NA		Prot	NA		Prot	NA	
Protected Phases	5	2		1	6		3	8		7	4	
Permitted Phases												
Actuated Green, G (s)	11.4	56.7		21.9	67.2		13.0	30.6		19.0	36.6	
Effective Green, g (s)	11.4	57.3		21.9	67.8		13.0	31.2		19.0	37.2	
Actuated g/C Ratio	0.08	0.38		0.15	0.45		0.09	0.21		0.13	0.25	
Clearance Time (s)	5.0	6.1		5.0	6.1		5.0	5.7		5.0	5.7	
Vehicle Extension (s)	1.0	2.5		1.0	2.5		1.0	2.5		1.0	2.5	
Lane Grp Cap (vph)	134	1390		258	1501		297	661		224	859	
v/s Ratio Prot	0.05	c0.38		c0.14	0.20		0.07	0.17		c0.14	c0.19	
v/s Ratio Perm												
v/c Ratio	0.63	1.00		0.97	0.44		0.84	0.84		1.08	0.78	
Uniform Delay, d1	67.3	46.4		63.8	28.1		67.5	57.0		65.5	52.7	
Progression Factor	1.05	0.63		1.00	1.00		1.00	1.00		1.00	1.00	
Incremental Delay, d2	5.4	22.1		48.0	0.9		17.6	9.3		84.6	4.6	
Delay (s)	76.3	51.2		111.7	29.0		85.0	66.3		150.1	57.2	
Level of Service	E	D		F	С		F	E		F	E	
Approach Delay (s)		52.6			51.2			71.5			81.7	
Approach LOS		D			D			E			F	
Intersection Summary												
HCM 2000 Control Delay			62.5	H	CM 2000	Level of S	Service		E			
HCM 2000 Volume to Capacity ratio			0.97									
Actuated Cycle Length (s)			150.0	Si	um of lost	time (s)			20.6			
Intersection Capacity Utilizat	tion		104.7%	IC	U Level o	of Service			G			
Analysis Period (min)			15									
c Critical Lane Group												

c Critical Lane Group