HOMESTEAD ROAD SAFE ROUTES TO SCHOOL STUDY

Final Report

Homestead Road

Table of Contents
Introduction 2
Project Objectives 2
Study Area 3
Study Limits 3
Schools 5
Previous and Ongoing Planning Efforts 6
Walk Audit 6
Homestead Road/Homestead High School Improvements 7
Caltrans SCL/85 \& ALA/80 Project 7
Sunnyvale Speed Limit Adjacent to Schools Resolution 7
Plan Development 9
Project Process 9
Stakeholder and Public Involvement 9
Existing Conditions 10
Transportation Facilities 10
Collision Analysis 14
Existing Traffic Operations Analysis 17
Analysis Methodology. 17
Existing Level of Service (LOS) Results 23
Opportunities and Constraints 25
Development of Preferred Alternative 27
Project Alternatives. 27
Review of Project Alternatives 31
Preferred Alternative. 32
Preferred Alternative Traffic Operations Analysis 32
Preferred Alternative Level of Service (LOS) Results 32
Funding \& Next Steps 35
Funding Sources 35
Next Steps 36
Appendix 37

INTRODUCTION

Homestead Road (the "Corridor") is a major east-west corridor that spans from Santa Clara University to Foothill Expressway, traversing four jurisdictions including the cities of Santa Clara, Cupertino, Sunnyvale, and Los Altos. Within the Homestead Road Safe Routes to School Study ("Study") limits, between N. Stelling Road/Hollenbeck Avenue and Grant Road, Homestead Road serves as both a major regional east-west connection and a local connection for three public schools, including West Valley Elementary School, Cupertino Middle School, and Homestead High School. Through this Study, the County of Santa Clara, in partnership with the Cities of Los Altos, Sunnyvale, and Cupertino, Santa Clara Valley Transportation Authority (VTA), and Caltrans ("Partner Agencies"), is seeking to identify and develop near-term improvements within the Study limits to ensure safe access to schools along the Corridor. Near-term improvements will primarily include infrastructure that promotes multimodal access for all ages and abilities, developed through a transparent public process focused on feasible and implementable solutions.

The Final Report summarizes the following:

- Description of the Study Area including Study limits and existing access conditions for each of the three schools within the Study Area
- Summary of primary Project objectives based on Project Team, Stakeholder and Community input
- Summary of previous and on-going planning efforts that impact the study limits
- Description of the Study development including public and stakeholder process and schedule
- Existing Conditions within the Study area including traffic operations, collision analysis, and opportunities and constraints to address in proposed near-term recommendations
- Development of the Preferred Alternative within the Study area including traffic operations and recommendations to achieve the project goals
- Funding opportunities and next steps for the project

PROJECT OBJECTIVES

The purpose of this study is to identify and develop near-term bicycle and pedestrian infrastructure improvements along Homestead Road between Grant Road and N. Stelling Road. Improvements will be developed to satisfy the following Project objectives:

- Develop infrastructure recommendations that are feasible and implementable in the near-term
- Recommend bicycle and pedestrian improvements that serve all ages and abilities
- Connect students along the Homestead Road corridor to West Valley Elementary School, Cupertino Middle School, and Homestead High School
- Address the safety and security of users
- Identify various grant funding opportunities for the proposed improvements

STUDY AREA

Study Limits

The Study limits are Grant Road to the west and N. Stelling Road to the east along Homestead Road, inclusive of approximately 800 feet of S. Bernardo Avenue north of Homestead Road. There are ten intersections along Homestead Road that will be analyzed for the study including:

1. Foothill Expressway/Homestead Road
2. Grant Road/Homestead Road
3. Fallen Leaf Lane/Homestead Road
4. Belleville Way/Homestead Road
5. Maxine Avenue-SR-85 SB Off-Ramp/Homestead Road
6. S. Bernardo Avenue-SR-85 NB On-Ramp/Homestead Road
7. Wright Avenue/Homestead Road
8. S. Mary Avenue/Homestead Road
9. Kennewick Drive/Homestead Road
10. Hollenbeck Avenue-N. Stelling Road/Homestead Road

Figure 1 shows the Study limits and intersections.

Schools

West Valley Elementary School

West Valley Elementary School (West Valley) serves students from Kindergarten to fifth grade. Classes begin at 8:00AM with a staggered release time between 2:05PM and 2:35PM, except on Tuesdays when all students are released at $1: 30 \mathrm{PM}$. West Valley is located on Belleville Way north of Homestead Road, northwest of the I-280 and SR-85 interchange. The school is bounded by multifamily residential to the south and single family residential to the north, east, and west. There is a one-way southbound drop-off/pick-up area along Belleville Way and an informal drop-off/pick-up along Bedford Avenue. There are sidewalks along both Belleville Way and Bedford Avenue, with school crosswalks at the ingress access to the drop-off/pick up area along Belleville Way, on the north and west side of the intersection. A shared-use path that crosses Stevens Creek to connect the school fields, on the backside of the school, with Fallen Leaf Lane provides an alternative pedestrian and bicycle access for students. The shared-use path can be accessed via local streets, including Fallen Leaf Lane, El Sereno Lane, and Crist Drive. These three local streets are stop-controlled at Homestead Road and do not have sidewalks or marked bicycle facilities.

According to West Valley Elementary School's suggested routes to school, students are encouraged to use Crist Drive, El Sereno Avenue, or Fallen Leaf Lane to access the shared-use path that crosses Stevens Creek to the west of West Valley Elementary School. Students are not encouraged to use Homestead Road.

Cupertino Middle School

Cupertino Middle School serves students from sixth grade to eighth grade. Classes begin at 8:10AM, except for Wednesdays when classes start at 9:35AM, with a release at 2:54PM. Cupertino Middle School is located along South Bernardo Avenue bounded by Homestead Road to the south and Helena Drive to the north, northeast of the I-280 and SR-85 interchange. There are two one-way northbound drop-off/pick-up areas along South Bernardo Avenue, with the northern area restricted to bus drop-off/pick-up. The South Bernardo Avenue and Homestead Road intersection serves as the SR-85 northbound on-ramp, with a two-stage pedestrian crossing on the south leg and marked school crosswalks on the north, east, and west legs. South Bernardo Avenue has continuous sidewalks on the Cupertino Middle School frontage and sidewalks on the west side up to the south drop-off/pick-up area where a school crosswalk is installed to provide continuous pedestrian facilities. South Bernardo Avenue does not have marked bicycle facilities. Cupertino Middle School can also be accessed via Wright Avenue and Helena Drive. The Wright Avenue/Homestead Road intersection has school crosswalks at all intersection approaches and bicycle detection on the southbound approach. Wright Avenue and Helena Drive have continuous sidewalks leading to Cupertino Middle School.

Cupertino Middle School does not have a published safe routes to school plan, but through field observations, students were observed to use the shared-use path and sidewalk along the north side of Homestead Road. Once across the SR-85 bridge, students utilized the shared-use path behind the gas station at Bernardo Avenue to access the school. From the east, students use Homestead Road to the sidewalk along the east side of Bernardo Avenue.

Homestead High School

Homestead High School serves students from ninth grade to twelfth grade, with a total enrollment of approximately 2,400 students. Classes begin at 8:00AM on Monday, Tuesday, and Thursday and at 9:00AM Wednesday and Friday, with a release at 3:25PM every weekday. Homestead High School is located along Homestead Road between South Mary Avenue and Kennewick Drive, and bounded by the Mary Avenue Bridge Trail to the west, l-280 to the south, multi-family residential to the east, and Homestead Road to the north. There are relatively wide sidewalks on the Homestead Road frontage, approximately ten feet wide. The school is served by VTA Local

Route 53, with an eastbound stop located at the pick-up/drop-off loop on Homestead Road and a westbound stop located nearside at the Mary Avenue/Homestead Road intersection. The pick-up/drop-off loop, the Horseshoe, is located about 100 feet east of the Mary Avenue/Homestead Road intersection. Based on field observations, vehicles queue into the buffered bike lane during peak times.

According to Homestead High School's suggest routes to school, students travelling from the west are encouraged to use the shared-use path between Grant Road and Fallen Leaf Lane, then cross the existing bike lane at Fallen Leaf Lane. Students from the east are encouraged to use Homestead Road to access the school. Field observations confirmed that high school students utilize the suggested routes.

PREVIOUS AND ONGOING PLANNING EFFORTS

There have been multiple previous and ongoing planning efforts within the study area that informed the background conditions of the Study. The efforts are summarized below.

Walk Audit

A walk audit was conducted on May 17, 2018 to inventory existing conditions as a baseline to identify multimodal improvements. The project area spanned between Grant Road and the frontage of Homestead High School. A summary of the walk audit was developed which provides general background information and identifies nine primary issues observed within the project area. The nine primary issues identified include:
A. Grant Road \& Foothill Expressway. Left turns from Grant Road onto Foothill Expressway difficult for bicyclists.
B. Fallen Leaf Lane \& Homestead Road: Vehicles don't consistently yield to pedestrians and bicyclists in crosswalk. Sightlines blocked by vegetation. Bicyclists ride through crosswalk.
C. Homestead Road east of Stevens Creek: Sidewalk gap on south side of Homestead Road.
D. Homestead Road from Stevens Creek to Bernardo Avenue: Path on north side of Homestead Road ends prior to the creek. Eastbound student bicyclists ride opposite traffic (i.e. westbound vehicle traffic) in bike lane.
E. Belleville Way \& Homestead Road: Heavy school traffic. Corner waiting areas not big enough to accommodate bicyclists \& pedestrians. Motorists run red light to make turn.
F. SB SR-85 Off-Ramp \& Homestead Road: Southbound motorists making a right turn on red and looking east for vehicles do not anticipate or yield to bicyclists traveling eastbound on sidewalk.
G. Path Access to Cupertino Middle School: No signage indicating path between Homestead Road and S Bernardo Avenue that provides access to Cupertino Middle School. No curb ramps for bicyclists to get to path.
H. NB SR-85 On-Ramp \& Homestead Road: Student bicyclists must contend with weaving traffic entering high-speed slip ramp.
I. Bernardo Avenue \& Homestead Road: Pedestrian area on northeast corner of intersection is too small to accommodate the large volume of student bicyclists and pedestrians. Westbound motorists making right turn onto Bernardo Avenue conflict with pedestrians and commuter bicyclists traveling straight on Homestead Road. Limited sightlines. Very wide radius. On northeast corner, wide turning radii encourages higher speed turns.

Homestead Road/Homestead High School Improvements

The City Sunnyvale is implementing pedestrian and bicycle improvements along Homestead Road near Homestead High School, funded through One Bay Area Grants (OBAG) 2 Vehicle Emission Reductions Based at Schools (VERBS) grant funding. The proposed improvements include a traffic signal modification at the Homestead Road/Mary Avenue and Homestead Road/Kennewick Drive intersections, installation of high visibility crosswalks, shortening crossing distance for pedestrians, installation of green buffered bike lanes along Homestead Road eastbound between MacKenzie Drive and Mary Avenue and the westbound approach at the Homestead Road/Mary Avenue intersection, and improvements of the existing path for bicycles to the high school from eastbound Homestead Road to the Mary Avenue Bridge Trail. Figure 2 includes the improvements funded through the VERBS grant.

Caltrans SCL/85 \& ALA/80 Project

The Caltrans project on SCL/85 and ALA/80 will upgrade curb ramps and sidewalks to ADA standards at specific locations, including the 85 on-ramp and off-ramp at Homestead Road. The project is currently at the 95% design phase. The estimated construction start date is winter or spring of 2020. Caltrans has been actively engaged throughout the project process.

Sunnyvale Speed Limit Adjacent to Schools Resolution

On October 30, 2018, the City of Sunnyvale City Council approved a resolution to lower the speed limit near schools to 15 mph . Cupertino Middle School was included on the list of 35 schools throughout the City. The limits of the new speed limit are 500 feet north of the school property line and Homestead Road on Bernardo Avenue. The installation timeframe is currently unknown.

FIGURE 2 - VERBS Grant Improvements

PLAN DEVELOPMENT

Project Process

The initial efforts of the Study involved gathering and analyzing data provided by local agencies or collected by the Consultant team, in addition to performing field observations of the Corridor. Field observations were performed by the Project Team with the Partner Agencies on October 18, 2018.

The existing conditions report, and input from Community Meeting \#1 on November 26, 2018, was used to identify potential improvements along the corridor. The improvements identified are near-term improvements that serve all ages and abilities and connect users to the three schools along the corridor.

Concept plans of the improvements were developed in coordination with the Partner Agencies. These improvements were presented to the public to receive feedback at Community Meeting \#2 on February 25,2019 . The input received from the second community meeting was used to refine the concept plans of the potential improvements, and identify a preferred alternative for the Corridor.

The outcome of the Study is a community-supported preferred alternative that achieves the project goals. An opinion of probable cost was developed for the preferred alternative. Funding opportunities and next steps have been identified for the project.

Stakeholder and Public Involvement

Community Meeting \#1

The County of Santa Clara hosted Community Meeting \#1 on November 26, 2018, from 6:008:00PM to discuss and present a recently underway study to improve mobility to three schools that exist along the Homestead Road corridor between Grant Road and N. Stelling Road/Hollenbeck Avenue. The three schools that are within the study are West Valley Elementary School, Cupertino Middle School, and Homestead High School. The meeting was held at the Homestead High School Auditorium.

Approximately sixty-two (62) community members attended the meeting. The County of Santa Clara was represented by Santa Clara County District 5 Supervisor Joe Simitian, Kristine Zanardi, Ananth Prasad, and Thien Pham. Representatives from all Partner Agencies were present.

The Project Team was represented by Ananth Prasad (County of Santa Clara), Thien Pham (County of Santa Clara), Adam Dankberg (Kimley-Horn), Brian Sowers (Kimley-Horn), Dennis Kearney (Kimley-Horn), Tyler Wacker (Kimley-Horn), and Anthony Nuti (Kimley-Horn).

This was the first community outreach meeting with members of the public for the Homestead Road Safe Routes to School Study. The purpose of the meeting was to introduce the scope of the study and provide a study schedule and process; present existing conditions observed through data collection and field observations; and received community feedback on existing issues and priorities for the corridor.

The meeting started just past 6:00 PM and included an introduction by Santa Clara District 5 Supervisor Joe Simitian. Adam Dankberg, the Kimley-Horn project manager, then explained the purpose and objectives of the Study and used a PowerPoint presentation to explain existing conditions. In addition, the Project Manager covered the schedule for the Study and opportunities for additional input from the public including future meetings and a project email. The meeting included a 'Question and Answer' portion where there was an opportunity for many questions from the public to be answered by the Project Team.

The second half of the meeting was an open house format and attendees were asked to go to two stations to give input on where they live, how they use the Homestead Road corridor, what modes of transportation they primarily use on the corridor, what school they are affiliated with, and to mark on a map where hot spots and problematic conditions exist. Attendees were free to leave the meeting whenever they chose during the open house session. The meeting ended at 8:00 PM and the meeting summary is included in the Appendix.

Community Meeting \#2

The County of Santa Clara hosted Community Meeting \#2 on February 25, 2019, from 6:008:00PM to discuss and present conceptual designs of potential improvements to the Homestead Road corridor to better connect West Valley Elementary School, Cupertino Middle School, and Homestead High School. The meeting was held at the Homestead High School Auditorium.

Approximately sixty (60) community members attended the meeting. The County of Santa Clara was represented by Kristine Zanardi, Ananth Prasad, and Thien Pham. Representatives from all Partner Agencies were present.

The Project Team was represented by Ananth Prasad (County of Santa Clara), Thien Pham (County of Santa Clara), Adam Dankberg (Kimley-Horn), Brian Sowers (Kimley-Horn), Tyler Wacker (Kimley-Horn), and Anthony Nuti (Kimley-Horn).

This was the second community outreach meeting with members of the public for the Homestead Road Safe Routes to School Study. The purpose of the meeting was to provide an update to the community on the study status, present proposed concepts, receive community feedback on the proposed concepts that have been developed, and review next steps.

The meeting started just past 6:00 PM and included an introduction by Kristine Zanardi. Adam Dankberg, the Kimley-Horn project manager, then provided an update of which stage the Study is in and used a PowerPoint presentation to explain select proposed improvements. In addition, the Project Manager covered the schedule for the Study and opportunities for additional input from the public including comment cards and the project email. The meeting included a 'Question and Answer' portion where there was an opportunity for many questions from the public to be answered by the Project Team.

The second half of the meeting was an open house format and attendees were asked to go to a station to give input on the proposed improvements. Attendees used colored dots to express support (green), uncertainty/need more info (yellow), or do not support (red). Sticky notes were also provided to write down comments and place them on the proposed improvement posters. Attendees were free to leave the meeting whenever they chose during the open house session. The meeting ended at 8:00 PM and the meeting summary is included in the Appendix.

EXISTING CONDITIONS

Transportation Facilities

Pedestrian Facilities

There are sidewalks along the entire study segment on both the north and south side of Homestead Road, except for a sidewalk gap of approximately 100 feet on the south side of Homestead Road at Stevens Creek. Sidewalks in the study area range in widths between four and ten feet.

Bicycle Facilities

There are Class II bike lanes along the entire segment of Homestead Road with several locations that have green paint and bike lane buffers.

Transit Facilities

VTA Local Route 53 operates along Homestead Road between Hollenbeck Avenue and Mary Avenue, providing service between the Sunnyvale Transit Center and West Valley College. There are three westbound stops and two eastbound stops along Homestead Road, primarily serving Homestead High School. Local Route 54 operates along Hollenbeck Avenue, with northbound and southbound stops at the Homestead Road intersection. Route 54 serves destinations between De Anza College and the Lockheed Martin Transit Center.

Auto Facilities

The Corridor is a two-lane facility with a two-way center turn lane west of Belleville Way, a threelane facility (two westbound lanes and one eastbound lane) with a two-way center turn lane between Belleville Way and Wright Avenue, and a four-lane facility with a two-way center turn lane east of Wright Avenue. There are nine signalized intersections and eight side-street stopcontrolled intersections within the Study limits.

Figure 3 illustrates existing transportation facilities in the Study Area.

FIGURE 3 - EXISTING CONDITIONS (SHEET 1 OF 2)

Collision Analysis

Reported collision history for each study intersection was reviewed to identify potential intersection safety issues. Reported collision data were obtained from the Statewide Integrated Traffic Records System (SWITRS) for the most recent five-year period. Figure 4 displays the location and quantity of collisions by study intersection. As shown, there are a total of 22 pedestrian/bicycle-related collisions within the study limits, of which eight are located at the N . Stelling Rd-Hollenbeck Ave/Homestead Rd intersection. The remaining 14 pedestrian/bicyclerelated collisions are spread amongst the rest of the corridor and not concentrated at any one study intersection.

Table 1 summarizes the pedestrian/bicycle collisions at the N. Stelling Rd-Hollenbeck Ave/Homestead Rd Intersection by collision type and direction. Based on the review of pedestrian/bicycle collisions at this intersection, the eight reported collisions do not have a clear pattern.

Table 1: Collision Summary at N. Stelling Rd-Hollenbeck Ave/Homestead Rd Intersection

Date	Mode	Collision Type	Direction	Lighting	Cause
Mar-13	Bicycle	Sideswipe	East	Day	Westbound right-turning vehicle sideswipes westbound bicycle
Feb-13	Pedestrian	Auto/Ped	North	Day	Southbound vehicle in pedestrian right-of-way
Jul-14	Bicycle	Other	NA	Dusk	Bicycle in the vehicle right-of-way
Oct-14	Pedestrian	Broadside	South	Dusk	Unknown
Jan-15	Pedestrian	Auto/Ped	South	Dark	Northbound vehicle in pedestrian right-of-way
Dec-15	Pedestrian	Auto/Ped	South	Day	Northbound vehicle in pedestrian right-of-way
Sep-17	Pedestrian	Auto/Ped	East	Day	Westbound vehicle in pedestrian right-of-way
Mar-18	Bicycle	Sideswipe	South	Day	Northbound right-turning vehicle sideswipes northbound bicycle

GRAPHIC SCALE IN FEET

$\dot{\oplus}$ LEGEND

MO7ヨ9 ヨヨs
River／Creek
——Bike Lane
Multi－Use Path
$\begin{array}{ll}\square & \begin{array}{l}\text { Sidewalk } \\ \text { Crosswalk }\end{array}\end{array}$
$\begin{array}{ll}- & \begin{array}{l}\text { Crosswalk } \\ \text { City Boundary }\end{array}\end{array}$
Side Street Stop Control
TO Traffic Signal
Motor Vehicle，Injury
Motor Vehicle，Injury
Parked Motor Vehicle，Injury Ped，Injury Bicycle，Injury

FIGURE 4 －Collision History（2013－2018）（SHEET 1 OF 2）
Erame
（1）Sumpul
［8
Kimley»Horn

Existing Traffic Operations Analysis

An existing traffic operations analysis was completed for the AM, school PM, and PM peak hours. The analysis evaluated each study intersection along the project corridor using Synchro traffic model software. The Synchro model analyses are based on the Highway Capacity Manual (HCM) methodology. It should be noted that the Santa Clara Valley Transportation Authority (VTA), which provides the overall standards and methodologies for traffic operations in Santa Clara County, uses the HCM 2000 methodology, and not the latest HCM $6^{\text {th }}$ Edition methodology. The following sections summarize the model development process, the Level of Service (LOS) methodology, and the results of the intersection analysis.

Model Development

Existing conditions traffic models were developed in Synchro software for each of the peak periods. Peak hour turning movement volumes, existing lane information, and existing timing parameters were used for development of the models. The peak hour turning movement volumes were collected in October and December 2018, while local schools were in session and outside of any holidays. The vehicle counts are shown in Figure 5; bicycle counts are shown in Figure 6; and pedestrian counts are shown in Figure 7. The existing lane information was reviewed in the field and input into the Synchro model for each intersection. The existing intersection lane geometry used for analyses is shown in Figure 8. The latest timing sheets were provided by each corresponding jurisdiction and entered into the Synchro models.

Analysis Methodology

Traffic operations analysis at intersections is based on the concept of level of service (LOS).
The LOS of an intersection is a qualitative measure used to describe operational conditions. LOS ranges from A (best), which represents minimal delay, to F (worst), which represents heavy delay and a facility that is operating at or near its functional capacity. Levels of service for this study were determined using methods defined in the Highway Capacity Manual, 2000 and appropriate traffic analysis software. The HCM methodology utilizes average delay per vehicle based upon peak hourly traffic volumes, peak hour factors, number of lanes, etc., in the calculation.

The HCM includes procedures for analyzing side-street stop-controlled (SSSC), all-way stopcontrolled (AWSC), and signalized intersections. The SSSC procedure defines LOS as a function of average control delay for each minor street approach movement and major street left-turns. Conversely, the AWSC and signalized intersection procedures define LOS as a function of average control delay for the intersection as a whole.

Table 2 relates the operational characteristics associated with each LOS category for signalized intersections. Table 3 relates the operational characteristics associated with each LOS category for unsignalized intersections.

FIGURE 5 - EXISTING PEAK HOUR AUTO TURNING MOVEMENT VOLUMES

FIGURE 6 - EXISTING PEAK HOUR BICYCLE TURNING MOVEMENT VOLUMES

Homestead Road

Safe Routes To School

FIGURE 7 - EXISTING PEAK HOUR PEDESTRIAN VOLUMES

Kimley»Horn

Table 2: Signalized Intersection Level of Service Definitions

Level of Service	Description	Avg. control delay per vehicle (sec/veh)
A	Free flow with no delays. Users are virtually unaffected by others in the traffic stream.	≤ 10
B	Stable traffic. Traffic flows smoothly with few delays.	$>10-20$
C	Stable flow but the operation of individual users becomes affected by other vehicles. Modest delays.	$>20-35$
D	Approaching unstable flow. Operation of individual users becomes significantly affected by other vehicles. Delays may be more than one cycle during peak hours.	$>35-55$
E	Unstable flow with operating conditions at or near the capacity level. Long delays and vehicle queuing.	$>55-80$
F	Forced or breakdown flow that causes reduced capacity. Stop and go traffic conditions. Excessive long delays and vehicle queuing.	>80

Table 3: Unsignalized Intersection Level of Service Definitions

Level of Service	Description	Unsignalized (Avg. control delay per vehicle sec/ veh.)
A	Free flow with no delays. Users are virtually unaffected by others in the traffic stream.	≤ 10
B	Stable traffic. Traffic flows smoothly with few delays.	$>10-15$
C	Stable flow but the operation of individual users becomes affected by other vehicles. Modest delays.	$>15-25$
D	Approaching unstable flow. Operation of individual users becomes significantly affected by other vehicles. Delays may be more than one cycle during peak hours.	$>25-35$
E	Unstable flow with operating conditions at or near the capacity level. Long delays and vehicle queuing.	$>35-50$
F	Forced or breakdown flow that causes reduced capacity. Stop and go traffic conditions. Excessive long delays and vehicle queuing.	>50

Each jurisdiction along this study corridor has their own LOS criteria for acceptable operations. The following describes the acceptable LOS in each jurisdiction:

Santa Clara County and Caltrans

Consistent with the LOS criteria documented in the Transportation Impact Analysis Guidelines ${ }^{1}$, VTA accepts a minimum level of service of LOS E for a County intersection or Congestion Management Program (CMP) intersection. In addition, the level of service criteria for Caltrans and County controlled facilities is LOS E per the VTA Congestion Management Program.

City of Sunnyvale

The LOS standard for City of Sunnyvale intersections is LOS D, except for City of Sunnyvale intersections that are designated as regionally significant, which allows for a minimum level of service of LOS E.

City of Cupertino

The LOS standard for City of Cupertino intersections is LOS D at signalized intersections for both the AM and PM peak hours, per the City of Cupertino 2040 General Plan Amendment Draft EIR.

City of Los Altos
The level of service (LOS) criteria for the City of Los Altos is LOS D per the Los Altos General Plan.

Existing Level of Service (LOS) Results

Traffic operations were evaluated at the study intersections under existing traffic conditions. Results of the analysis are presented in Table 4. Table 4 lists the LOS criteria, jurisdiction, intersection control, LOS, and delay for each intersection. The following intersections operate at an unacceptable LOS in the existing conditions:

- Homestead Road / Grant Road - operates at LOS E in the PM peak hour for the worst approach
- Homestead Road / Fallen Leaf Lane - operates at LOS F in the AM peak hour and LOS E in the school PM peak hour for the worst approach
- Homestead Road / Mary Avenue - operates at LOS E in the AM peak hour
- Homestead Road / Hollenbeck Avenue - operates at LOS E in the PM peak hour

Analysis sheets are provided in the Appendix.

Homestead Road and Grant Road

The intersection of Homestead Road and Grant Road operates at LOS E in the PM peak hour for the worst approach. This intersection is a side-street stop-controlled intersection with a stop sign on the southbound approach on Grant Road. Homestead Road is uncontrolled, although it is in close proximity to the signalized intersection of Homestead Road and Foothill Expressway. Due to the high volumes on Homestead Road, the southbound approach (98 vehicles in the PM peak hour) has to wait for an acceptable gap. It should be noted that this intersection is heavily influenced by the intersection of Homestead Road and Foothill Expressway. The queues from the intersection of Homestead Road and Foothill Expressway extend into this intersection and beyond. These queues and the "Keep Clear" pavement markings do provide an acceptable gap for the southbound vehicles to proceed through the intersection. Therefore, the delay results from the Synchro models may overestimate the delay.

[^0]Table 4: Existing Intersection Level of Service (LOS) Summary

\#	Intersection	Criteria	Jurisdiction	Control ${ }^{1}$	AM Peak Hour		School PM Peak Hour		PM Peak Hour	
					LOS	Delay (sec)	LOS	$\begin{aligned} & \text { Delay } \\ & \text { (sec) } \end{aligned}$	LOS	$\begin{aligned} & \hline \text { Delay } \\ & \text { (sec) } \end{aligned}$
1	Homestead Road/Foothill Expressway	E	County	Signal	D	44.1	C	32.5	C	34.2
	Homestead Road/Grant Road	D	Los Altos	SSSC	B	1.3	A	2.0	A	3.5
	Worst Approach				C	19.2	C	16.5	E	41.9
3	Homestead Road/Fallen Leaf Lane	D	Los Altos	SSSC	D	30.1	A	2.8	A	1.4
	Worst Approach				F	376.8	E	41.7	C	24.9
4	Homestead Road/Belleville Way	D	Sunnyvale	Signal	B	14.8	B	15.1	B	15.8
5	Homestead Road/Maxine Ave-SR 85 SB Off-ramp	E	Sunnyvale/Caltrans	Signal	B	17.1	B	15.6	C	30.9
6	Homestead Road/S Bernardo Ave-SR 85 NB Off-ramp	E	Sunnyvale/Caltrans	Signal	C	26.2	B	15.1	B	18.3
7	Homestead Road/Wright Avenue	D	Sunnyvale	Signal	C	25.9	B	15.0	B	13.6
8	Homestead Road/Mary Avenue	D	Sunnyvale	Signal	E	78.7	D	41.3	C	31.7
9	Homestead Road/Kennewick Drive	D	Sunnyvale	Signal	C	22.0	B	14.1	B	11.9
10	Homestead Road/Hollenbeck Avenue	D	Sunnyvale	Signal	D	54.6	D	50.4	E	59.5

[^1]
Homestead Road and Fallen Leaf Lane

The intersection of Homestead Road and Fallen Leaf Lane operates at LOS F in the AM peak hour and LOS E for the school PM peak hour for the worst approach. This intersection is a sidestreet stop-controlled intersection with a stop sign on the southbound and northbound approaches and the eastbound and westbound approaches are uncontrolled. A pedestrian activated flashing beacon also exists for pedestrians who want to cross Homestead Road at this intersection. Due to the high volume on the uncontrolled approaches along Homestead Road, the southbound vehicles have to wait for an acceptable gap. There are 50 vehicles that are making a left turn in the AM peak hour, so these vehicles have to wait for both directions to clear before proceeding. This condition results in the high delay for this approach.

Homestead Road and Mary Avenue

The intersection of Homestead Road and Mary Avenue operates at LOS E in the AM peak hour. This intersection has a high number of pedestrians and bicyclists traversing the intersection, in addition to the number of vehicles. The westbound approach has a high delay due to the right turning vehicles yielding to the high number of pedestrians on the conflicting north crosswalk. The outside westbound travel lane is a shared through-right turn lane, so the westbound right turning vehicles yielding to the pedestrians also results in a delay for the westbound through vehicles in the outside lane.

Homestead Road and Hollenbeck Avenue

The intersection of Homestead Road and Hollenbeck Avenue operates at LOS E in the PM peak hour. This intersection has a high number of vehicles for the left turn movements that conflict with the opposing through movements.

Opportunities and Constraints

Several "hot spot" locations have been identified for specific intersection or segment improvements, based on existing conditions analyses, including multimodal operations, field visits, and stakeholder and public input. Existing geometric constraints associated with these locations introduce opportunities for a more connected and safe network and complete street.

Homestead Road-Grant Road/Foothill Expressway Intersection

The intersection has notable bicycle circulation challenges, particularly for southbound movements from Grant Road onto Homestead Road. Homestead Road and Grant Road have eastbound and westbound bike lanes, with the exception of a gap in bicycle facility eastbound 300 feet before and after the Homestead Road/Grant Road intersection. This gap in bicycle facility introduces connectivity issues and safety considerations for eastbound bicycle traffic, continuing from Grant Road to Homestead Road. Currently, bicyclists must merge into the eastbound travel lane leading to a stop-controlled approach before navigating a difficult intersection. The shareduse path on the north side of Homestead Road terminates at El Sereno Avenue.

Homestead Road/El Sereno Avenue-Chevron Driveway

The intersection has notable vehicle circulation challenges, particularly for northbound left movements into the Chevron Driveway. Vehicles wanting to perform a northbound left turn do not have a separate turn pocket, like southbound traffic, which can cause queues while left turning vehicle wait for a gap to perform a left turn. Currently the intersection has a stop sign on El Sereno Avenue; however, no stop sign exists on the Chevron Driveway. Additionally, there are five (5) other driveways between El Sereno Avenue and Fallen Leaf Lane on the south side of Homestead Road that currently do not have stop signs. Bike lanes also exist for northbound and southbound traffic, and the shared-use path on the north side of Homestead Road terminates just south of El Sereno Avenue.

Homestead Road/Fallen Leaf Lane Intersection

Fallen Leaf Lane is an important bicycle and pedestrian connection for the West Valley Elementary School, as it connects to the shared-use path that crosses Stevens Creek and accesses the school fields. The intersection is a side-street stop-controlled intersection with no bicycle or pedestrian priority treatments. A pedestrian activated flashing beacon also exists for pedestrians who want to cross Homestead Road at this intersection. Although the intersection has an existing pedestrian-activated flashing beacon, community input noted limited visibility of the flashing beacon system due to existing roadway geometry and vertical grade.

Homestead Road between S. Bernardo Avenue and Belleville Way
Bicycle and pedestrian connectivity and safety is an existing concern along this segment of Homestead Road, particularly for eastbound travel. Both the West Valley Elementary School and the Cupertino Middle School are located on the north side of Homestead Road which introduces circulation challenges for eastbound bicycle and pedestrian traffic destined for the schools. Existing roadway geometries provide opportunities to repurpose travel lanes for additional sidewalk widths and bicycle facilities.

Homestead Road/S. Bernardo Avenue-SR-85 NB On-Ramp Intersection

This intersection has a challenging geometry, including an eastbound channelized right-turn lane, long crosswalks, wide turning radii, and no bicycle priority treatments. There is an opportunity to improve this intersection to better serve multimodal travel.

S. Bernardo Avenue/Shared-Use Path

There is an existing shared-use path that connects Homestead Road and S. Bernardo Avenue, behind the existing 76 gas station. S. Bernardo Avenue has relatively narrow sidewalks on both sides of the road that lead to an uncontrolled crosswalk at the southern middle school access. The sidewalk is too narrow to accommodate both bicyclists and pedestrians on the west side of the road.

Homestead Road/Mary Avenue and Homestead Road/Kennewick Drive Intersections Signal modifications and pedestrian and bicycle improvements are proposed at both intersections funded through a Vehicle Emissions Reductions Based at Schools (VERBS) grant. The improvements include high visibility crosswalks on all approaches, modified signal phasing, and tighter curb radii in conjunction with bulb-outs.

Homestead High School Drop-Off Frontage

Based on field observations, the drop-off zone to the high school experiences congestion and spill-back onto Homestead Road. The existing green bike lane is often used as a storage lane for vehicles spilling onto Homestead Road, thereby forcing eastbound bicyclists to merge into the travel lane.

Homestead Road/Hollenbeck Avenue Intersection

This intersection is a relatively large intersection with four through lanes and separate left-turn lanes at the intersection. The intersection currently does not provide bicycle priority treatments and has long crosswalks. Based on field observations, eastbound right-turning vehicles cross the bike lane causing notable safety issues.

In addition to these "hot spot" locations, there are additional constraints and opportunities worth noting. Bicycle facilities along Homestead Road are not consistent, Class I and Class II facilities are provided throughout the corridor with some gaps in the network. In addition, safer and more effective bicycle treatments at intersection may be provided. The shared-use path on the north side of Homestead Road provides off-street connections for both pedestrians and bicyclists between Stevens Creek and El Sereno Avenue. Opportunities to connect this shared-use path across barriers should be evaluated to provide off-street access to the more vulnerable student
populations, namely the elementary school and middle school. Sidewalks along the corridor vary in width and condition, ranging between four feet and ten feet. Existing transit service along the corridor lacks service and connections west of Mary Avenue.

DEVELOPMENT OF PREFERRED ALTERNATIVE

Project Alternatives

Proposed improvements were identified to provide solutions to the corridor "hot spot" locations detailed in the Existing Conditions Report and were based on feedback received at Community Meeting \#1 and stakeholder input. The initial recommendations are potential improvements that were considered and evaluated, but are not the final project recommendations. The following are the improvements proposed along the study corridor:

1. Install sidewalk along Vineyard Drive between Deodara Drive and Foothill Expressway Currently, there are no pedestrian connections along Vineyard Drive that connect to Homestead Road. Improvement \#1 proposes to install a sidewalk along the north/west side of Vineyard Drive between Deodara Drive and Foothill Expressway.

2. Tighten curb radii at Foothill Expressway/Homestead Road

Improvement \#2 proposes to reduce the curb radii of the southwest, northwest, and northeast corner at the intersection of Foothill Expressway and Homestead Road. Reduced curb radii result in vehicles turning at slower speeds.

Foothill Expressway south of Homestead Road will be evaluated with a future study and funded by Measure B.
3. Improve bicycle circulation at Homestead Road-Grant Road/Foothill Expressway Intersection

A. Provide bike left turn in median and bike crossing improvements

Improvement \#3A proposes to modify the existing median at the southbound Grant Road approach to provide a southbound left turn for bicyclists to access Improvement \#4. Bicyclists would cross auto traffic using the existing Class III bike route where the bike lane drops north of the intersection.

B. Widen Grant Road 5 feet to accommodate bike lane

Improvement \#3B proposed to widen Grant Road 5' to provide a bike lane all the way to the intersection of Homestead Road-Grant Road/Foothill Expressway. The median would be modified to provide a queueing area for bikes to access Improvement \#4. Bicycle intersection crossing markings would be striping to connect between the proposed bike lane and Improvement \#4.
4. Upgrade sidewalk to shared-use path between Grant Road and El Sereno Avenue Improvement \#4 proposes to extend the shared-use path to Grant Road. The existing shared-use path ends at El Sereno Avenue. Improvement \#4, combined with improvement \#3, will provide a way for bicyclists to navigate around the intersection of Homestead Road-Grant Road and Foothill Expressway. The existing bike lane would need to be removed to provide the proposed shareduse path.

5. Homestead Road and El Sereno Avenue Intersection Improvements

 Improvement \#5 proposes intersection improvements at Homestead Road and El Sereno Avenue-Chevron Driveway intersection to help better facilitate access and intersection visibility.Several options are available depending on further community engagement and development opportunities. The following options are available:
A. Provide a westbound left-turn lane in the existing median
B. Modify the El Sereno approach to be right-in and right-out only, but maintain the eastbound left-turn from Homestead Road to El Sereno Avenue
C. Modify or consolidate private driveways as development opportunities occur
6. Install stop signs and pavement markings at unsignalized intersections between EI Sereno Avenue and Fallen Leaf Lane
Improvement \#6 proposes to add stop signs and STOP pavement markings at the six unsignalized intersection between El Sereno Avenue and Fallen Leaf Lane along the south side of Homestead Road. There is currently no traffic control at the existing driveways.

7. Signalize Homestead Road/Fallen Leaf Lane

Improvement \#7 proposes to install a traffic signal at the intersection of Homestead Road and Fallen Leaf Lane. In addition, an exclusive pedestrian/bicycle phase was evaluated for pedestrians and bicyclists to cross Homestead Road. The exclusive phase would provide pedestrians and bicyclists traveling eastbound on the shared-use path on the north side of Homestead Road to transition to the eastbound on-street bicycle facility along the south side of Homestead Road which is a common movement for Homestead High School students.
8. Widen existing shared-use path where ROW allows between El Sereno Avenue and Stevens Creek
Improvement \#8 proposes to widen the existing shared-use path between El Sereno Avenue and Stevens Creek. The path is currently 8 ' in existing conditions and there is available ROW to widen the shared-use path to provide a more comfortable facility for two-way traffic.
9. Modify Stevens Creek bridge cross section and extend shared-use path Improvement \#9 proposes to modify the Stevens Creek bridge cross section to connect the shared-use path across Stevens Creek. This improvement would require a reduction in lane width and relocating the existing curb.
10. Install new sidewalk to close existing sidewalk gap west of Barranca Drive

Improvement \#10 proposes to install a sidewalk to close to the existing sidewalk gap between Stevens Creek and Barranca Drive along the southside of Homestead Road.

11. Provide Multimodal Connection Across SR-85

The project team developed two alternatives to provide a multimodal connection across SR-85.

A. Repurpose a Westbound Lane between Belleville Way and Bernardo Avenue to a two-way cycle track

Improvement \#11A proposes to remove one of the westbound lanes along Homestead Road between Belleville Way and Bernardo Avenue. This would result in one westbound through lane at the intersection of Homestead Road/S Bernardo Avenue, at the intersection of Homestead Road/SB SR-85 off-ramp, and at the intersection of Homestead Road/Belleville Way. This improvement would allow for the installation of a two-way cycle track, or other enhanced bicycle facility, on the north side of Homestead Road between Belleville Way and S Bernardo Avenue.
B. Upgrade Sidewalk to Shared-Use Path with Bike Lane Removal Improvement \#11B proposes to upgrade the northern sidewalk across the SR-85 bridge to a shared-use path. To accommodate the new shared-use path, the bike lane would be removed; however, bicyclists would still be able to use the shared-use path. This improvement would allow for bidirectional flow of students biking or walking to Cupertino Middle School or Homestead High School on the north side of the SR-85 bridge.

12. No Right Turn on Red for Southbound Approach at Homestead Road/SB SR-85 Offramp

Improvement \#12 proposes to restrict vehicles from making a right turn on red for the southbound right turn movement at the intersection of Homestead Road/SB SR-85 off-ramp.

13. Upgrade sidewalks to shared-use paths along Bernardo Avenue

Improvement \#13 proposes to upgrade the existing sidewalks along Bernardo Avenue to shareduse paths. Along the west side of Bernardo Avenue, the proposed widening is between the existing crosswalk to CMS and the shared-use path behind the gas station. The lane widths would need to be reduced and the existing curb relocated to the east.

Along the east side of Bernardo Avenue, CMS verbally agreed to allow the widening to occur within their ROW, or to the east of the existing sidewalk. The chain-link fence would need to be relocated.

14. Provide a RRFB or PHB across Bernardo Avenue at the existing CMS crosswalk

 Improvement \#14 proposes to provide a rectangular rapid flash beacon (RRFB) or a pedestrian hybrid beacon (PHB) across Bernardo Avenue at the existing CMS crosswalk. The crosswalk is currently unprotected. The crosswalk is proposed to be upgraded to a high-visibility crosswalk.
15. Provide Eastbound Right Turn Lane at the Intersection of Homestead/Bernardo/SR-85 On Ramp and Remove Free Right Turn Condition

Improvement \#15 will remove the existing eastbound free right turn condition and create an eastbound right turn pocket for 265 feet at the intersection of Homestead/Bernardo/SR-85 On Ramp. In existing conditions, vehicle queues from vehicles making the right turn onto NB SR-85 extend into the eastbound through lane, causing higher delays for the eastbound through traffic. With the addition of a 265 -foot eastbound right turn lane, eastbound right turning vehicles will be provided with additional queuing storage and impacts to eastbound through traffic would be reduced.

In existing conditions, a crosswalk exists at the beginning of the free right turn lane with no signage to yield to pedestrians. This crosswalk creates a conflict zone between pedestrians/bicyclists and vehicles speeding up to get on the freeway. With the removal of the free eastbound right turn, vehicles would make the eastbound right turn at a controlled signal. In addition, the curb radius would be tighter, and consequently reduce the speed of vehicles making the eastbound right turn.

Near-term intersection improvements are currently being evaluated by the Caltrans SCL/85 \& ALA/80 Project.

16. Provide Protected Northbound and Southbound Left Turns at Homestead Road/Wright Avenue

Improvement \#16 proposes to add a protected northbound left turn lane and a protected southbound left turn lane at the intersection of Homestead Avenue/Wright Avenue and protected left-turn signal phasing. This would include restriping the northbound and southbound approaches
to each be a left turn lane and a shared through/right turn lane. In existing conditions, the northand southbound approaches are striped as a right-turn only lane and shared left/through lane.

17. Upgrade sidewalk to shared-use path in front of Homestead High School

Improvement \#17 proposes to widen the existing sidewalk between the middle HHS driveway and Kennewick Drive to a shared-use path. This would provide a way for bicyclists to access the bike lockers that are accessed via the middle HHS driveway.

18. Install bike ramp at southwest corner of Homestead Road/ Mary Avenue

Improvement \#18 proposes to install a bike ramp at the southwest corner of Homestead Road and Mary Avenue south of Homestead Road. The VERBs grant did not include a solution for southbound bicyclists to access the bicycle-pedestrian bridge without interfering with pedestrians.
19. Provide Bicycle Boxes at Homestead Road/Hollenbeck Avenue/N. Stelling Road Improvement \#19 proposes to add bicycle boxes at the intersection of Homestead Road/Hollenbeck Avenue/N. Stelling Road. This will result in restricting vehicles from making a right turn on red for all approaches.

20. Typical corridor wide improvements

A. Provide bike intersection crossing markings

Bike intersections crossing markings organize bicyclists through intersections and provide a separate space from auto traffic. Typically, bicycle intersection crossing markings can green dashes or white transverse dashed lines.
B. Provide high-visibility crosswalks

High-visibility crosswalks increase visibility of crosswalks and improve compliance of vehicles yielding and stopping behind crosswalks. The ladder pattern was utilized for the study, but other high-visibility patterns may be used as well.

C. Provide green paint at bicycle conflict areas

Bicycle conflict areas are where bus stops or driveways area. Green dashes help highlight that the space is for bicycles.
D. Reduce Lane Widths to 11' and install Class IV bike lanes where ROW allows

Class IV protected bike lanes help improve the comfort of bicycle facilities. Currently, the corridor only has Class II bike lanes or Class II buffered bike lanes. A vertical separation element must be provided within the buffer to upgrade to Class IV. Buffer types vary between flexi-posts, planters, rain gardens, concrete medians, and other types. No specific buffer type is proposed at this point of the project.

E. Upgrade curbs ramps to comply with ADA

There are several curb ramps that do not comply with ADA standards along the corridor. This improvement proposes to upgrade the curb ramps to comply with those standards.

F. Reduce curb radii where applicable

Reducing curb radii helps reduce vehicle speeds when turning. They also help reduce pedestrian crossing distances if a bulb-out is provided as well. There are some intersections along the corridor that

G. Coordinate Traffic Signals along Corridor

Coordinating the traffic signals along the corridor would provide an overall benefit to the corridor by reducing vehicle delay and the associated driver frustrations. Since the traffic signals are currently managed individually by the respective Partner Agencies and are of different controller types, full implementation of this improvement would require coordination
between the agencies to implement a common cycle length, time source, and/or communication across the corridor. The specifics of this improvement should be considered during the design phase. For the purpose of the analysis of this study, the corridor was coordinated based on using existing cycle lengths. The cycle lengths remained the same as existing cycle length, but the offsets and splits at individual intersections were optimized.

Review of Project Alternatives

All alternatives were reviewed by the Partner Agencies, the County, and Kimley-Horn staff. After agency review, it was determined that Improvement \#3A, Improvement \#5, Improvement \#11A, and Improvement \#19 should not be included in the preferred alternative.

For Improvement \#3A, the potential conflict of weaving vehicles and bicyclists to reach the median left-turn lane was discussed. Improvement \#3B was determined to be the preferred alternative.

For Improvement \#5, several alternatives were proposed but a preferred alternative could not be determined. The City of Los Altos should continue evaluating the options to determine the appropriate improvement. A westbound left-turn lane was proposed by the City of Los Altos, but the impacts of the left-turn were not evaluated with this study.

For Improvement \#11A, the effects of reducing an auto travel lane were discussed. The improvement was analyzed using grown near-term volumes, but an in-depth future model forecast was not developed. The preferred option was determined to be the one that did not reduce auto travel lanes.

For Improvement \#19, two-stage turn queue boxes were determined to not be a preferred alternative for the intersection. Two-stage turn queue boxes require no right turn on red restrictions at the intersection. The improvement was analyzed using grown near-term volumes and caused some additional delay at the intersection.

The improvements identified were modified to reflect the feedback provided and concept plans were developed for further feedback and analysis. The concept plans were presented at Community Meeting \#2 for feedback. Public comments were collected, and the preferred alternative was refined based on community input. The comments are included in the Community Meeting \#2 Summary in the Appendix.

The City of Los Altos provided additional recommendations beyond the scope and limits of this study that need to be further analyzed. These recommendations are noted on the concept plans. The recommendations provided that are beyond the scope of this study are:

- Install speed humps along Vineyard Drive
- Install all-way stop sign at Deodara Drive
- Install ped-activated flashing beacon at northbound approach of Foothill Expressway
- Extend shared-use path to Crist Drive
- Consider red crosswalk table at Grant Road/Homestead Road and northbound approach of Foothill Expressway

Preferred Alternative

The preferred alternative concept plan is included in the Appendix. The preferred alternative achieves the study objectives of developing infrastructure recommendations that are feasible and implementable in the near-term. The recommended improvements aim to serve all ages and abilities and better connect the students of West Valley Elementary School, Cupertino Middle School, and Homestead High School. The concept plans were developed with coordination between the Partner Agencies and the community.

An opinion of probable cost was conducted for the preferred alternative. The cost was developed using recent bids for similar bike/pedestrian and Safe Routes to School projects within Santa Clara County. The Caltrans cost data book was also utilized to develop costs. Various soft costs were included in the unit price for each improvement. A contingency of 50% was applied to the total cost that are assumed to cover items not explored at the current stage of the project. The opinion of probable cost is included in the Appendix.

Preferred Alternative Traffic Operations Analysis

A traffic operations analysis was completed for the AM, school PM, and PM peak hours for the preferred alternative. The analysis evaluated each study intersection along the project corridor using Synchro traffic model software. The model analyses are based on the Highway Capacity Manual (HCM) methodology. It should be noted that the Santa Clara Valley Transportation Authority (VTA), which provides the overall standards and methodologies for traffic operations in Santa Clara County, uses the HCM 2000 methodology, and not the latest HCM $6{ }^{\text {th }}$ Edition methodology. The following sections summarize the model development process, the Level of Service (LOS) methodology, and the results of the intersection analysis.

One model was developed that included each improvement listed above to determine the potential impacts on the corridor. Near-term signal cycle lengths for AM, school PM, and PM peak hours were assumed to be the same as existing cycle lengths. Near-term volumes assumed a growth of 1.5 percent annually over five (5) years from the existing condition to the auto and pedestrian/bicycle volumes and were used for all analyses of the proposed improvements. The near-term volumes were analyzed using the existing geometry of the corridor and with the preferred alternative

Preferred Alternative Level of Service (LOS) Results

Traffic operations were evaluated at the study intersections under the near-term preferred alternative traffic conditions. Results of the analysis are presented in Table 5. Table 5 lists the LOS criteria, jurisdiction, intersection control, LOS, and delay for each intersection. The following intersections operate at an unacceptable LOS in the near-term no build and near-term preferred alternative traffic conditions:

- Homestead Road / Grant Road - operates at LOS F in the PM peak hour for the worst approach
- Homestead Road / Fallen Leaf Lane - operates at LOS C or better in all peak hours
- Homestead Road / Mary Avenue - operates at LOS F in the AM peak hour
- Homestead Road / Hollenbeck Avenue - operates at LOS E in the PM peak hour

Analysis sheets are provided in the Appendix.

Homestead Road
 Safe Routes To School

Homestead Road and Grant Road

The intersection of Homestead Road and Grant Road operates at LOS F in the PM peak hour for the worst approach. As noted in the existing conditions analysis, this intersection is a side-street stop-controlled intersection with a stop sign on the southbound approach on Grant Road and is in close proximity to the signalized intersection of Homestead Road and Foothill Expressway. No improvements are recommended to improve the auto capacity of this intersection.

Table 5: Preferred Alternative Intersection Level of Service (LOS) Summary

\#	Intersection	Criteria	Jurisdiction	Control ${ }^{1}$	Near-Term No Build						Near-Term Preferred Alternative								
					AM Peak Hour		School PM Peak Hour		PM Peak Hour		AM Peak Hour			School PM Peak Hour			PM Peak Hour		
					LOS	Delay (sec)	Δ Delay (sec)	LOS	Delay (sec)	Δ Delay (sec)	LOS	Delay (sec)	Δ Delay (sec)						
1	Homestead Road/Foothill Expressway	E	County	Signal	D	50.8	C	33.8	C	35.0	D	50.8	0	C	33.8	0	C	35.0	0
2	Homestead Road/Grant Road	D	Los Altos	SSSC	A	1.5	A	2.1	A	5.1	B	1.7	0.2	A	2.1	0	B	5.3	0.2
	Worst Approach				C	21.3	C	18.0	F	60.6	D	25.0	3.7	C	18.1	0.1	F	63.1	2.5
3	Homestead Road/Fallen Leaf Lane	D	Los Altos	SSSC/ Signal ${ }^{2}$	F	69.7	A	3.7	A	2.0	C	21.8	-	B	16.5	-	B	17.4	-
	Worst Approach				F	OVRFL	F	58.9	D	34.3									
4	Homestead Road/Belleville Way	D	Sunnyvale	Signal	B	15.4	B	15.5	B	16.3	B	14.6	-0.8	B	13.4	-2.1	B	11.4	-4.9
5	Homestead Road/Maxine Ave-SR 85 SB Offramp	E	Sunnyvale/Caltrans	Signal	B	18.3	B	16.6	C	33.2	B	19.6	1.3	B	13.8	-2.8	C	30.6	-2.6
6	Homestead Road/S Bernardo Ave-SR 85 NB Off-ramp	E	Sunnyvale/Caltrans	Signal	C	28.1	B	15.8	B	19.3	C	20.2	-7.9	B	14.4	-1.4	B	15.9	-3.4
7	Homestead Road/Wright Avenue	D	Sunnyvale	Signal	C	27.7	B	14.9	B	14.2	C	23.9	-3.8	B	18.5	3.6	B	11.1	-3.1
8	Homestead Road/Mary Avenue	D	Sunnyvale	Signal	F	102.6	D	43.2	C	33.0	F	97.2	-5.4	D	37.1	-6.1	D	35.6	2.6
9	Homestead Road/Kennewick Drive	D	Sunnyvale	Signal	C	23.7	B	15.2	B	13.6	C	22.8	-0.9	B	16.4	1.2	B	10.2	-3.4
10	Homestead Road/Hollenbeck Avenue	D	Sunnyvale	Signal	E	59.5	D	53.3	E	71.0	D	53.2	-6.3	D	44.3	-9	E	62.5	-8.5

Notes: OVRFL = overflow conditions where the delay exceeds 400 seconds
${ }^{1}$ Intersection Control: Signal or Side-street Stop-control (SSSC)
Intersection \#3 operates as a Side-street Stop-control (SSSC) in the Existing condition and as a Signal with Preferred Alternative

Homestead Road and Fallen Leaf Lane

Without signalization, the intersection of Homestead Road and Fallen Leaf Lane operates at LOS F in the AM peak hour and the school PM peak hour for the worst approach. This intersection is a side-street stop-controlled intersection with a stop sign on the southbound and northbound approaches and the eastbound and westbound approaches are uncontrolled. A traffic signal is recommended as part of the preferred alternative which will improve the capacity of the intersection. The intersection operates at LOS C or better with signalization. The traffic signal would be coordinated with the other traffic signals along the corridor.

Homestead Road and Mary Avenue

The intersection of Homestead Road and Mary Avenue operates at LOS F in the AM peak hour in the no-build and preferred alternative scenario. This intersection has a high number of pedestrians and bicyclists traversing the intersection, in addition to the number of vehicles. The coordination of the traffic signals along the corridor help improve operations slightly, but no other improvements are recommended to improve the auto capacity of this intersection.

Homestead Road and Hollenbeck Avenue

The intersection of Homestead Road and Hollenbeck Avenue operates at LOS E in the AM and PM peak hour. This intersection has a high number of vehicles for the left turn movements that conflict with the opposing through movements. The coordination of the traffic signals along the corridor help improve operations slightly, but no other improvements are recommended to improve the auto capacity of this intersection.

Coordination of Traffic Signals along Corridor

The traffic signals along the corridor were coordinated based on the existing cycle lengths for each peak period analyzed. Since the traffic signals are currently managed individually by the respective Partner Agencies and are of different controller types, full implementation of this improvement would require coordination between the agencies to implement a common cycle length, time source, and/or communication across the corridor. For the purpose of the analysis of this study, the corridor was coordinated based on using existing cycle lengths. The cycle lengths remained the same as existing cycle lengths, but the offsets and the splits at individual intersections were optimized, resulting in improved operations at some locations. The specifics of this improvement should be considered during the design phase. It is assumed that the full implementation of this improvement would reduce the travel time along the corridor.

FUNDING \& NEXT STEPS

Funding Sources

Measure B

Measure B is a potential funding source provided by VTA. Measure B proposed a 0.5% sales tax to help fund projects that include, but are not limited to, bicycle and pedestrian safety improvements. Measure B will give priority to projects that connect to schools and make walking or biking a safer and more convenient means of transportation for all county residents and visitors.

In the Measure B ballot, Attachment A through D list out the potential projects that are eligible for Measure B funding. The Homestead Road Safe Routes to School Project is eligible for Measure B funding because this project is in the Santa Clara Countywide Bike Plan outlined in Attachment A of the Measure B ballot.

As of this report, no applications are being accepted; however, it is anticipated that a call for projects will go out in Winter 2019/2020. More information about Measure B funding can be found at: http://www.vta.org/measure-b-2016

Active Transportation Program (ATP)

The Active Transportation Program (ATP) is funding provided by Caltrans to encourage increased use of active modes of transportation. Goals of the ATP include, but are not limited to:

- Increase the proportion of trips accomplished by walking and biking,
- Increase safety and mobility for non-motorized users,
- And provide a broad spectrum of projects to benefit many types of active transportation

The 2019 ATP Cycle 5 call for projects is anticipated announced in the Spring of 2020. Cycle 5 is expected to include about $\$ 440$ million in ATP funding made up of Federal funding, State SB1 and State Highway Account funding. More information about ATP funding can be found at: http://www.dot.ca.gov/hq/LocalPrograms/atp/

Sustainable Communities Grants

The Sustainable Communities Grants is a funding source provided by Caltrans. The purpose of this funding source is to encourage local and regional planning that furthers state goals including practices provided in the Regional Transportation Plan (RTP). This funding source provided a total of $\$ 29.5$ million to eligible projects.

The application deadline for the Sustainable Communities Grants ended in November 2018 and another call for projects has not be announced. More information about the Sustainable Communities Grants can be found at: http://www.dot.ca.gov/hq/tpp/grants.html

One Bay Area Grants (OBAG)

The One Bay Area Grant program (OBAG) is a grant that was established in 2012 to use federal funds for bicycle and pedestrian improvements or Safe Routes to School Programs. Project applications for the second round of OBAG (OBAG 2) was completed in August 2017 and would provide a total of $\$ 386$ million to eligible projects over 5 years.

The third round of OBAG funding has not been announced. More information about OBAG funding can be found at:
https://mtc.ca.gov/our-work/fund-invest/investment-strategies-commitments/focused-
growth/one-bay-area-grants

Next Steps

The next steps for the Homestead Road Safe Routes to School Project are to apply for grant funding based on the funding sources identified. It is intended that the Partner Agencies will jointly apply for grant funding. A 'project champion' from each agency should be appointed.

The construction and implementation timeline is unknown. It is not guaranteed that grant funding can be secured. If grant funding is not secured, other means of funding should be explored by the Partner Agencies.

APPENDIX

A. Preferred Alternative Concept Plan
B. Opinion of Probable Cost
C. Community Meeting \#1 Summary
D. Community Meeting \#2 Summary
E. Collected Traffic Count Data
F. Synchro Worksheets

A. Preferred Alternative Concept Plan

0
[10 Kimley>Horn

LEGEND			\%		-	ADDITIONAL ANALYSIS NEEDED	
\\|llı\| GREen bike pavement marking	[4]	SHARROW MARKING	$=$	E DETECTION			
11\|	HIGH VISIBILITY CROSSWALK MARKING	䒚	SIDEWALK IMPROVEMENTS	-	- school boundary	TEXT	ADDITIONAL ANALYSIS NEEDED
[דIII BIKE LANE BUFFER	8	EXISTING TRAFFIC SIGNAL	日	Existing bus stop	TEXT	PROPOSED IMPROVEMENT	
					XX'	LANE WIDTH	

LEGEND							
\\|\|\|\| GREEN BIKE PAVEMENT MARKING	중	SHARROW MARKING	\cdots	bike detection		ADDITIONAL ANALYSIS NEEDED	
11\|	HIGH VISIBILITY CROSSWALK MARKING	ㅈ․․	SIDEWALK IMPROVEMENTS	- -	school boundary	TEXT	AdDItional analysis needed
[7דు® BIKE LANE BUFFER	8	ExISTING TRAFFIC SIGNAL	日	Existing bus stop	TEXT	PROPOSED IMPROVEMENT	
					XX'	LANE WIDTH	

LEGEND					F		
\\|\|\|\|\| GREEN BIKE PAVEMENT MARKING	줒ㄹ	SHARROW MARKING	\square	BIKE DETECTION	-	Additional analysis needed	
111. HIGH VISIBILITY CROSSWALK MARKING		SIDEWALK IMPROVEMENTS	- -	- school boundary	TEXT	AdDItional analysis needed	
[דIİ BIKE LANE BUFFER	8	EXISTING TRAFFIC SIGNAL	日	Existing bus stop	TEXT	Proposed improvement	
					XX'	LANE WIDTH	

Proposed Improvements 6 of 6

Safe Routes To School

B. Opinion of Probable Cost

Opinion of Probable Cost

for
Homestead Road Safe Routes to School Improvements

Prepared By: Kimley-Horn
Date: May 2019

\#	DESCRIPTION	QUANTITY	UNIT		/ UNIT	TOTAL COST
1	Install Flashing Sign and Post at Homestead Road/Fallen Leaf Lane (very near term)	1	EA	\$	10,000	\$10,000
2	Install Thermoplastic Pavement Marking	167	EA	\$	140	\$23,380
3	Install Green Thermoplastic Pavement Marking	29,500	SF	\$	14	\$407,100
4	Install Thermoplastic Striping	200,500	LF	\$	3	\$553,380
5	Install Concrete Sidewalk	56,000	SF	\$	55	\$3,091,200
6	Install Concrete Curb and Reconstruct AC Pavement	6,500	LF	\$	210	\$1,365,000
7	Install Traffic Signal at Homestead Road/Fallen Leaf Lane	1	EA	\$	700,000	\$700,000
8	Install Sign and Post	8	EA	\$	1,200	\$9,600
9	Install Curb Access Ramps	44	EA	\$	14,000	\$616,000
10	Modify Traffic Signal (Bernardo Avenue, Wright Avenue)	2	EA	\$	200,000	\$400,000
11	Install RRFB at CMS	1	EA	\$	42,000	\$42,000
12	Install Chainlink Fence	1,200	LF	\$	140	\$168,000
					Total	\$7,385,660
		Total Cost with Contingency (50\%)				\$11,078,490

Notes:

1. The Engineer has no control over the cost of labor, materials, equipment, or over the Contractor's methods of determining prices or over competitive bidding or market conditions. Opinions of probable costs provided herein are based on the information known to Engineer at this time and represent only the Engineer's judgment as a design professional familiar with the construction industry. The Engineer cannot and does not guarantee that proposals, bids, or actual construction costs will not vary from its opinions of probable costs.
2. This OPC was prepared without City review and approval, and as such, may be subject to change during the City permitting process(es).
3. Underground non-pavement utilities such as, but not limited to, water, sanitary sewer, and gas are assumed to be at an adequate depth.
4. Miscellaneous soft costs were applied individually to each project line item above. Soft costs were assumed to be 4\% Admin, 4\% Environmental, 15\%
5. Projects listed as line items above do not include any contingency as a factor for the cost. Contingency was only applied towards the

Construction/Engineering for the project as a whole.
6. The assumed contingency assumes to cover items not explored at the current stage. Items include but are not limited to:

- Unknown improvements needed as part of the project (such as drainage improvements, pavement failure repair, landscaping/irrigation replacement,
restriping, impacts to lighting/electrical, utility relocations that are not under franchise)
- More costly approach to the design/construction of the improvements than anticipated
- Environmental unknowns (contaminated soil, regulatory-required mitigations, high groundwater)
- Unscoped right-of-way acquisition, including temporary permits
- Federalizing the project and the additional costs of performing NEPA, coordinating with Caltrans

7. Cost shown is based on 2019 dollars.

C. Community Meeting \#1 Summary

Homestead Road Safe Routes to School Study Community Meeting \#1 Summary

The County of Santa Clara hosted a community meeting on November 26, 2018, from 6:00-8:00PM to discuss and present a recently underway study to improve mobility to three schools that exist along the Homestead Road corridor between Grant Road and N. Stelling Road/Hollenbeck Avenue. The three schools that are within the study are West Valley Elementary School, Cupertino Middle School, and Homestead High School. The meeting was held at the Homestead High School Auditorium.

Approximately sixty-two (62) community members attended the meeting. The County of Santa Clara was represented by Santa Clara District 5 Supervisor Joe Simitian, Kristine Zanardi, Ananth Prasad, and Thien Pham. Representatives from all partner agencies were present.

The Project Team was represented by Ananth Prasad (County of Santa Clara), Thien Pham (County of Santa Clara), Adam Dankberg (Kimley-Horn), Brian Sowers (Kimley-Horn), Dennis Kearney (KimleyHorn), Tyler Wacker (Kimley-Horn), and Anthony Nuti (Kimley-Horn).

This was the first community outreach meeting with members of the public for the Homestead Road Safe Routes to School Study. The purpose of the meeting was to introduce the scope of the study and provide a study schedule and process; present existing conditions observed through data collection and field observations; and receive community feedback on existing issues and priorities for the corridor.

The meeting started just past 6:00PM and included an introduction by Santa Clara District 5 Supervisor Joe Simitian. Adam Dankberg, the Kimley-Horn project manager, then explained the purpose and objectives of the Study and used a PowerPoint presentation to explain existing conditions. In addition, the Project Manager covered the schedule for the Study and opportunities for additional input from the public including future meetings and a project email. The meeting included a 'Question and Answer' portion where there was an opportunity for many questions from the public to be answered by the Project Team.

The second half of the meeting was an open house format and attendees were asked to go to two stations to give input on where they live, how they use the Homestead Road corridor, what modes of transportation they primarily use on the corridor, what school they are affiliated with, and to mark on a map where hot spots and problematic conditions exist. Attendees were free to leave the meeting whenever they chose during the open house session. The meeting ended at 8:00PM and the information received from Community Meeting \#1 is documented below.

Homestead Road Safe Routes to School Study Community Meeting \#1 Summary

During the 'Question and Answer' portion of the meeting, many questions, suggestions, and opinions were offered to the staff and project team. The questions and responses offered during the meeting are captured below in the order they were given at the meeting.

Feedback/Question	Response
Will the project look at N/S connections from N. Stelling Road/Hollenbeck Avenue to Homestead Road?	Yes, improvements that help users access Homestead Road from N. Stelling Road/Hollenbeck Avenue will be considered.
How does your work involve all jurisdictions?	Representatives from each agency involved in process. The recommendations of the study will be vetted by the jurisdictions. The study may end up a multiagency grant application(s).
Is the hospital included in the study?	No. The hospital is not a part of the study.
There has been a lot of work done on the corridor, including the Stevens Creek Trail Study.	Comment noted.
The study should think about how the kids will bike or walk through the corridor.	Comment noted.
The study should look at changing transit service to serve the corridor.	Comment noted.
Will this be a " 24 -hour" study? Will is cover outside school hours?	Yes. The study will look at improvements for all bicyclists and all modes.
How is the project team getting the word for public outreach?	The project team is utilizing existing channels established by the different jurisdictions and interested attendees can sign up for updates on the project website.
At Homestead High School, administrators send out to various groups via NextDoor, email, via schools, etc.	Commented noted.
Improvements need to be compliant with the California Complete Streets Act and other agency policies.	Comment noted.
What kind of projects has the team done and what are some improvements?	The team will work closely together to come up with recommendations that are vetted by all the agencies involved.
If the goal is to get grants, will be picking projects that are suitable to the corridor?	We want to make sure we are identifying solutions that improve the corridor (i.e. better separation of modes and better visibility at conflict zones).

Sunnyvale
sypintion

Homestead Road

 Safe Routes To School
Homestead Road Safe Routes to School Study Community Meeting \#1 Summary

The following maps display the results of the meeting.
Roll plot \#1 (all comments summarized below)

Roll plot \#2 (all comments summarized below)

Homestead Road Safe Routes To School

Sunnyvale

Homestead Road

Homestead Road Safe Routes to School Study Community Meeting \#1 Summary

Mode of Transportation

Neighborhood Map

Sunnyvale

Homestead Road Safe Routes to School Study Community Meeting \#1 Summary

The following table summarizes the feedback received at Community Meeting \#1 via the open house or comment card. Feedback that was emailed to the project email after the meeting are also included.

Number	Homestead Road Safe Routes to School Public Feedback received from Community Meeting \#1 and Project Email
Feedback Received at Community Meeting \#1, November 26, 2018	
Foothill Road at Homestead Road	
1	Lack of safety for kids crossing Foothill Expressway to Homestead Road
2	Bike lane needed for either Vineyard Drive or Foothill Expressway
3	Bike path needed near Vineyard Drive
4	Bumpers needed on Vineyard Drive
5	Signal timing at Foothill Expressway needs work
6	Intersection lacks ADA ramps
7	Two crosswalks needed to cross Foothill Expressway for to and from school movements
Grant at Homestead Road	
8	Intersection is dangerous for bikes/cars
9	Kids bike on wrong side of the road
10	There is speeding on Grant Road
11	Difficult for kids cross from Grant Road to multiuse path
12	Additional lane needed for people turning right from Foothill Expressway
13	Non-continuous bike lanes results in dangerous crossings for bicyclists
El Sereno Avenue at Homestead Road	
14	Bikes turning left to enter bike lane from wrong side of road while cars also entering and exiting Grant Road at Foothill Crossing exit 15$\|$Intersection is dangerous for bikes. Needs major redesign Homestead Road at Fallen Leaf Lane/Homestead Court 16 Kids bike on wrong side of the road 17 Interaction of two-way path and turning vehicles is dangerous 18 Sun glare impairs drivers from seeing pedestrians 19 Crossing guard needed Homestead Road between Fallen Leaf Lane and Barranca Drive 20 Kids do not follow rules 21 Multiuse path not safe/too narrow 22 No ramps to multiuse path 23 Multiuse path ends abruptly

Sunnyvale
cuptntino

Homestead Road Safe Routes to School Study Community Meeting \#1 Summary

Homestead Road at Barranca Drive/Belleville Way	
24	Sidewalk too narrow for morning pedestrian and bike traffic
25	Signal timing needs work
26	Need keep intersection clear sign
Homestead Road between Barranca Drive and SR-85 off-ramp/Maxine Avenue	
27	Signal timing needs work
Homestead Road at SR-85 off-ramp/Maxine Avenue	
28	Bicyclist bike on wrong side of the road
29	Two-way off-street bike path needed
30	Consider no right-turn off SR-85 off-ramp
31	Students cross against red light
32	Multiuse path needs to connect to the gas station path
33	Crossing guard needed
Homestead Road between SR-85 and Bernardo Avenue	
34	Kids bike on wrong side of the road
35	Allow kids to bike wrong way over overpass in morning
36	Make sidewalk wider
37	Remove painted island to increase left-turn pocket to Bernardo
Homestead	
38	Road at Bernardo Avenue
39	Cars go through gas station to bypass left-turn
40	Signal timing needs work
41	Cars don't stop at intersection and is dangerous for bikes
42	License plate readers needed at intersection
43	Parents park at gas station to pick-up students
44	Homeless encampment on pedestrian path is scary for kids
Bernardo	Avenue at Cupertino Middle School
45	Bikes in danger of cars
46	Little visibility for crosswalk near school
47	No clear way to get from bike cages to Bernardo Avenue
48	Kids ride on sidewalk making it very congested with pedestrians
49	Parents park in school lot for pickup times, interact with school kid exiting
50	No bike lanes on Bernardo Ave
Homestead	
51	Road between Bernardo Avenue and Wright Avenue
52	No parking anytime in the bike lane needed on north side of Homestead Road

Homestead Road Safe Routes to School Study Community Meeting \#1 Summary

53	
Homestead	Road between Wright Avenue and Mary Avenue
54	Hazards from either the trash or parked cars
55	Install bollards at intersections to separate cars and bikes
Homestead Road at Mary Avenue	
56	Signal timing needs to be improved for all modes
57	Cars turn right without stopping
58	Consider pedestrian scramble
59	Cars queue along Homestead Road waiting to get into the Horseshoe
60	Close the Horseshoe to drop-of and pick-up
Homestead Road between Mary Avenue and Kennewick Drive	
61	People turn left into Horseshoe from left-turn lane
62	Separate cars from bikes near the Horseshoe and add dedicated drop-off zones
63	Left turn out of west driveway of student parking is difficult
64	Students park on Louise Road
65	Evaluate more crossing guards
66	Evening and weekend parking should be allowed
67	6pm is too early to allow parking
68	Parked cars make it unsafe to bike
69	Homestead needs full-time bike lanes
Homestead	Road at Kennewick Drive
70	Signal timing needs work
71	Consider pedestrian scramble
72	Student driveway is difficult to get in and out of
Homestead Road between Kennewick Drive and N. Stelling Road/Hollenbeck Avenue	
73	Separate cars from bikes
74	Make bike lanes full-time
75	Consider road diet
76	Vehicles parked in bike lane before 6pm
77	Consider mid-block crosswalk and HAWK at Noranda Drive
78	Students walk in bike lane during lunch
Homestead Road at N. Stelling Road/Hollenbeck Avenue	
79	Fix bike lane width at northwest corner. Too narrow
80	Westbound bike lanes should be wider
81	Street markings and signs should prevent right hook conflicts
82	Mark bike lanes across intersection
83	Consider bike boxes at 4 corners

Homestead Road Safe Routes to School Study Community Meeting \#1 Summary

84	Bike lanes on Hollenbeck should extend to intersection
General feedback	
85	There are 3 schools that start at the same time (8 am) which compounds the traffic congestion and makes it less safe for biking
86	Outreach should be to all residents. This group is not representative of all.
87	Look at cut-through traffic from Montclaire to the NW of Homestead Road
88	Please go back and revisit the effectiveness of previous traffic calming road changes. Did they improve anything?
89	Assuming that pedestrians and cyclists can share the Homestead Road corridor is not plausible
90	We drive to CMS because it is unsafe to bike.
91	Make it convenient to ride or walk and make it a no car school
92	Need wider bike/pedestrian bridge with gentler slope to the north of Homestead Road
93	Put in bike detection
94	Consider green bikes boxes for left-turns for bikes
95	Consider bulbouts
96	Not enough bike parking
Feedback received outside of Project Limits	
97	Cars exiting from Foothill @ Arboretum are going too fast
98	Missing major accident at Crist and Grant
99	Problems extend to Grant Rd for Highlands kids
100	Exit from St. Joseph to Foothill clogged at Montclaire dropoff time
101	Add crossing guard locations to map
102	Please make sure to look at 280 off ramp traffic
103	Fallen Leaf Ln @ Louise Ln 2 utility power towers in middle of the street
104	South Bernardo from the Dalles bridge is sketchy
105	CMS - No bike lanes
106	Helena Bike Cage
107	Helena: Not enough space for a biker
108	Add Helena to this study
Feedback received via Comment Cards at Community Meeting \#1, November 26, 2018	
109	Neighborhood: Montclaire Los Altos HHS to offer a longer homework/study room and encourages shared rides Fluorescent clothing should be required on bicyclists, lights too VTA buses between Montclaire area and HHS School must encourage carpooling VTA must factor public safety in its ROI calculations

Sunnyvale
SyPENTing

Homestead Road Safe Routes to School Study Community Meeting \#1 Summary

110	Neighborhood: Grant Park AM: to school. When cars are entering and existing El Sereno and Fallen Leaf, bikes are coming out of our neighborhood crossing to the wrong side of the road, so they can turn left onto the bike path to go to school. This is so dangerous
111	Neighborhood: Mary / Homestead Homestead needs full time bike lanes. Low collision rate is due to deterring cycling, not an indication of safe conditions. Limited time parking does not serve the needs of students (after school and weekend event) much less commuters and utility cyclists
112	Neighborhood: Homestead Road Lack of education - students need to be coached on road rules- don't penalize the residents. Residents are not scapegoats for students and drivers' stupidity. Don't waste funds on research. Educate the students and fine the wrongful drivers. We need to share. Street parking should not be removed.
113	Neighborhood: Highlands Los Altos What agency operates Foothill Xpwy and way hasn't the scope of this project included safe travels across Foothill to access the Grant frontage road and on to Homestead
Feedback received via document Commute to Cupertino Middle School	
114	Arboretum and Grant Rd - recommend green striped bike crossing or full crosswalk on Arboretum
115	Homestead and Grant Rd intersection onto Foothill Expy - green striped bike crossing be painted across Grant/Homestead Rd to clarify where bikes are crossing
116	Exit of Foothill Expy to Homestead - cars turning left onto Homestead Rd often take right of way over other vehicles, suggest "Bikes must stop" sign
117	Homestead Rd over Stevens Creek - recommend widening bridge for ped and bike traffic only to accommodate 10 ' wide two-way traffic. Continue asphalt path prior to Stevens Creek
118	Pave the green area on sidewalks between Stevens Creek overpass and Belleville ave on Grant rd sidewalk (southbound) to allow bikes and peds to share sidewalk. Expand sidewalk and remove merging lane to allow two-way traffic on Homestead sidewalk
119	Homestead Rd between 85 and Belleville - expand sidewalk to allow two-way traffic (10') for bikes and peds. Remove second lane on Homestead
120	85 Exit onto Homestead Rd - put no right on red sign, make signal more efficient, better signal cycling
121	85 Bridge overpass: Homestead Rd - make lane only one lane with merge of lanes prior to gas station, widen sidewalk to include bike lane to allow 2-way traffic for peds and bikes, 10 ' wide or 15 ' wide, allow onramp for bikes onto sidewalk can eliminate that side bike access, but requires on lane each way
122	Homestead and Bernardo - put a no right on red sign from 8 am to 8:15 am M-F, cars blow through red light getting their kids to school

Sunnyvale
cypEntive

Homestead Road Safe Routes to School Study Community Meeting \#1 Summary

123 Gas Station - post a no throughway sign at gas station entrance, car bypass left turn signal onto S . Bernardo to drive through the private driveway of the gas station. This problem occurs in the morning and afternoon pick up times. Put a right turn only exit sign on Bernardo exit ramp.
124 Gas Station - cars park on sidewalk and at the gas station waiting to pick up kids at 3pm. Kids routinely cross through the gas station car wash area, pickup cars make Uturns at the driveway exit area, cars exiting gas station make left turns often
125 Ped Overpass on Bernardo - make a bike lane on S. Bernardo or route all ped and bike traffic through the Dalles and Crornach Ave "school route"
$126 \quad$ CMS - make Helena drive from Edmonton ave S. Bernardo 1 way into S. Bernardo. Make S. Bernardo Dr from Helena Dr. to Homestead 1 way exit onto Homestead
127 S. Bernardo - put do not enter sign on S. Bernardo Dr to prevent entrance from Homestead. Do not enter sign on Helena Dr.
128 Bike travel distance and times from Google maps. Wolfe and Homestead 2.6 miles 14 minutes (8 min at $5: 45 \mathrm{pm}$).
Benton Street near Lawrence Expy 4.2 miles (21 minute (13 min at $5: 45 \mathrm{pm}$))
Whole Foods on Stevens Creek in Cupertino, 2.1 miles, 11 minutes (8 minutes at 5:43 pm)
Los Altos Gold and Country Club 2.7 miles 15 minutes (11 min at $5: 42 \mathrm{pm}$) Make schools no cars except for medical exceptions or emergency pickup/dropoff
130 No parents in school parking lots/delineate school w. street cars
Feedback received via Project Email
131 I am a resident of Homestead Road directly across from Homestead High School for over 15 years. My child attended West Valley Elementary, Cupertino Middle and Homestead High School. On Monday Nov 26 ${ }^{\text {th }}$, 2018 I attended the Homestead Road safety meeting at Homestead High School. It was very surprising that residents of Homestead road were not informed of this important meeting wherein factors that would affect the residents were being discussed. I came to know of the meeting on the $25^{\text {th }}$ of November due to a chance meeting with one of my neighbors who mentioned about it. I would very much appreciate if efforts are made to provide/make sure that information to the residents about meetings/events that affect the community are posted well in advance via regular US mail so that they can schedule their work timing to attend the meetings. I very much appreciate the efforts of the different school district to evaluate the current road use and the potential ways in which the traffic could be regulated in order to provide for greater safety to the students who attend the three schools that are located along the Homestead corridor. I see that Improvements to the side walk and proper marking of the bike lanes are being looked at as important issues that need immediate attention. Since I get to observe the road traffic and student movement on the main road, bike lane and side walk for over 15 years across from Homestead High School I would like to provide some background on what I perceive as issues that could greatly affect the safety of the students.

1. The bike lane on the Sunnyvale is rightly designated for exclusive use of the folks that ride the bike from 7.00 am to 6.00 pm on weekdays. This covers the working hours of the three schools that are part of the Homestead cohort. It would be

Sunnyvale

Homestead Road Safe Routes to School Study Community Meeting \#1 Summary

helpful to mark the bike lane prominently so that vehicle drivers stay clear of the bike lanes. Unfortunately, I see that most often students DO NOT use the bike lane and they tend to use sidewalks especially on the Sunnyvale side across from Homestead High. A double line to designate the bike lane would provide for an additional room for the bicyclist to be at a distance of safety from the moving vehicular traffic. I see no reason to make any changes to the exclusive use timings of the bike lane as the current timing is more than sufficient to cover the working hours of the three schools.
2. There have been no reported traffic incidents involving students outside of the 7.00 am to 6.00 pm time frame for which the bike lane is designated for the exclusive use of the students who bike to the school. To raise any argument that changing the bike lane use timings to provide for greater safety for the students is a totally baloney. I see no justification for even thinking in this line and thus would strongly urge that the need for changing the use timing is never brought to the table for any discussion - now and in the future. Any concerns of the recreational bikers have no place in this discussion. They need to share the road with the residents. There are no two options in this regard.
3. The students seem to lack the knowledge of basic road rules. I see students who walk to the school as well as those that bike to the school seems to totally disregard the basic road rules and expect everyone around them to look out for them to avoid any untoward incident. They are always waiting to throw the blame on the others when in reality they are the cause of it. This shows total disrespect for the vehicle drivers who are additionally burdened by the callous attitude of the students. It would be helpful to include a "Road Rule and Ethics" course as part of the curriculum in the school and make it mandatory for the students to attend few classes to get some knowledge about the basic facts. Our tax money would be better spent on educating the students rather than throw it at some private research organization who are more interested in making a quick buck in exchange for some feedback with minimal reflection on how it would affect the residents since they are not part of the community. Education is the key to success rather than wasting money on all kinds of change that were being discussed during the meeting. Educating the students on basic road rules would go a long way as it would help them behave like good citizens now and when they grow up and bring their children to the school. They will be role models to their children and to the community in which reside.
4. As for the parents who drive their children to school - lesser said the better. Significant number of them seem to totally lack any knowledge of road rules and very often flaunt the basic road rules and thus put other drivers and students in complete danger. It would be helpful to heavily fine (up to 10x) even for small road rule infarction during the school hours and display their names along with their children name on a "wall of shame" visible to the public so that the parents make consorted efforts to follow road rules and set an example for their kids. The kids see their parents violate the rules, day in and day out, and thus they also tend to break the rules more often. Student drop-offs on the side of road in front of Homestead High - both Sunnyvale and Cupertino side of the road should

Sunnyvale

Homestead Road Safe Routes to School Study Community Meeting \#1 Summary

be banned. Any violation should invoke a large fine. This not only blocks the bicyclist path but could potentially result in serious injury to the rider.
5. More bikers travel the Mary road rather than Homestead road. Coming from Mary they directly enter Homestead High or turn right at Helena to get to Cupertino Middle. Thus, the bike lane use on Homestead is relatively low in comparison to Mary road. Majority of the school going bikers on Homestead road rarely use the bike lane with most preferring the side walk!! Any changes to the bike lane would be futile. One option would be make a single lane of traffic on both sides of Homestead Road from Stelling Road to Belleville Way and increase the width of the bike lane so that there is significant distance between the moving vehicular traffic and the bikes. This will also help to preserve the parking space along the Sunnyvale side of the road for the residents. This should be designated as residents only parking during the bike lane use hours to discourage students from using the spot. The residents would not mind if the parking continues to be restricted to 6.00 pm to 7.00 am during weekdays and all day during weekends and holidays. This should be a good compromise and provide greater room for the bikers and improve safety.
6. Any efforts to change the bike lane use timing will be detrimental to the residents who are already putting up with the chaos during the school hours and should not be burdened with a lack of parking for their guests during non-school hours. The residents cannot expect their guests to park their vehicles a mile from the homestead road and walk to our house. Incidentally during the meeting, I observed some recreational bikers putting up a pitch to make the bike lane as an exclusive use of the bikers at all times of the day and night. I would like to reiterate that this review is look for ways to bring about safety for the students and thus there is no place for any discussion on recreational bikers' agenda. Their agenda should not be entertained and the residents concern with regard to the need for parking should have the highest priority. Outside of the school hours the bike lane should be shared with residents who need the space for parking. There are no two options on this aspect. Removal of parking will greatly affect the value of the house and immensely inconvenience the residents and thus any talk of conversion of bike lane to exclusive use of bikers at all times should never be entertained. Residents need the parking space - There is no two options.
I commend the efforts of the community and the school district for their desire to take a hard look at the traffic issues and come up with a plan to provide better safety and security to the school kids. I will be happy to discuss further if there are questions that the team needs clarity based on my comments.
I noticed something else I wanted to write in about: On Mary Ave, there are two crossing guards in the morning (at the Helena intersection). I totally get it-Mary is a busy, wide street and it probably takes two crossing guards to be seen by both sides of traffic. But I think the most critical intersection to have two crossing guards is at the intersection of Helena and Wright, right by the middle school. If this isn't the busiest intersection for Cupertino Middle, then it's certainly up there. And I'm sure the committee's aware that there was a student hit by a car there earlier this year. If there were a crossing guard posted to take care of Helena and then one to take care of Wright, they could take turns. I'll bet it would improve the flow of traffic too. I honestly don't know how the crossing

Sunnyvale
cupentino

Homestead Road Safe Routes to School Study Community Meeting \#1 Summary

133	guard there has handled things by himself this long. (It can't be easy at all.) I also wanted to mention that last year I wrote in to the City of Sunnyvale, suggesting a four way stop sign be put it at Helena and The Dalles. That intersection gets really backed up in the mornings.
I was at the meeting at Homestead High School. Since then, I noticed the difference in the striping for crosswalks in the area being discussed and many I've seen in Mountain View. The ones in Mountain View are much more noticeable and obvious! I frequent the corner of Fallen Leaf and Homestead and have noticed that cars frequently do not stop at the BEGINNING of the crosswalk, but often roll into the crosswalk before coming to a complete stop. Part of this is due to not having visibility of the oncoming traffic. However, this results in not stopping until past the point that a pedestrian or bicyclist would be if crossing the street on the hike and bike trail. Perhaps better, more obvious striping would help.	

The following photos were taken at the public meeting.

Sunnyvale

Homestead Road Safe Routes To School

Homestead Road Safe Routes to School Study Community Meeting \#1 Summary

Homestead Road Safe Routes To School

Homestead Road Safe Routes to School Study County Safe Routes to School Meeting (2/9/2018)

The County of Santa Clara hosted a community meeting on February 9, 2018 to discuss and present concerns regarding Foothill Expressway, Grant Road, and sections of Homestead Road. Some comments received from this meeting are within the study area of the Homestead Road Safe Routes to School Study and have been included in the table below.

Number County Safe Routes to School Meeting	
Feedback Received at Community Meeting, February 9, 2019	
Traveling along Grant Road (Homestead Rd/Foothill Expy \& Grant Rd)	
1	Southbound bike lane ends and becomes a sharrow (Class 3)
2	Students travel on wrong side of the road
3	Crossing El Sereno from the unexpected way with limited visibility
4	The class 1 path has pros and cons
5	The Triple Pass (Southbound bikes through 1. Stop and cross through traffic 2. Yield and cross through traffic 3. Cross through traffic into bike lane
6	Heavily congested intersection
7	Vehicles drive in bike lane
8	Cyclists are not visible on corner of Foothill
9	Younger cyclists use crosswalk and then "jump" back to lane
Traveling to/from Vineyard Dr (Vineyard Dr/Homestead Rd \& Foothill Expy)	
10	Shoulder striping disappears on Vineyard - cyclists are in no man's land
11	No ADA ramps at the intersection
12	Students don't know how to use the bicycle sensor at the intersection
13	No signs/striping guiding drivers/cyclists
14	Narrow Road
15	No ADA curb ramps for use by cyclists
16	No signs to alert drivers/uncontrolled + favorite U turn spot
17	No Shoulder stripping near expressway intersection - starts later
Corner of Foothill and Homestead	
18	Drivers cut the corner and drive in the shoulder where the bike lane starts
Homestead Road Commercial Driveways	
19	6 service entryways
20	Vehicles blocking the bike lane
21	No signs and guidance

Sunnyvale
Suplotion

Homestead Road Safe Routes to School Study

County Safe Routes to School Meeting (2/9/2018)

22	Exits from commercial area allow left turns with limited visibility that risk students who are heading to class 1 path
23	Currently it is allowed to take left turns from El Sereno to Homestead endangering the cyclists

D. Community Meeting \#2 Summary

Homestead Road Safe Routes to School Study Community Meeting \#2 Summary

The County of Santa Clara hosted Community Meeting \#2 on February 25, 2019, from 6:00-8:00PM to discuss and present conceptual designs of potential improvements to the Homestead Road corridor to better connect West Valley Elementary School, Cupertino Middle School, and Homestead High School. The meeting was held at the Homestead High School Auditorium.

Approximately sixty (60) community members attended the meeting. The County of Santa Clara was represented by Kristine Zanardi, Ananth Prasad, and Thien Pham. Representatives from all partner agencies were present.

The Project Team was represented by Ananth Prasad (County of Santa Clara), Thien Pham (County of Santa Clara), Adam Dankberg (Kimley-Horn), Brian Sowers (Kimley-Horn), Tyler Wacker (KimleyHorn), and Anthony Nuti (Kimley-Horn).

This was the second community outreach meeting with members of the public for the Homestead Road Safe Routes to School Study. The purpose of the meeting was to provide an update to the community on the study status, present proposed concepts, receive community feedback on the proposed concepts that have been developed, and review next steps.

The meeting started just past 6:00 PM and included an introduction by Kristine Zanardi. Adam Dankberg, the Kimley-Horn project manager, then provided an update of which stage the Study is in and used a PowerPoint presentation to explain select proposed improvements. In addition, the Project Manager covered the schedule for the Study and opportunities for additional input from the public including comment cards and the project email. The meeting included a 'Question and Answer' portion where there was an opportunity for many questions from the public to be answered by the Project Team.

The second half of the meeting was an open house format and attendees were asked to go to a station to give input on the proposed improvements. Attendees used colored dots to express support (green), uncertainty/need more info (yellow), or do not support (red). Sticky notes were also provided to write down comments and place them on the proposed improvement posters. Attendees were free to leave the meeting whenever they chose during the open house session. The meeting ended at 8:00 PM and the information received from Community Meeting \#2 is documented below.

Sunnyvale

Homestead Road Safe Routes to School Study Community Meeting \#2 Summary

The following maps display the results of the meeting.
Corridor Maps (all comments summarized below)

Sunnyvale
Kimley")Horn

Homestead Road Safe Routes To School

Homestead Road Safe Routes to School Study Community Meeting \#2 Summary

Homestead Road Safe Routes to School

Homestead Road Safe Routes to School

Sunnyvale

Homestead Road Safe Routes To School

Homestead Road Safe Routes to School Study Community Meeting \#2 Summary

Homestead Road Safe Routes to School

Homestead Road Safe Routes to School

Sunnyvale
cupistivo

Homestead Road Safe Routes To School

Homestead Road Safe Routes to School Study Community Meeting \#2 Summary

Homestead Road Safe Routes to School

Homestead Road Safe Routes to School

Sunnyvale
cUPEATHio

Homestead Road

Homestead Road Safe Routes to School Study Community Meeting \#2 Summary

The following photos were taken at the public meeting.

Sunnyvale

Homestead Road Safe Routes to School Study Community Meeting \#2 Summary

The attached table summarizes the feedback received at Community Meeting \#2 via the open house or comment card. Feedback that was emailed to the project email after the meeting are also included.

Sunnyvale:

Number	Homestead Road Safe Routes to School Public Comments as of 4/3/2019	Project Team Response					Number of Dots at Community Meeting \#2 (if applicable)		
		$\begin{array}{\|c} \text { Referred to } \\ \text { Partner Agency } \end{array}$	$\begin{array}{\|c\|} \hline \text { Will be } \\ \text { Considered in } \\ \text { Study } \end{array}$	Out of Study Scope	$\begin{aligned} & \text { Comment } \\ & \text { Noted } \\ & \text { (No Action) } \end{aligned}$	Additional Remarks	$\begin{array}{\|c\|} \text { Green } \\ \text { (Support) } \end{array}$	$\begin{array}{\|c\|} \hline \text { Yellow } \\ \text { (Uncertain / Need } \\ \text { More Info) } \\ \hline \end{array}$	$\begin{array}{\|c} \text { Red } \\ \text { (Do Not } \\ \text { Sop Noort } \end{array}$
Comments Received at Community Meeting +2, Feb 25, 2019									
Extend Shared-Use Path to Grant Road							6	4	0
1 ${ }^{1}$	Idon't use multi-path because I get stuck behind peds and slow bikes. I ride to school. I ride in the bike lane going home. Not the multi-use path.				\bullet				
2	Sharrows in this area dangerous. Yes, extend shared use path.				\bullet				
3	Need crossing guard between foothill pork chops α guard use extension.	-							
Intersection of Grant Rd, Homestead Rd, Foothill 1 exy \& \& I Sereno Ave									
4	Will you add bike lane striping (at the intersection)?		\bullet			Bike lane striping at the intersection will be analyzed in revised concept plans.			
5	How to get E B bikes to Homestead?		-			Bike lane Striping at the intersection will be analyzed in revised concept plans.			
6	Accesss to median at Grant Road unsafe for kids in backed up traffic suggest another way such as guiding with green to crosswalk.		-			Bike lane striping at the intersection will be analyzed in revised concent plans.	0	1	0
7	Don't slow down Homestead to Foothill because no peds/bikes.				-		0	0	1
Near Gas Station South Across the Street from El Sereno Ave									
	Possible extend buffered bike lane to gas station exits?		\bullet			Buffered bike lane will be analyed in revised concept plans.	0	1	0
Install Buffered Bike Llanes Between E\| Sereno and Fallen Leaf \backslash n							5	2	0
9	Additional queuing				-				
10	Extend back toward Foothill past gas station? Especially the gas station exit that allows left turns or through movements to El Sereno		\bullet			Buffered bike lane will be analyed in revised concept plans.			
Trafic S Signal at Fallen Leaf \ln							6	7	5
11	Install traficic signal.		\bullet			The proposed traffic signal will be coordinated with the existing trafic signals on the corridor.			
12	So needed but light timing critical.		-			The proposed trafici signal will be coordinated with the exsiting traficic signal on the coridior.			
13	We do not need another stop light. The timing of lights already causing problems.				\bullet				
14	So critical to put in a light here for safety. Cars wait so long to get out they do incredibly dangerous high speed turns to get into openings on Homestead regardless of Bike/Ped. However, light timing w/other series of lights between Foothill \& Belleville will be essential to thruput.				-				
15	the trantic signals need to all sync up on Homestead ro this iाgnt to work. Also iignts need to be tramic snaped tor schoor commute/heavy traffic.		-			The proposed traffic signal will be coordinated with the existing traffic signals on the corridor.			
16	For sfetey, the light is great. Butit must be synced with all lights along the corridor		-			The proposed traffic signal will be coordinated with the existing trafic signals on the corridor.			
Provide Shared-Use Path and Pedestrian Hybrid Beacon/Rectangular Rapid Flashing Beacon (PHB/RRFB) to Cupertino Middle School (CM			-				6	2	0
17	Extend Cross walk to allow cars into lot.	-				Cars currently alowed in parking lot.			
18	How abut a waking bridge instead?			-		Not enough room or ROW for walking at existing crosswalk to CMS			
19	Yes, but don"t put the RRFB at the exsting intersection! Create a new"stop" durng shool commute time, the rest or the time (23 hrs day) traffic will flow naturally.		\bullet			The proposed PHB/RRFE is placed a the exsting crosswalk based on partner agency input.			
20	1 second that, (comment 19) time for school hours/student presence. Push button to cross.		-			The proposed PHB/RRFB is placed at the existing crosswalk based on partner agency input.			
21	Need to do something to adress bikers \& wakers on crowded multi-use path W. Valley babies walking \& CMS/HS kids biking.		-			Widening the shared.-use path will be analyzed in revised concent tlans.			
22	Yes! Path extension all the way to CMS and daded safety for kids to gett to CMS				\bullet				
Upgrade Sidewalk to Shared-Use Path by Removing Bike Lane							4	2	2
23	Do not remove bike lanes please!				-	The shared-use path is the preferred option since removal of vehicular lanes to provide a multimodal facility on the north side of Homestead Road is not feasible per partner agency.			
24	Shared use may slow flow trafic				\bullet				
25	Like shared use-path/muti-use good as long as enough space				\bullet				
26	Yes! Path extension all the way to CM 5 key for safety and getting kids out of car trafic				\bullet				
27	Suggest no right on red during school hours (SB Bellevile Way).		-			No right turn on red will be anlayed in revised concept plans.			
28	The kids jay walk. Can you put a crossing guard here (Homestead @ Bellevill W Way/Barranca Dr)? Lengthen time for crossing	-							
Intersection of Belleville Way, Homestead Rd\& Baranca D Dr							0	0	1
29	Should eliminate the let turn lane eastound and give right turn	\bullet		-		The study is focused on bicycle and pedestrian improvements. Vehicular improvements will not be assessed in the study.			
30	Upgrade sidewalk to shared.-se path by removing bike lane				-		2	0	0
31	Install no right turn on red sign		-			No right turn on red will be anlayed in revised concept plans.	1	1	0
32	Modify bridge cross section and extend mutti-use path	-			-		2	0	0
33	Install new sidewalk (West of Barranca)		-			New sidewalk proposed to close existing sidewalk gap west of Barranca Drive.	1	0	0
East of Maxine Ave \& Homestead Rd									
34	Upgrade sidewalk to shared-use path by removing bike lane				-		1	0	0
Near Tem: Provide Intersection Crosing Marking \& RRFB							3	1	0
35	Consider putting the croswalk RRFB away from the intersection, crate a dedicated bike/ped stop only an hour a day		\bullet			The proposed P PHB/RRFB is placed a the exsting crosswalk based on partner agency input.			
36	Like the lights, but may case huge flow impact at the trafic lights		-			The study will vevaluate the impacts of the proposed improvements.			
Long Term: Eliminate Free Right Turn and Reconfigure Intersection							1	3	2
37	Make sure passability for bikers does not get reduced		\bullet			The stuy is not recommending to degrade bigcle conditions.			
38	Back up into roadway		-			The study will evaluate the impacts of the proposed			
39	Will definitely hinder flow of trafic		\bullet			The study will evaluate the impacts of the proposed improvements.			
40	Is there something like a light that stops the flow of the right turning cars to protect the bike traffic? This is where you want this		-			Bike signal are not appropriate for the proposed design.			
41	Does not look like the suggested improvement will improve any saftey concerns				-				
Cupertino Middle School									
42	How will you ensure that trafici keeps flowing with instalation of PHB/RRFB?		-			The study will evaluate the impacts of the proposed improvements	1	1	0
43	Upgrade sidewalk to shared-use path				-		1	0	0
Install Uuffered Bike Lanes West of Mary Ave							9	0	0
44	Raised curb with flex- oosts every 2 feet to prevent passengers from existing cars waiting on Homestead Rd		\bullet			Protected bike lanes will be analyzed in the revised concept plans.			
45	Could the bike lane be protected?		-			Protected bike lanes will be analyzed in the revised concept plans.			

Number	Homestead Road Safe Routes to School Public Comments as of 4/3/2019	Project Team Response					Number of Dots at Community Meeting \#2 (if applicable)		
		Referred to Partner Agency	$\begin{gathered} \text { Will be } \\ \text { Considered in } \end{gathered}$ Study	Out of Study Scope	$\begin{aligned} & \text { Comment } \\ & \text { Noted } \\ & \text { (No Action) } \\ & \hline \end{aligned}$	Additional Remarks	Green (Support)	Yellow (Uncertain/ Need More Info)	Red (Do Not Support)
Intersection of Homestead Rd \& Mary Ave									
46	Widen street (EB approach) and allow right turn on red	\bullet	\bullet			The study is focused on bicycle and pedestrian improvements. Vehicular improvements will not be assessed in the study.			
47	Please make crosswalk more visible to cars leaving parking lot		\bullet			The study recommends high-visibilty crosswalks at all crosswalks.			
48	Left turn into horseshoe	\bullet		\bullet		The study is focused on bicycle and pedestrian improvements. Vehicular improvements will not be assessed in the study.	0	0	1
49	M ake crosswalk wider so cars from lot will see bikes	\bullet	\bullet			Crosswalks are standard width. The study recommends highvisibiilty crosswalks at all crosswalks.			
Install Buffered/Protected Bike Lanes East of Mary Ave							8	1	0
50	Please keep all bike/ped movement off Homestead and Horseshoe	\bullet				The study analyzed ways enhance bicyclist and pedestrian saftey			
51	Widen the curb from Homestead to M ary to slow down cars taking this turn to fast. (i.e. make corner tighter)		\bullet			A bulb-out and tighter curb radius will be analzyed in the revised concept plans.			
52	Protected bike lane preferred		-			Protected bike lanes will be analyzed in the revised concept plans.			
West and East of Mary Ave									
53	Eliminate all on-street parking 24/7 along Homestead Road	-							
Install Buffered/Protected Bike Lanes West of Kennewick							5	0	0
54	Protected bike lane preferred		\bullet			Protected bike lanes will be analyzed in the revised concept plans.			
Upgrade Sidewalk to Shared-Use Path in front of Homestead High School Parking Lot							4	2	1
55	You need better description of how the shared-use paths are intented to work		\bullet			Shared-use paths are intended to work for both bicycilsts and pedestrians.			
56	May slow the flow of trafic				-				
Extended Intersection Crossing Markings							6	0	0
Comments Received By Comment Cards at Community M eeting \#2, Feb 25, 2019									
56	M ore protected bike lanes would be prefered		\bullet			Protected bike lanes will be analyzed in the revised concept plans.			
57	Hwy 85 on/off ramps, Caltrans has plans for Hwy 85 @ Homestead improvements planned for 2020. How are they taken into account with relation to this study and its reccomendations/plans?		\bullet			The project team has been coordinating with the Caltrans project.			
57	Reduce speed on roadways by narrowing lanes or road diets		\bullet			The study recommended reducing lane widths to 11 ' where feasible.			
	Use as many protected bike lanes as possible		\bullet			Protected bike lanes will be analyzed in the revised concept plans.			
	Address bus stop in bike lane at M ary/Homestead	\bullet							
	Work with Homestead High School to connect/integrate bike lanes with interior routes to the bike racks	-							
	Multi-Use pathways are great but maybe separate bike and ped areas of path		-			Widening the shared-use path will be analyzed in revised concept plans.			
58	1 object to any futher restriction of parking on Homestead. It is an infringement on my priviledge to have visitors.	\bullet							
Comments Received By Email After Community M eeting \#2, March 12, 2019									
59	Kudos to Sen. Simitian for bringing much-needed attention to these important safety issues. I am generally very pleased with the effort that has gone into addressing them, and my comments are directed toward the few (but significant) exceptions which I hope you will work to mitigate to the greatest extent possible. First, it was a major disappointment to hear that extending the Multi-Use Path on the west side of the corridor will be achieved by eliminating the existing bike lane. Contrary to the wishful thinking of most traffic planners and others, MUPS are not a substitute for bike lanes. MUPs require cyclists to become rolling pedestrians, which does not serve the needs of commuters and other utility cyclists. And those who predictably refuse to submit to this unreasonable restriction will result in endless conflict (which will be blamed entirely on the cyclists, of course!). In the absence of evidence to the contrary, I accept your assertion that there is not enough room for both a bike lane and MUP in this segment. So if the MUP is installed, it is clear that the remaining travel lane width on the roadway will not be sufficient for a bicycle and a vehicle to share side-by-side. Since California has no mandatory sidepath law, cyclists retain the legal right to use the main roadway, and some of them will for the reasons cited above. But this invites dangerous harassment from ignorant motorists who think cyclists are required to use the MUP. In order to minimize the damage from this condition, this segment should prominently display "[Bike symbol] M ay Use Full Lane" signs (MUTCD R4-11), and paint Sharrows in the middle of the lane. This is by no means a solution to the problem, it is merely making the best of a bad situation. Second, if the street space described above that is currently used for a bike lane can be so easily eliminated for what is perceived to be the greater good, then what is preventing the street space on other segments of this corridor, which is currently dedicated to car parking for the vast majority of the time, from being redirected to full time bike lanes in order to provide safe accommodation for cyclists? It appears that needed bike space is expendable, but car space that is merely a convenience cannot be questioned. Is anyone on the project team a utility cyclist? You might want to consider adding one or more such people, so you won't continue to make decisions that are based strictly on the motorist perspective. Unless that is what you really want to do.	\bullet	-			Sharrows and signage will be analyzed in the revised concept plans.			
60	First off I've lived in Cupertino since 1963 and have seen a lot of change around town. As a kid we road our bikes to schools and everywhere. Now a days it seems like every kid is driven to school, I'm not sure when that started but all the cars around the schools have in my mind created a dangerous situation not to mention the traffic jams associated with all those cars. We need to make driving cars hard and riding bikes easy. I truly believe protected bike lanes on Homestead road would promote more bike riders. I believe parents are afraid to let their kids ride bikes because of the traffic. Everyday I see cars in bike lanes waiting to make right turns forcing the bikes into the path of traffic.		\bullet			Protected bike lanes will be analyzed in the revised concept plans.			

Number	Homestead Road Safe Routes to School Public Comments as of $\mathbf{4 / 3 / 2 0 1 9}$	Project Team Response					Number of Dots at Community Meeting \#2 (if applicable)		
		Referred to Partner Agency	Will be Considered in Study	Out of Study Scope	Comment Noted (No Action)	Additional Remarks	Green (Support)	Yellow (Uncertain / Need More Info)	Red (Do Not Support)
61	I want to thank the Homestead Corridor Safe Routes Study project team for the opportunity the community had to hear about your proposed plans and provide feedback at the community meeting on Monday evening. Thank you. And, thank you for the multi-agency collaborative work you are doing for this project. I understand the feedback window is open for the next couple of weeks and I hope you will continue to receive valuable feedback from the community. I did want to take the time today to add one more thing to the top-level list of feedback I previously shared. Here's the addition: -School Zone speed limits on the Homestead Road corridor should be consistently implemented across jurisdictions according to the speed laws of the vehicle code and the ability to establish lower school zone speed limits ($15 \mathrm{mph}, 25 \mathrm{mph}$ in 500 ft and 1000 ft radius of schools). In other words, implement the $15 \mathrm{mph} \& 25 \mathrm{mph}$ school speed zones near the schools on the Homestead Road Corridor consistently throughout the corridor. Today, it appears there is inconsistent implementation. For example, near Cupertino Middle School (CMS): - The 15 mph school speed zone has not yet been implemented on Bernardo Ave - although I understand Sunnyvale has plans to implement the 15 mph zone on Bernardo Ave. (When will the implementation be done?). - The 25 mph school speed zone is posted on the west side of Homestead Road near Barrancha Dr./Acacia Way. However, a 35 mph speed limit is posted on the west side of Homestead Road near Bernardo Ave, and I did not note an end of 25 mph school speed zone sign on the west side (did I miss the sign?). For the east side of Homestead Road near CMS, I do not see any 25 mph school speed zone posted (did I miss a sign?). The Homestead Road corridor project should identify the full segments on both sides of Homestead Road (by CMS and Homestead High School (HHS)) that qualify for the $15 \mathrm{mph} / 25 \mathrm{mph}$ school speed zones and implement it in the near term. CA Legislative Information Division 11. RULES OF THE ROAD Chapter 7. Speed Laws - https://leginfo.legislature.ca.gov/faces/codes_displaySection.xhtm\|?lawCode=VEH\§ionNum=22358.4 City of Sunnyvale Legislative Public M eetings - Adopt a Resolution to Establish 15 MPH Speed Zones at 35 Locations Adjacent to 16 Public Schools in Sunnyvale - https:// sunnyvaleca.legistar.com/LegislationDetail. aspx?ID=3710676\&GUID=623BBB14-1E75-46C1-8EFD- 14B928FEAF40\&FulIText=1 Mercury News - Sunnyvale to Drop Speed Limit Near Schools - https://www.mercurynews.com/2018/11/09/sunnyvale-to-drop-speed-limit-near-schools/	-							
62	On Homestead Rd. at the Chevron station, can the unprotected left turn be restricted between 7:30-9 am? Please add signs to alert drivers to watch for cyclists.	-							
	What are the instruction and safety measures for cyclist heading from the mutti-use-path towards Vineyard?		-			Additional considerations will be analyzed in revised concept plans. plans.			
	Please coordinate signal timing at Homestead \& Bernardo and the conflicts between cyclists/vehicles at Homestead/Bernardo gas station ingress/egress and intersection of Homestead/Bernardo.	-			\bullet				
	A traffic light at Fallen Leaf and Homestead, active only at specific rush hour times, would be a great safety improvement. That intersection is currently dangerous for drivers and pedestrians.		-		-				
63	A quick note to say how very encouraged l am by the project plans thus far.				\bullet				
	The proposed signalized intersection at Homestead and Fallen Leaf will be welcome for all of us in the Fallen Leaf neighborhood trying to get children to school or just walk or bike across Homestead safely. The question is whether all of the signalized intersections in close proximity can be interconnected and timed to avoid further exacerbating jams during AM and PM peak periods.		-			The proposed traffic signal will be coordinated with the existing traffic signals on the corridor.			
	As you know, during the AM peak, traffic going from Homestead to Foothill backs up often past Belleville. The only way to exit Fallen Leaf to Homestead is if someone lets you in the queue or a pedestrian pushes the signal to cross Homestead creating a traffic break.				-				
	In the afternoon, it can take 3 or more signal cycles to make the turn from Foothill onto Homestead because of the signal by Trader Joe's that does not allow traffic from Foothill to clear the turn onto Homestead. Often, Homestead is backed-up all the way down to the 85 intersection for reasons I don't understand. It is a traffic engineers nightmare. The effect of the AM and PM clog is traffic cutting through the neighborhood to exit onto Foothill by the Lucky Supermarket.	\bullet			\bullet				
	Obtaining funding will yet another challenge. And so it goes.				\bullet				
64	I attended the Homestead Road Safe Routes to School Community M eeting on M onday, February 25. I want to convey additional safety issues at the corner of Sweet Oak St and Homestead Rd that I brought to the City of Los Altos attention back in December 2018 in the following post to the online system. I have also included the reply from Aruna Bodduna referring me to the study. I spoke to Mayor Lynette Lee Eng at the meeting about this as well.	\bullet			\bullet				
	The No U-turn sign at this corner is very frequently disregarded causing danger to people and property as indicated in my email below. My suggestion is to install a raised island that extends farther toward Sweet Oak with a larger No U-Turn sign. I also suggest that whichever public entity is responsible for patrolling this part of the roadway do so more frequently to reduce the illegal U-Turns.	-			\bullet				
	There have been at least two accidents involving cars and bikes at this intersection as well.				\bullet				
	Tam also concerned about the traffic backup from Foothill Expressway to Mary Avenue each evening due to lack of coordination in timing of the traffic lights down Homestead during peak commute hours.	\bullet			-				
65	Thank you for considering many of the comments that the Homestead HS team sent on the first round of suggestions and adding many more safety measures to the suggested improvements plan. I had a few question, suggestions, and comments that you may want to consider in the design phase for both the VERBS and the corridor projects. Please see below and let me know if any of the points require further clarifications.				\bullet				
	- Sidewalk bulb-out on Mary Ave. should include a designated solution for cyclists to enter the bike lane around campus when heading from M ary Ave. to Campus, and a clear way to get to northbound bike lanes on M ary when leaving campus. The current design puts the cyclist on the curb that is congested with pedestrians.		-			Additional ramps will be considered in revised concept plans.			
	- The bike lane on Homestead at the corner of M ary and at the entrance to the Student parking lot should be buffered (with physical barrier) all the way to the intersection as it is at Graham MS in Mountain View. This solution provides a clear and safe bike lane.		-			Protected bike lanes will be analyzed in the revised concept plans.			
	- The sidewalk along the students parking lot is converted to a multi-use path, Where would that path end? Students should not be encouraged to bike against traffic towards the horseshoe. (it is cut between the boards so not clear)		\bullet			The shared-use path would be between the middle of Homestead High School driveway and Kennewick Drive.			
	- At the corner of Bernardo and Homestead; Students biking westbound - how should cyclist enter the multi-use-path? Through the curb with the pedestrians?		-			Wider/additional ramps will be considered in the revised concept plans.			
	- A portion of the bike lane between Kennewick and Stelling seem to be too narrow to comply with the requirements. Could you please check and consider accordingly?		-			Widening the bike lane will be considered in the revised concept plans.			
	- Canceling the bike lane eastbound from Bernardo and converting it to two ways multi-use path will create a heavily traveled path with both ways traffic. Cyclists might decide to share the road with cars when the path is congested. Appropriate signs and sharrows should be present to alert drivers to this option. This is not a good solution for students.				-				
	- On Homestead Rd. at the Chevron station - can the unprotected left turn be restricted between 7:30-9 am? Additionally, can signs be added to alert drivers to watch for cyclists be added?	\bullet							
	- What are the instruction and safety measures for cyclist heading from the multi-use-path towards Vineyard?		-			Additional considerations will be analyzed in revised concept plans.			
	- What are the instructions and safety measures for cyclists heading from Grant Rd. to Homestead Rd. eastbound?		\bullet			Additional considerations will be analyzed in revised concept plans.			
	- General question; where should trash cans be positioned on trash collection day so it does not block the bike lane? Same question along the multi-use-path?	\bullet							
66	I took a look at the document being circulated about the changes to Homestead Road for the Safe Routes to School. I also saw a document about changes to bus routes. I would like to see an increase in public buses servicing Homestead High School as part of the solution to traffic congestion and unsafe driving. My daughter takes the bus, but says it is very crowded on the bus. It would help to have buses come by more frequently to make taking public transit more palatable to students. Also, it was very difficult for me to find information about bus routes, bus fares, etc. on the school website. It would be helpful if that information was included on the school website and also a push was made on campus, during parent orientation, to encourage public transit.	\bullet							
${ }^{67}$	I am submitting feedback on the draft \#2 plans presented during the community meeting at Homestead High School on 2/25/19. Please see attached pdf. Thank you to the county engineering team / staff and the consultants for working in such tight schedules. In hopes of helping the project team, I have gathered parent input and added details in the attached document. And, please understand that we are very appreciative of the project team and if more parents were able to attend, more green dots would've been added during the 2nd community meeting. If any of our feedback is unclear or if you have any questions, the other SRTS parent leads and I are available to meet and discuss further. Just let us know.				\bullet				

Number	Homestead Road Safe Routes to School Public Comments as of 4/3/2019	Project Team Response				
		Referred to Partner Agency	Will be Considered in Strdy Study	Out of Study Scope	$\begin{aligned} & \text { Comment } \\ & \text { Noted } \\ & \text { (No Action) } \\ & \hline \end{aligned}$	Additional Remarks
67	If the suggested route is tor students to go to the intersection of Homestead/Bernardo (Instead of cut benind the gas station), how will you deal with the conflict between cyclists crossing Bernardo at Homestead in the morning and vehicles turning right from westbound Homestead onto Bernardo? Could the vehicles be given a green right turn signal/arrow so they have a chance to turn (and maybe a no turn on red, so they are not turning when the vehicles from eastbound Homestead have a green signal to turn left onto Bernardo)?				-	To provide a protected turn phase, a turn lane must be provided. Since one does not exist, the roadway would have to be widened, which is not feasible.
	Especially if the suggested route Is sor students to go to the intersection of Homestead/Bernardo (Instead of cut behind the gas station), a crossing guard at this location should be provided.	\bullet				
	How wide are you proposing for the paved portion of the shared-use path on Bernardo Ave (school side)? Note, given the proximity to the school the path will be heavily used by both cyclists and pedestrians and needs to be wide enough.		\bullet			The proposed width is 14^{4}.
	How will cyciss reurning irom Homestead Hign schoo enter the mult-user path? (wilt the path De angneo/stragnt anead from where the bike lane ends? And do they enter via a curb?)		\bullet			The oाke ane allgns with the snarea-use path and a wraer ramp is provided in the concept plans.
	Homestead High School (HHS) parents park/wait in their vehicles on Homestead Road near the school to pick up their children in the afternoon. Unfortunately, on a daily basis, drivers/ vehicles are blocking the eastbound bike lane from way before the HHS staff lot and student lot. This impacts Cupertino Middle School (CMS) student cyclists who return home past HHS. (CMS is dismissed slightly earlier than HHS.) CMS students are not able to use the eastbound bike lane as they approach HHS in the afternoon because the waiting vehicles are blocking it - so they ride on the other side of the road (going the "wrong way"), on the sidewalk. (Could something like buffered/protected bike lanes like the ones used by Graham Middle School in M ountain View, be used on Homestead Road on the HHS side of the road from MCKenzie Dr. to the end of HHS property (across from Kennewick Dr.)?)		\bullet			Protected bike lanes will be analyzed in the revised concept plans.
	ADDITIONAL FEEDBACK IN SUNNWVALE AND CUPERTINO					
	from where the bike lane ends? And do they enter via a curb?)		\bullet			Tne dाke Tane allgns with tne strarea-use path and a wider ramp is provided in the concept plans. ramp is provided in the concept plans.
	we Inke the proposea plans to comprete the sidewalk on Homestead in the sman area tnat ss somewnere vetween Lucky Uak and Barranca Dr where the sidewalk is missing today.				\bullet	
	We like the no right turn on red sign on Bellevile (for turns onto Homestead). Could a crossing guard also be added at the Homestead and Belleville intersection?	-				
	We like the elimination of the free right hand turn from Homestead onto $N B 85$, as it will provide sarety protections to student cyclists. Can you define an approximate timeline for these long-term plans?				\bullet	Futher coordination with Caltrans is necessary to determine the timeline for this long-term project.
	For the SB 85 off ramp at Homestead, is the work Caltrans is planning tor the near-term ADA project, aligned with the proposed multi-user path for this location? (In other words, do ped/cyclists enter a multi-user pathway the same way they enter a sidewalk?)		\bullet			Ine concept plans have recommendations beyond the scope of the Caltrans ADA project. Wider ramps will be provided for the shared-use path.
	The work carrans ss planning ror the near-term ADA project, at the NB B on-ramp across tne ree-rignt turn moes no appear to be aligned with the plans for the Homestead Corridor Safe Routes project. Is all the other work Caltrans planning in the near-term ADA project at this location, aligned with the plans for the Homestead Corridor Safe Routes?		\bullet			The concept plans have recommendations beyond the scope of the Caltrans ADA project.

Number of Dots at Community (if applicable) Green (Support) Yellow (Uncertain / Need More Info)		
		Red (Do Not Support)

E. Collected Traffic Count Data

Location: Foothill Expy \& Homestead Rd

Project ID: 18-08664-101
Date: 12/11/2018

Total

NS/ EW Streets:	Foothill Expy				Foothill Expy				Homestead Rd				Homestead Rd				
$A M$	NORTHBOUND				SOUTHBOUND				EASTBOUND				WESTBOUND				
	1	2	1	0	1	2	1	0	0	1	1	0	1.5	0.5	1	0	
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
7:00 AM	1 2 1 8	228	36	0	7	53	0	0	3	2	4	0	44	0	54	0	432
7:15 AM		286	33	0	14	68	1	0	3	7	7	0	63	0	64	0	548
7:30 AM		291	54	0	69	114	7	0	3	26	6	0	82	4	98	0	755
7:45 AM		352	41	0	41	144	5	1	4	9	9	0	105	6	90	0	815
8:00 AM	2	250	66	1	40	135	3	0	6	8	8	0	125	9	140	0	793
8:15 AM	1	247	73	1	48	152	3	0	2	5	9	0	113	1	126	0	781
8:30 AM	1	267	71	2	55	183	2	0	4	5	7	0	107	3	96	0	803
8:45 AM	4	255	94	0	26	115	0	0	1	6	8	0	101	3	112	0	725
TOTAL VOLUMES : APPROACH \% 's :	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
	20	2176	468	4	300	964	21	1	26	68	58	0	740	26	780	0	5652
	0.75\%	81.56\%	17.54\%	0.15\%	23.33\%	74.96\%	1.63\%	0.08\%	17.11\%	44.74\%	38.16\%	0.00\%	47.87\%	1.68\%	50.45\%	0.00\%	
PEAK HR :	07:45 AM - 08:45 AM				$\begin{gathered} 184 \\ 0.836 \end{gathered}$	6140.8390.	$\begin{aligned} & 13 \\ & 0.650 \\ & 6 \end{aligned}$	$\begin{gathered} 1 \\ 0.250 \end{gathered}$	$\begin{gathered} 16 \\ 0.667 \end{gathered}$	$\begin{gathered} 27 \\ 0.750 \\ 0 \end{gathered}$	$\begin{gathered} 33 \\ 64 \end{gathered}$	$\begin{gathered} 0 \\ 0.000 \end{gathered}$	$\begin{aligned} & 450 \\ & 0.900 \end{aligned}$	$\begin{gathered} 19 \\ 0.528 \end{gathered}$	452 0.807	$\begin{gathered} 0 \\ 0.000 \end{gathered}$	TOTAL
PEAK HR VOL :	12	1116	251	4													3192
PEAK HR FACTOR :	0.375	0.793	0.860	0.500													
		0.8															0.979

Location: Foothill Expy \& Homestead Rd
City: Los Altos
Project ID: 18-08664-101
Control: Signalized
Date: $12 / 11 / 2018$

	Bres																		
NS/ EW Streets:	Foothill Expy				Foothill Expy				Homestead Rd				Homestead Rd						
$A M$	NORTHBOUND				SOUTHBOUND				EASTBOUND				WESTBOUND						
	1NL		$\begin{gathered} 1 \\ \text { NR } \\ \hline \end{gathered}$	$\begin{gathered} 0 \\ \mathrm{NU} \\ \hline \end{gathered}$	$\begin{gathered} 1 \\ \mathrm{SL} \\ \hline \end{gathered}$	$\begin{gathered} 2 \\ \mathrm{ST} \\ \hline \end{gathered}$	$\begin{gathered} 1 \\ \text { SR } \\ \hline \end{gathered}$	$\begin{gathered} 0 \\ \text { SU } \\ \hline \end{gathered}$	$\begin{gathered} 0 \\ \text { EL } \end{gathered}$	$\begin{gathered} 1 \\ \text { ET } \end{gathered}$	$\begin{gathered} 1 \\ \text { ER } \end{gathered}$	$\begin{gathered} 0 \\ \text { EU } \end{gathered}$	$\begin{aligned} & 1.5 \\ & \text { WL } \end{aligned}$	$\begin{aligned} & 0.5 \\ & \text { WT } \end{aligned}$	$\begin{gathered} 1 \\ \text { WR } \end{gathered}$	WU	TOTAL		
7:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	0	2		
7:15 AM	0	1	0	0	0	1	0	0	0	1	0	0	1	0	4	0	8		
7:30 AM	0	2	0	0	1	0	0	0	0	7	0	0	0	0	1	0	11		
7:45 AM	0	4	1	0	0	0	0	0	0	15	0	0	0	0	3	0	23		
8:00 AM	0	2	1	0	3	1	0	0	0	1	0	0	0	1	1	0	10		
8:15 AM	0	3	2	0	3	1	0	0	0	0	0	0	0	0	1	0	10		
8:30 AM	0	1	0	0	2	0	0	0	0	0	0	0	2	0	1	0	6		
8:45 AM	0	2	0	0	0	0	0	0	0	0	0	0	0	0	2	0	4		
TOTAL VOLUMES : APPROACH \% 's :	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL		
	0	15	4	0	9	3	0	0	0	24	0	0	3	1	15	0	74		
	0.00\%	78.95\%	21.05\%	0.00\%	75.00\%	25.00\%	0.00\%	0.00\%	0.00\%	100.00\%	0.00\%	0.00\%	15.79\%	5.26\%	78.95\%	0.00\%			
PEAK HR :	07:45 AM - 08:45 AM				$\begin{gathered} 8 \\ 0.667 \end{gathered}$			$\begin{gathered} 0 \\ 0.000 \end{gathered}$	$\begin{gathered} 0 \\ 0.000 \end{gathered}$	$\begin{array}{r} 16 \\ 0.2 \end{array}$	$\begin{gathered} 0 \\ 0.000 \\ 7 \end{gathered}$	$\begin{gathered} 0 \\ 0.000 \end{gathered}$	$\begin{gathered} 2 \\ 0.250 \end{gathered}$	$\begin{array}{ccc} 1 & 6 & 0 \\ 0.250 & 0.500 & 0.000 \\ & 0.750 & \end{array}$			$\begin{gathered} \hline \text { TOTAL } \\ 49 \\ 0.533 \end{gathered}$		
PEAK HR VOL :	0	10	4	0		2	0												
PEAK HR FACTOR :	0.000	0.625	0.500	0.000		0.500	0.000												
	0.700					0.625													

Location: Foothill Expy \& Homestead Rd City: Los Altos

Project ID: 18-08664-101
Date: 12/11/2018
Pedestrians (Crosswalks)

NS/ EW Streets:	Foothill Expy		Foothill Expy		Homestead Rd		Homestead Rd		
AM	NORTH LEG		SOUTH LEG		EAST LEG		WEST LEG		
	EB	WB	EB	WB	NB	SB	NB	SB	TOTAL
7:00 AM	0	0	0	0	0	0	0	0	0
7:15 AM	0	0	0	0	0	0	0	0	0
7:30 AM	0	0	1	0	0	0	0	0	1
7:45 AM	0	0	0	0	0	0	0	0	0
8:00 AM	0	2	0	0	0	0	0	0	2
8:15 AM	0	0	2	0	0	0	0	0	2
8:30 AM	0	0	0	0	0	0	0	0	0
8:45 AM	0	2	1	0	0	0	0	0	3
TOTAL VOLUMES: APPROACH \% 's :	EB	WB	EB	WB	NB	SB	NB	SB	TOTAL
	0	4	4	0	0	0	0	0	8
	0.00\%	100.00\%	100.00\%	0.00\%					
PEAK HR :	07:45 AM - 08:45 AM		$\begin{gathered} 2 \\ 0.250 \end{gathered}$	0	0	0	0	0	TOTAL
PEAK HR VOL :	0	2							4
PEAK HR FACTOR :		0.250							
									0.500

	Tota																
NS/ EW Streets:	Grant Rd				Grant Rd				Homestead Rd				Homestead Rd				
AM	NORTHBOUND				SOUTHBOUND				EASTBOUND				WESTBOUND				
	1.5	0.5	0	0	0	1	1	0	0	0	1	0	0	0	0	0	
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
7:00 AM	99	17	0	0	0	5	3	0	0	0	49	0	0	0	0	0	173
7:15 AM	137	22	0	0	0	12	5	0	0	0	55	0	0	0	0	0	231
7:30 AM	179	25	0	0	0	13	7	0	0	0	65	0	0	0	0	0	289
7:45 AM	226	24	0	0	0	16	4	0	0	0	69	0	0	0	0	0	339
8:00 AM	237	23	0	0	0	17	6	0	0	0	108	0	0	0	0	0	391
8:15 AM	253	27	0	0	0	12	3	0	0	0	100	0	0	0	0	0	395
8:30 AM	215	29	0	0	0	26	4	0	0	0	150	0	0	0	0	0	424
8:45 AM	229	29	0	0	0	14	4	0	0	0	161	0	0	0	0	0	437
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
TOTAL VOLUMES :	1575	196	0	0	0	115	36	0	0	0	757	0	0	0	0	0	2679
APPROACH \% 's :	88.93\%	11.07\%	0.00\%	0.00\%	0.00\%	76.16\%	23.84\%	0.00\%	0.00\%	0.00\%	100.00\%	0.00\%					
PEAK HR :	08:00 AM - 09:00 AM				$\begin{gathered} 0 \\ 0.000 \end{gathered}$	69	170.708	$\begin{gathered} 0 \\ 0.000 \end{gathered}$	$\begin{gathered} 0 \\ 0.000 \end{gathered}$	0	519	$\begin{gathered} 0 \\ 0.000 \end{gathered}$	TOTAL				
PEAK HR VOL :	934	108	0	0													1647
PEAK HR FACTOR :	0.923	0.931	0.000	0.000		0.663				0.000	0.806						
	0.930					0.717				0.806							0.942

PM	NORTHBOUND				SOUTHBOUND				EASTBOUND				WESTBOUND				TOTAL
	1.5	0.5	0	0	$\begin{gathered} 0 \\ \text { SL } \end{gathered}$	1ST	1SR	$\begin{gathered} 0 \\ \text { SU } \\ \hline \end{gathered}$	$\begin{gathered} 0 \\ \text { EL } \end{gathered}$	0ET	$\begin{gathered} 1 \\ \text { ER } \end{gathered}$	$\begin{gathered} 0 \\ E U \end{gathered}$	$\begin{gathered} 0 \\ w / \end{gathered}$	$\begin{gathered} 0 \\ \text { WT } \end{gathered}$	$\begin{gathered} 0 \\ \text { WR } \end{gathered}$	$\begin{gathered} 0 \\ \text { WU } \end{gathered}$	
	NL	NT	NR	NU													
2:00 PM	111	29	0	0	0	18	8	0	0	0	94	0	0	0	0	0	260
2:15 PM	125	29	0	0	0	14	8	0	0	0	76	0	0	0	0	0	252
2:30 PM	93	51	0	0	0	20	6	0	0	0	96	0	0	0	0	0	266
2:45 PM	135	16	0	0	0	29	9	0	0	0	123	0	0	0	0	0	312
3:00 PM	113	26	0	0	0	24	6	0	0	0	136	0	0	0	0	0	305
3:15 PM	113	27	0	0	0	40	12	0	0	0	175	0	0	0	0	0	367
3:30 PM	134	36	0	0	0	37	7	0	0	0	145	0	0	0	0	0	359
3:45 PM	117	30	0	0	0	33	4	0	0	0	160	0	0	0	0	0	344
4:00 PM	101	25	0	0	0	28	8	0	0	0	178	0	0	0	0	0	340
4:15 PM	103	28	0	0	0	34	10	0	0	0	173	0	0	0	0	0	348
4:30 PM	95	31	0	0	0	35	11	0	0	0	193	0	0	0	0	0	365
4:45 PM	122	22	0	0	0	27	5	0	0	0	210	0	0	0	0	0	386
5:00 PM	80	21	0	0	0	20	6	0	0	0	206	0	0	0	0	0	333
5:15 PM	126	28	0	0	0	27	4	0	0	0	187	0	0	0	0	0	372
5:30 PM	120	31	0	0	0	27	6	0	0	0	171	0	0	0	0	0	355
5:45 PM	118	28	0	0	0	24	5	0	0	0	193	0	0	0	0	0	368
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
TOTAL VOLUMES :	1806	458	0	0	0	437	115	0	0	0	2516	0	0	0	0	0	5332
APPROACH \% 's:	79.77\%	20.23\%	0.00\%	0.00\%	0.00\%	79.17\%	20.83\%	0.00\%	0.00\%	0.00\%	100.00\%	0.00\%					
PEAK HR :	04:30 PM - 05:30 PM				$\begin{gathered} 0 \\ 0.000 \end{gathered}$	$\begin{aligned} & 109 \\ & 0.779 \end{aligned}$	$\begin{gathered} 26 \\ 0.591 \end{gathered}$	$\begin{gathered} 0 \\ 0.000 \end{gathered}$	$\begin{gathered} 0 \\ 0.000 \end{gathered}$	$\begin{gathered} 0 \\ 0.000 \end{gathered}$	$\begin{gathered} 796 \\ 0.948 \\ 48 \end{gathered}$	$\begin{gathered} 0 \\ 0.000 \end{gathered}$	TOTAL				
PEAK HR VOL :	423	102	0	0													1456
PEAK HR FACTOR :	0.839	0.823	0.000	0.000													
		0.852				0.734											0.943

Location: Grant Rd \& Homestead Rd City: Los Altos

Project ID: 18-08549-101 Date: 10/24/2018
Pedestrians (Crosswalks)

NS/ EW Streets:	Grant Rd		Grant Rd		Homestead Rd		Homestead Rd		
AM	NORTH LEG		SOUTH LEG		EAST LEG		WEST LEG		TOTAL
	EB	WB	EB	WB	NB	SB	NB	SB	
7:00 AM	1	0	0	0	1	0	0	0	2
7:15 AM	0	0	0	0	0	1	0	0	1
7:30 AM	0	0	0	0	1	2	0	0	3
7:45 AM	0	1	0	0	1	2	0	0	4
8:00 AM	0	0	0	0	2	1	0	0	3
8:15 AM	2	2	0	0	6	3	0	0	13
8:30 AM	0	0	0	0	2	2	0	0	4
8:45 AM	0	0	0	0	0	0	0	0	0
TOTAL VOLUMES : APPROACH \% 's :	EB	WB	EB	WB	NB	SB	NB	SB	TOTAL
	3	3	0	0	13	11	0	0	30
	50.00\%	50.00\%			54.17\%	45.83\%			
PEAK HR :	08:00 AM - 09:00 AM		0	0	$\begin{gathered} 10 \\ 0.417 \end{gathered}$	$\begin{gathered} 6 \\ 0.500 \end{gathered}$	0	0	TOTAL
PEAK HR VOL:	2	2							20
PEAK HR FACTOR :	0.250	0.250							0.385
									0.385

PM	NORTH LEG		SOUTH LEG		EAST LEG		WEST LEG		TOTAL
	EB	WB	EB	WB	NB	SB	NB	SB	
2:00 PM	0	0	0	0	0	0	0	0	0
2:15 PM	0	0	0	0	0	0	0	0	0
2:30 PM	0	0	0	0	0	0	0	0	0
2:45 PM	0	0	0	0	0	0	0	0	0
3:00 PM	0	0	0	0	3	0	0	0	3
3:15 PM	0	1	0	0	3	1	0	0	5
3:30 PM	0	0	0	0	2	0	0	0	2
3:45 PM	0	0	0	0	1	0	0	0	1
4:00 PM	0	1	0	0	2	2	0	0	5
4:15 PM	0	0	0	0	3	0	0	0	3
4:30 PM	0	1	0	0	2	0	0	0	3
4:45 PM	0	2	0	0	2	1	0	0	5
5:00 PM	0	0	0	0	2	1	0	0	3
5:15 PM	0	0	0	0	0	0	0	0	0
5:30 PM	0	0	0	0	2	0	0	0	2
5:45 PM	0	1	0	0	3	4	0	0	8
	EB	WB	EB	WB	NB	SB	NB	SB	TOTAL
TOTAL VOLUMES :	0	6	0	0	25	9	0	0	40
APPROACH \% 's :	0.00\%	100.00\%			73.53\%	26.47\%			
PEAK HR :	04:30 P	5:30 PM							TOTAL
PEAK HR VOL :	0	3	0	0	6	2	0	0	11
PEAK HR FACTOR :		0.375			0.750	0.500			
	0.375				0.667				0.550

Location: Grant Rd/Homestead Rd \& Homestead Rd

Project ID: 18-08664-001
Date: 12/11/2018
Total

NS/ EW Streets:	Grant Rd/Homestead Rd				Grant Rd/Homestead Rd				Homestead Rd				Homestead Rd				
$A M$	NORTHBOUND				SOUTHBOUND				EASTBOUND				WESTBOUND				
	1.5	0.5	0	0	0	1	1	0	0	1	0	0	0	0	0	0	
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
7:00 AM	89	11	0	0	0	9	5	0	0	0	45	0	0	0	0	0	159
7:15 AM	124	24	0	0	0	12	5	0	0	0	59	0	0	0	0	0	224
7:30 AM	173	34	0	0	0	29	5	0	0	0	142	0	0	0	0	0	383
7:45 AM	196	36	0	0	0	21	10	0	0	0	95	0	0	0	0	0	358
8:00 AM	259	31	0	0	0	19	7	0	0	0	114	0	0	0	0	0	430
8:15 AM	239	22	0	0	0	12	7	0	0	0	129	0	0	0	0	0	409
8:30 AM	206	26	0	0	0	19	3	0	0	0	129	0	0	0	0	0	383
8:45 AM	212	28	0	0	0	19	6	0	0	0	123	0	0	0	0	0	388
TOTAL VOLUMES : APPROACH \% 's :	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
	1498	212	0	0	0	140	48	0	0	0	836	0	0	0	0	0	2734
	87.60\%	12.40\%	0.00\%	0.00\%	0.00\%	74.47\%	25.53\%	0.00\%	0.00\%	0.00\%	100.00\%	0.00\%					
PEAK HR :	08:00 AM - 09:00 AM				$\begin{gathered} 0 \\ 0.000 \end{gathered}$	$\begin{gathered} 69 \\ 0.908 \end{gathered}$	$\begin{gathered} 23 \\ 0.821 \end{gathered}$	$\begin{gathered} 0 \\ 0.000 \end{gathered}$	$\begin{gathered} 0 \\ 0.000 \end{gathered}$	$\begin{array}{cc} 0 & 495 \\ 0.000 & 0.959 \\ 0.959 \end{array}$		$\begin{gathered} 0 \\ 0.000 \end{gathered}$	TOTAL				
PEAK HR VOL :	916	107	0	0								1610					
PEAK HR FACTOR :	0.884	0.863	0.000	0.000								0.936					
	0.882											0.936					

Location: Grant Rd/Homestead Rd \& Homestead Rd
City: Los Altos
Control: 1-Way Stop (SB)

Project ID: 18-08664-001
Date: 12/11/2018
Bikes

NS/ EW Streets:	Grant Rd/Homestead Rd				Grant Rd/Homestead Rd				Homestead Rd				Homestead Rd				
$A M$	NORTHBOUND				SOUTHBOUND				EASTBOUND				WESTBOUND				
	1.5	0.5	0	0	0	1	1	0	0	1	0	0	0	0	0	0	
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
7:00 AM	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2
7:15 AM	5	0	0	0	0	1	0	0	1	0	0	0	0	0	0	0	7
7:30 AM	1	0	0	0	0	19	0	0	0	0	9	0	0	0	0	0	29
7:45 AM	4	0	0	0	0	27	0	0	0	0	12	0	0	0	0	0	43
8:00 AM	2	0	0	0	0	3	0	0	0	0	5	0	0	0	0	0	10
8:15 AM	2	0	0	0	0	0	0	0	0	0	5	0	0	0	0	0	7
8:30 AM	3	1	0	0	0	1	0	0	0	0	2	0	0	0	0	0	7
8:45 AM	1	1	0	0	0	2	0	0	0	0	0	0	0	0	0	0	4
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
TOTAL VOLUMES :	20	2	0	0	0	53	0	0	1	0	33	0	0	0	0	0	109
APPROACH \% 's :	90.91\%	9.09\%	0.00\%	0.00\%	0.00\%	100.00\%	0.00\%	0.00\%	2.94\%	0.00\%	97.06\%	0.00\%					
PEAK HR :		8:00 AM	9:00 AM														TOTAL
PEAK HR VOL :	8	2	0	0	0	6	0	0	0	0	12	0	0	0	0	0	28
PEAK HR FACTOR :	0.667	0.500	0.000	0.000	0.000	0.500	0.000	0.000	0.000	0.000	0.600	0.000	0.000	0.000	0.000	0.000	0.700
		0.6															0.700

Location: Grant Rd/Homestead Rd \& Homestead Rd City: Los Altos

Project ID: 18-08664-001
Date: 12/11/2018

Pedestrians (Crosswalks)

NS/ EW Streets:	Grant Rd/Homestead Rd		Grant Rd/Homestead Rd		Homestead Rd		Homestead Rd		
AM	NORTH LEG		SOUTH LEG		EAST LEG		WEST LEG		
	EB	WB	EB	WB	NB	SB	NB	SB	TOTAL
7:00 AM	0	0	0	0	1	0	0	0	1
7:15 AM	0	0	0	0	0	0	0	0	0
7:30 AM	0	0	0	0	1	2	0	0	3
7:45 AM	2	0	0	0	1	2	0	0	5
8:00 AM	0	2	0	0	2	2	0	0	6
8:15 AM	0	0	0	0	1	2	0	0	3
8:30 AM	0	0	0	0	2	0	0	0	2
8:45 AM	0	2	0	0	3	0	1	0	6
TOTAL VOLUMES: APPROACH \% 's :	EB	WB	EB	WB	NB	SB	NB	SB	TOTAL
	2	4	0	0	11	8	1	0	26
	33.33\%	66.67\%			57.89\%	42.11\%	100.00\%	0.00\%	
PEAK HR :	08:00 AM - 09:00 AM		0	0	$\begin{gathered} 8 \\ 0.667 \end{gathered}$	$\begin{gathered} 4 \\ 0.500 \end{gathered}$	$\begin{gathered} 1 \\ 0.250 \end{gathered}$	0	TOTAL
PEAK HR VOL :	0	4							17
PEAK HR FACTOR :		0.500							
	0.500								0.708

NS/ EW Streets:	Tota																
	Foothill Expy				Foothill Expy				Homestead Rd				Homestead Rd				
AM	NORTHBOUND				SOUTHBOUND				EASTBOUND				WESTBOUND				
	1	2	1	0	1	2	1	0	0	1	1	0	1.5	0.5	1	0	
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
7:00 AM	2	246	34	0	12	69	0	0	2	1	5	0	43	0	59	0	473
7:15 AM	4	273	38	0	10	59	3	0	3	6	5	0	68	1	69	0	539
7:30 AM	4	360	41	0	20	111	3	1	1	6	7	0	92	1	94	0	741
7:45 AM	9	287	40	1	24	146	0	0	2	7	4	0	124	6	97	0	747
8:00 AM	4	284	66	1	31	134	1	0	4	9	6	0	118	5	114	0	777
8:15 AM	3	247	58	1	43	112	2	0	5	8	9	0	127	4	131	0	750
8:30 AM	7	190	54	1	65	157	11	0	1	33	10	0	97	2	112	0	740
8:45 AM	8	236	78	1	64	139	12	0	1	12	4	0	120	8	112	0	795
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
TOTAL VOLUMES :	41	2123	409	5	269	927	32	1	19	82	50	0	789	27	788	0	5562
APPROACH \% 's :	1.59\%	82.35\%	15.87\%	0.19\%	21.89\%	75.43\%	2.60\%	0.08\%	12.58\%	54.30\%	33.11\%	0.00\%	49.19\%	1.68\%	49.13\%	0.00\%	
PEAK HR :	08:00 AM - 09:00 AM				$\begin{aligned} & 203 \\ & 0.781 \end{aligned}$	542	$\begin{gathered} 26 \\ 0.542 \end{gathered}$	$\begin{gathered} 0 \\ 0.000 \end{gathered}$	$\begin{gathered} 11 \\ 0.550 \end{gathered}$	62	290.725	$\begin{gathered} 0 \\ 0.000 \end{gathered}$	$\begin{aligned} & 462 \\ & 0.909 \end{aligned}$	190.5940	469 0.895	$\begin{gathered} 0 \\ 0.000 \end{gathered}$	TOTAL
PEAK HR VOL :	22	957	256	4													3062
PEAK HR FACTOR :	0.688	0.842	0.821	1.000		0.863				0.470							
	0.873					0.827				0.580							0.963

PM	NORTHBOUND				SOUTHBOUND				EASTBOUND				WESTBOUND				TOTAL
	1	${ }^{2}$	$\begin{gathered} 1 \\ \text { NR } \end{gathered}$	$\begin{gathered} 0 \\ \mathrm{NU} \end{gathered}$	$\begin{gathered} 1 \\ \mathrm{SL} \end{gathered}$	$\begin{gathered} 2 \\ \text { ST } \\ \hline \end{gathered}$	$\begin{gathered} 1 \\ \mathrm{SR} \end{gathered}$	$\begin{gathered} 0 \\ \text { SU } \end{gathered}$	$\begin{gathered} 0 \\ \text { EL } \end{gathered}$	$\begin{gathered} 1 \\ \text { ET } \end{gathered}$	$\begin{gathered} 1 \\ 1 \\ \text { ER } \\ \hline \end{gathered}$	$\begin{gathered} 0 \\ \text { EU } \end{gathered}$	$\begin{aligned} & 1.5 \\ & \text { WL } \end{aligned}$	$\begin{aligned} & 0.5 \\ & \text { WT } \end{aligned}$	$\begin{gathered} 1 \\ \text { WR } \end{gathered}$	$\begin{gathered} 0 \\ \text { WU } \end{gathered}$	
	NL																
2:00 PM	5	124	45	0	40	115	1	1	0	4	6	0	75	3	46	0	465
2:15 PM	3	170	45	0	35	128	2	2	0	2	5	0	77	2	46	0	517
2:30 PM	8	133	37	1	50	140	2	0	2	1	3	0	67	1	37	0	482
2:45 PM	5	162	38	0	80	240	1	0	2	4	6	0	91	1	49	0	679
3:00 PM	2	133	58	0	65	226	3	1	1	3	5	0	77	4	45	0	623
3:15 PM	5	129	68	0	103	251	5	1	3	4	4	0	81	3	34	0	691
3:30 PM	2	116	62	0	85	300	2	1	2	4	1	0	80	12	47	0	714
3:45 PM	8	106	62	0	84	270	6	0	0	10	3	0	70	3	48	0	670
4:00 PM	4	83	67	0	115	298	4	0	2	5	1	0	67	4	36	0	686
4:15 PM	2	107	61	2	110	288	2	0	0	8	4	0	84	10	28	0	706
4:30 PM	4	123	68	1	125	299	3	1	1	5	3	0	67	5	26	0	731
4:45 PM	4	105	59	0	143	288	1	0	2	8	2	0	86	8	40	0	746
5:00 PM	1	124	74	0	130	308	3	0	2	7	3	0	71	4	19	0	746
5:15 PM	8	124	67	0	119	327	3	0	0	6	3	0	99	5	25	0	786
5:30 PM	4	121	66	0	99	317	2	1	1	8	7	0	75	6	37	0	744
5:45 PM	3	133	64	1	115	286	4	0	2	5	7	0	78	6	40	0	744
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
TOTAL VOLUMES :	68	1993	941	5	1498	4081	44	8	20	84	63	0	1245	77	603	0	10730
APPROACH \% 's :	2.26\%	66.28\%	31.29\%	0.17\%	26.60\%	72.47\%	0.78\%	0.14\%	11.98\%	50.30\%	37.72\%	0.00\%	64.68\%	4.00\%	31.32\%	0.00\%	
PEAK HR :		4:45 PM	5:45 PM														TOTAL
PEAK HR VOL :	17	474	266	0	491	1240	9	1	5	29	15	0	331	23	121	0	3022
PEAK HR FACTOR :	0.531	0.956	0.899	0.000	0.858	0.948	0.750	0.250	0.625	0.906	0.536	0.000	0.836	0.719	0.756	0.000	
																	0.961

Location: Foothill Expy \& Homestead Rd
Project ID: 18-08549-001
Pedestrians (Crosswalks)

NS/ EW Streets:	Foothill Expy		Foothill Expy		Homestead Rd		Homestead Rd		
$A M$	NORTH LEG		SOUTH LEG		EAST LEG		WEST LEG		TOTAL
	EB	WB	EB	WB	NB	SB	NB	SB	
7:00 AM	0	0	0	0	0	0	0	0	0
7:15 AM	0	0	0	0	0	0	0	0	0
7:30 AM	0	0	0	0	0	0	0	0	0
7:45 AM	0	0	0	0	0	0	0	0	0
8:00 AM	0	0	0	0	0	0	0	0	0
8:15 AM	0	1	1	0	0	0	0	0	2
8:30 AM	0	0	1	0	0	0	0	0	1
8:45 AM	0	0	0	0	0	0	0	0	0
TOTAL VOLUMES : APPROACH \% 's :	EB	WB	EB	WB	NB	SB	NB	SB	TOTAL
	0	1	2	0	0	0	0	0	3
	0.00\%	100.00\%	100.00\%	0.00\%					
PEAK HR :	08:00 AM - 09:00 AM		$\begin{gathered} 2 \\ 0.500 \end{gathered}$	0	0	0	0	0	TOTAL
PEAK HR VOL:	0	1							3
PEAK HR FACTOR :		0.250							
	0.250								0.375

PM	NORTH LEG		SOUTH LEG		EAST LEG		WEST LEG		TOTAL
	EB	WB	EB	WB	NB	SB	NB	SB	
2:00 PM	0	0	0	1	0	0	1	0	2
2:15 PM	0	0	0	0	0	0	0	0	0
2:30 PM	0	0	0	0	0	0	0	0	0
2:45 PM	0	0	0	0	0	0	0	0	0
3:00 PM	0	0	0	0	0	0	0	0	0
3:15 PM	0	2	1	0	0	0	0	0	3
3:30 PM	0	0	0	0	0	0	0	0	0
3:45 PM	0	0	1	0	0	0	0	0	1
4:00 PM	0	0	2	1	0	0	0	0	3
4:15 PM	0	0	0	0	0	0	0	1	1
4:30 PM	0	0	3	5	0	0	0	0	8
4:45 PM	0	0	0	1	0	0	1	0	2
5:00 PM	0	0	1	2	0	0	0	0	3
5:15 PM	0	0	1	0	0	0	0	0	1
5:30 PM	0	0	1	1	0	0	0	0	2
5:45 PM	0	0	1	1	0	0	0	0	2
TOTAL VOLUMES : APPROACH \% 's :	EB	WB	EB	WB	NB	SB	NB	SB	TOTAL
	0	2	11	12	0	0	2	1	28
	0.00\%	100.00\%	47.83\%	52.17\%			66.67\%	33.33\%	
PEAK HR :	04:45 PM - 05:45 PM		$\begin{gathered} 3 \\ 0.750 \end{gathered}$						TOTAL
PEAK HR VOL : PEAK HR FACTOR :	0	0		$\begin{gathered} 4 \\ 0.500 \end{gathered}$	0	0	$\begin{gathered} 1 \\ 0.250 \end{gathered}$	0	8
PEAK HR FACTOR :				0.583			0.250		0.667

Location: Homestead Ct/Fallen Leaf Ln \& Homestead Rd

Project ID: 18-08664-002
Date: 12/11/2018
Total

NS/ EW Streets:	Homestead Ct/Fallen Leaf Ln				Homestead Ct/Fallen Leaf Ln				Homestead Rd				Homestead Rd				
$A M$	NORTHBOUND				SOUTHBOUND				EASTBOUND				WESTBOUND				
	1	2	1	0	1	2	1	0	0	1	1	0	1.5	0.5	1	0	
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
7:00 AM	5	0	5	0	0	0	6	0	0	41	2	0	0	71	1	0	131
7:15 AM	8	0	7	0	2	0	9	0	4	59	1	0	7	105	3	0	205
7:30 AM	12	0	9	0	20	0	14	0	5	149	1	0	3	161	3	0	377
7:45 AM	1	2	20	0	13	0	13	0	6	109	5	0	3	191	8	0	371
8:00 AM	7	0	11	0	8	0	11	0	10	114	2	0	5	244	17	0	429
8:15 AM	6	1	9	0	9	0	13	0	5	136	2	0	2	232	5	0	420
8:30 AM	7	0	9	0	4	1	9	0	6	131	1	0	0	190	5	0	363
8:45 AM	6	0	5	0	3	1	5	0	4	125	5	0	0	205	5	0	364
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
TOTAL VOLUMES :	52	3	75	0	59	2	80	0	40	864	19	0	20	1399	47	0	2660
APPROACH \% 's :	40.00\%	2.31\%	57.69\%	0.00\%	41.84\%	1.42\%	56.74\%	0.00\%	4.33\%	93.61\%	2.06\%	0.00\%	1.36\%	95.43\%	3.21\%	0.00\%	
PEAK HR :	07:30 AM - 08:30 AM				$\begin{gathered} 50 \\ 0.625 \end{gathered}$	00.0000	$3^{\begin{array}{c} 51 \\ 0.911 \end{array}}$	$\begin{gathered} 0 \\ 0.000 \end{gathered}$	$\begin{gathered} 26 \\ 0.650 \end{gathered}$	$\begin{array}{cc} 508 & 10 \\ 0.852 & 0.500 \\ 0.877 \\ \hline \end{array}$		$\begin{gathered} 0 \\ 0.000 \end{gathered}$	$\begin{gathered} 13 \\ 0.650 \end{gathered}$	$\begin{aligned} & 828 \\ & 0.848 \\ & 0 \end{aligned}$	$1^{33} 0.485$	$\begin{gathered} 0 \\ 0.000 \end{gathered}$	TOTAL
PEAK HR VOL :	26	3	49	0								1597					
PEAK HR FACTOR :	0.542	0.375	0.613	0.000								0.931					
	0.848											0.931					

Location: Homestead Ct/Fallen Leaf Ln \& Homestead Rd
City: Cupertino
Control: Signalized

Project ID: 18-08664-002
Date: 12/11/2018
Bikes

NS/ EW Streets:	Homestead Ct/Fallen Leaf Ln				Homestead Ct/Fallen Leaf Ln				Homestead Rd				Homestead Rd				
$A M$	NORTHBOUND				SOUTHBOUND				EASTBOUND				WESTBOUND				
	1	2	1	0	1	2	1	0	0	1	1	0	1.5	0.5	1	0	
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
7:00 AM	0	0	0	0	0	0	1	0	0	0	0	0	0	2	0	0	3
7:15 AM	1	0	0	0	1	0	0	0	0	2	0	0	0	4	0	0	8
7:30 AM	0	0	2	0	4	0	0	0	0	20	0	0	0	1	0	0	27
7:45 AM	1	0	2	0	7	0	0	0	1	51	1	0	0	4	0	0	67
8:00 AM	0	0	3	0	0	0	0	0	0	6	0	0	0	2	1	0	12
8:15 AM	0	0	0	0	0	0	0	0	1	7	0	0	0	2	1	0	11
8:30 AM	0	0	1	0	0	0	1	0	0	3	0	0	0	3	0	0	8
8:45 AM	0	0	0	0	1	0	0	0	0	2	0	0	0	1	0	0	4
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
TOTAL VOLUMES :	2	0	8	0	13	0	2	0	2	91	1	0	0	19	2	0	140
APPROACH \% 's :	20.00\%	0.00\%	80.00\%	0.00\%	86.67\%	0.00\%	13.33\%	0.00\%	2.13\%	96.81\%	1.06\%	0.00\%	0.00\%	90.48\%	9.52\%	0.00\%	
PEAK HR :	07:30 AM - 08:30 AM				$\begin{gathered} 11 \\ 0.393 \end{gathered}$	00.0000											TOTAL
PEAK HR VOL :	1	0	7	0			0	0	2	84	1	0	0	9	2	0	117
PEAK HR FACTOR :	0.250	0.000	0.583	0.000			0.000	0.000	0.500	0.412	0.250	0.000	0.000	0.563	0.500	0.000	0.437
	0.667						0.393		0.410				0.688				0.437

Location: Homestead Ct/Fallen Leaf Ln \& Homestead Rd City: Cupertino

Project ID: 18-08664-002
Date: 12/11/2018

Pedestrians (Crosswalks)

NS/ EW Streets:	Homestead	Fallen Leaf	Homestead $\mathrm{Ct} /$ Fallen Leaf Ln		Homestead Rd		Homestead Rd		
AM	NORTH LEG		SOUTH LEG		EAST LEG		WEST LEG		TOTAL
	EB	WB	EB	WB	NB	SB	NB	SB	
7:00 AM	0	0	0	0	0	3	0	0	3
7:15 AM	1	0	0	0	0	2	0	0	3
7:30 AM	0	1	2	0	6	4	1	0	14
7:45 AM	0	0	8	1	13	0	0	0	22
8:00 AM	1	1	1	15	0	10	0	0	28
8:15 AM	3	2	4	1	2	3	0	0	15
8:30 AM	0	1	0	1	0	2	0	0	4
8:45 AM	0	2	3	2	2	3	0	0	12
TOTAL VOLUMES : APPROACH \% 's :	EB	WB	EB	WB	NB	SB	NB	SB	TOTAL
	5	7	18	20	23	27	1	0	101
	41.67\%	58.33\%	47.37\%	52.63\%	46.00\%	54.00\%	100.00\%	0.00\%	
PEAK HR :	07:30 AM - 08:30 AM		$\begin{gathered} 15 \\ 0.469 \end{gathered}$		$\begin{gathered} 21 \\ 0.404 \end{gathered}$		$\begin{gathered} 1 \\ 0.250 \end{gathered}$	0	TOTAL
PEAK HR VOL :PEAK HR FACTOR :	4	4		17		$\begin{gathered} 17 \\ 0.425 \end{gathered}$			79
	0.333	0.500		0.283					
	0.400			0.500	0.731		0.250		0.705

	rota																
NS/ EW Streets:	Homestead Ct/Fallen Leaf Ln				Homestead Ct/Fallen Leaf Ln				Homestead Rd				Homestead Rd				
AM	NORTHBOUND				SOUTHBOUND				EASTBOUND				WESTBOUND				
	0	1	0	0	0	1	0	0	1	1	0	0	1	1	0	0	
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
7:00 AM	5	0	2	0	1	0	7	0	3	40	0	0	2	70	2	0	132
7:15 AM	10	0	6	0	3	0	4	0	1	48	1	0	2	99	3	0	177
7:30 AM	11	0	5	0	5	0	10	0	6	62	1	0	3	149	4	0	256
7:45 AM	3	0	12	0	5	0	10	0	7	73	1	0	6	215	0	0	332
8:00 AM	6	1	7	0	2	0	9	0	5	118	1	0	4	230	3	0	386
8:15 AM	10	1	11	0	9	0	15	0	7	111	1	0	2	236	4	0	407
8:30 AM	10	1	10	0	15	0	11	0	7	145	2	0	3	210	7	0	421
8:45 AM	4	0	11	0	10	2	11	0	9	157	2	0	2	213	15	0	436
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
TOTAL VOLUMES :	59	3	64	0	50	2	77	0	45	754	9	0	24	1422	38	0	2547
APPROACH \% 's :	46.83\%	2.38\%	50.79\%	0.00\%	38.76\%	1.55\%	59.69\%	0.00\%	5.57\%	93.32\%	1.11\%	0.00\%	1.62\%	95.82\%	2.56\%	0.00\%	
PEAK HR :	08:00 AM - 09:00 AM				$\begin{gathered} 36 \\ 0.600 \end{gathered}$	2	$\begin{gathered} 46 \\ 0.767 \end{gathered}$	$\begin{gathered} 0 \\ 0.000 \end{gathered}$	$\begin{gathered} 28 \\ 0.778 \end{gathered}$	531	$\begin{gathered} 6 \\ 0.750 \end{gathered}$	$\begin{gathered} 0 \\ 0.000 \end{gathered}$	$\begin{gathered} 11 \\ 0.688 \end{gathered}$	889	29	0	$\begin{array}{\|l\|} \hline \text { TOTAL } \\ 1650 \end{array}$
PEAK HR VOL :	30	3	39	0													
PEAK HR FACTOR :	0.750	0.750	0.886	0.000		0.250				0.846				0.942	0.483	0.000	0.946
	0.818					0.808				0.841				0.960			

Location: Homestead Ct/Fallen Leaf Ln \& Homestead Rd
City: Los Altos
Control: 2-Way Stop(NB/SB)

Project ID: 18-08549-002
Date: 10/24/2018

PM	NORTHBOUND				SOUTHBOUND				EASTBOUND				WESTBOUND				TOTAL
	0$N L$	+	$\begin{gathered} 0 \\ \text { NR } \end{gathered}$	$\begin{gathered} 0 \\ \text { NU } \end{gathered}$	0SL	$\begin{gathered} 1 \\ \mathrm{ST} \\ \hline \end{gathered}$	$\begin{gathered} 0 \\ \text { SR } \end{gathered}$	$\begin{gathered} 0 \\ \text { SU } \end{gathered}$	1EL	1ET	$\begin{gathered} 0 \\ \text { ER } \end{gathered}$	$\begin{gathered} 0 \\ \text { FI } \end{gathered}$	$\begin{gathered} 1 \\ w \end{gathered}$	$\begin{gathered} 1 \\ \text { WT } \end{gathered}$	$\begin{gathered} 0 \\ \text { WR } \end{gathered}$	$\begin{gathered} 0 \\ \text { wu } \end{gathered}$	
2:00 PM	0	0	1	0	0	0	0	0	0	2	1	0	0	5	0	0	9
2:15 PM	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1
2:30 PM	0	0	0	0	1	0	1	0	0	2	0	0	0	0	0	0	4
2:45 PM	0	0	0	0	0	0	0	0	0	2	0	0	1	0	1	0	4
3:00 PM	0	0	0	1	0	0	0	1	2	0	0	0	5	51	13	0	73
3:15 PM	0	0	1	0	0	0	1	0	0	1	0	0	0	3	1	0	7
3:30 PM	0	0	0	0	0	0	1	0	0	7	0	0	2	13	12	0	35
3:45 PM	0	0	0	0	0	0	0	0	0	1	0	0	2	11	2	0	16
4:00 PM	0	0	0	0	0	0	1	0	0	1	0	0	0	6	3	0	11
4:15 PM	0	0	0	0	2	1	0	0	0	3	1	0	0	4	2	0	13
4:30 PM	0	0	0	0	0	0	0	0	0	1	0	0	0	6	0	0	7
4:45 PM	0	0	0	0	0	2	0	0	0	4	0	0	0	5	0	0	11
5:00 PM	0	0	0	0	1	0	0	0	1	4	0	0	1	3	4	0	14
5:15 PM	0	0	0	0	0	0	0	0	0	3	0	0	1	4	1	0	9
5:30 PM	0	0	0	0	0	0	0	0	1	6	0	0	0	5	0	0	12
5:45 PM	0	0	0	0	0	0	6	0	0	4	0	0	0	3	1	0	14
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
TOTAL VOLUMES :	0	0	2	1	4	3	10	1	4	42	2	0	12	119	40	0	240
APPROACH \% 's :	0.00\%	0.00\%	66.67\%	33.33\%	22.22\%	16.67\%	55.56\%	5.56\%	8.33\%	87.50\%	4.17\%	0.00\%	7.02\%	69.59\%	23.39\%	0.00\%	
PEAK HR :		4:45 PM	5:45 PM														TOTAL
PEAK HR VOL :	0	0	0	0	1	2	0	0	2	17	0	0	2	17	5	0	46
PEAK HR FACTOR :	0.00	0.000	0.000	0.000	0.250	0.250	0.000	0.000	0.500	0.708	0.000	0.000	0.500	0.850	0.313	0.000	
					0.375				0.679				0.750				0.821

Pedestrians (Crosswalks)

NS/ EW Streets:	Homestead	Fallen Leaf	Homestead Ct/Fallen Leaf Ln		Homestead Rd		Homestead Rd		
AM	NORTH LEG		SOUTH LEG		EAST LEG		WEST LEG		
	EB	WB	EB	WB	NB	SB	NB	SB	TOTAL
7:00 AM	0	1	1	2	1	4	0	0	9
7:15 AM	0	0	0	0	3	0	0	0	3
7:30 AM	0	0	1	0	4	2	0	0	7
7:45 AM	3	0	9	0	11	0	0	0	23
8:00 AM	0	1	2	4	2	6	0	0	15
8:15 AM	0	2	2	5	3	5	0	0	17
8:30 AM	5	2	7	3	7	7	0	0	31
8:45 AM	1	0	17	6	12	6	0	0	42
TOTAL VOLUMES : APPROACH \% 's :	EB	WB	EB	WB	NB	SB	NB	SB	TOTAL
	9	6	39	20	43	30	0	0	147
	60.00\%	40.00\%	66.10\%	33.90\%	58.90\%	41.10\%			
PEAK HR :	08:00 AM - 09:00 AM		$\begin{gathered} 28 \\ 0.412 \end{gathered}$	18	24	24	0	0	TOTAL
PEAK HR VOL:	6	5							105
PEAK HR FACTOR :	0.300	0.625		0.750	0.500	0.857			
	0.393			0.500					0.625

PM	NORTH LEG		SOUTH LEG		EAST LEG		WEST LEG		TOTAL
	EB	WB	EB	WB	NB	SB	NB	SB	
2:00 PM	0	0	0	1	0	0	0	0	1
2:15 PM	0	0	3	4	0	0	0	0	7
2:30 PM	0	0	0	0	0	0	0	0	0
2:45 PM	2	0	1	6	0	1	0	0	10
3:00 PM	0	3	1	9	0	1	0	0	14
3:15 PM	0	3	0	3	0	2	0	0	8
3:30 PM	0	0	2	3	2	1	0	0	8
3:45 PM	0	1	3	7	2	0	0	0	13
4:00 PM	1	0	0	4	0	2	0	0	7
4:15 PM	0	0	4	3	3	0	0	0	10
4:30 PM	0	0	3	2	1	0	0	0	6
4:45 PM	0	0	0	4	0	4	0	0	8
5:00 PM	0	0	2	4	0	0	0	0	6
5:15 PM	0	0	5	3	3	1	0	0	12
5:30 PM	1	0	1	3	0	0	0	0	5
5:45 PM	3	2	0	4	0	0	0	0	9
	EB	WB	EB	WB	NB	SB	NB	SB	TOTAL
TOTAL VOLUMES :	7	9	25	60	11	12	0	0	124
APPROACH \% 's :	43.75\%	56.25\%	29.41\%	70.59\%	47.83\%	52.17\%			
PEAK HR :	04:45 PI	05:45 PM							TOTAL
PEAK HR VOL :	1	0	8	14	3	5	0	0	31
PEAK HR FACTOR :	0.250		0.400	0.875	0.250	0.313			
	0.250		0.688		0.500				0.646

Location: Barranca Dr/Bellville Way \& Homestead Rd
City: Cupertino
Control: 2-Way Stop (NB/SB)

Project ID: 18-08664-003
Date: 12/11/2018
Total

NS/ EW Streets:	Barranca Dr/Bellville Way				Barranca Dr/Bellville Way				Homestead Rd				Homestead Rd				
$A M$	NORTHBOUND				SOUTHBOUND				EASTBOUND				WESTBOUND				
	0	1	0	0	0	1	0	0	1	1	0	0	1	1	0	0	
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
7:00 AM	3	0	0	0	4	0	7	0	6	35	1	0	0	64	6	0	126
7:15 AM	4	0	0	0	6	0	6	0	6	59	2	0	1	97	12	0	193
7:30 AM	6	2	1	0	18	0	17	0	14	156	0	0	0	145	37	0	396
7:45 AM	7	8	4	0	23	3	21	0	25	138	0	0	1	204	128	0	562
8:00 AM	6	0	1	0	64	6	32	0	8	125	1	0	0	229	17	0	489
8:15 AM	3	1	4	0	9	0	12	0	18	132	2	0	1	215	12	0	409
8:30 AM	5	1	3	0	5	0	14	0	13	140	2	0	4	177	18	0	382
8:45 AM	3	2	1	0	10	0	6	0	8	129	0	0	0	201	14	0	374
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
TOTAL VOLUMES :	37	14	14	0	139	9	115	0	98	914	8	0	7	1332	244	0	2931
APPROACH \% 's :	56.92\%	21.54\%	21.54\%	0.00\%	52.85\%	3.42\%	43.73\%	0.00\%	9.61\%	89.61\%	0.78\%	0.00\%	0.44\%	84.14\%	15.41\%	0.00\%	
PEAK HR :	07:30 AM - 08:30 AM				$\begin{gathered} 114 \\ 0.445 \end{gathered}$	$\begin{gathered} 9 \\ 0.375 \end{gathered}$	$\begin{gathered} 82 \\ 2^{8.641} \\ \hline \end{gathered}$	$\begin{gathered} 0 \\ 0.000 \end{gathered}$	$\begin{gathered} 65 \\ 0.650 \end{gathered}$	$\begin{aligned} & 551 \\ & 0.883 \\ & \quad 0 . \end{aligned}$	$10^{\begin{array}{c} 3 \\ 0.375 \\ \hline \end{array}}$	$\begin{gathered} 0 \\ 0.000 \end{gathered}$	$\begin{gathered} 2 \\ 0.500 \end{gathered}$	7930.8660.	${ }^{194} \begin{aligned} & \text { 0.379 }\end{aligned}$	$\begin{gathered} 0 \\ 0.000 \end{gathered}$	TOTAL
PEAK HR VOL :	22	11	10	0													1856
PEAK HR FACTOR :	0.786	0.344	0.625	0.000													0.826
	0.566																0.826

Location: Barranca Dr/Bellville Way \& Homestead Rd
City: Cupertino
Control: 2-Way Stop (NB/SB)

Project ID: 18-08664-003
Date: 12/11/2018
Bikes

NS/ EW Streets:	Barranca Dr/Bellville Way				Barranca Dr/Bellville Way				Homestead Rd				Homestead Rd				
$A M$	NORTHBOUND				SOUTHBOUND				EASTBOUND				WESTBOUND				
	0	1	0	0	0	1	0	0	1	1	0	0	1	1	0	0	
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
7:00 AM	0000	0	0	0	0	0	0	0	0	0	0	0	0	2	0	0	2
7:15 AM		0	0	0	0	0	0	0	0	3	0	0	0	4	0	0	7
7:30 AM		0	0	0	2	0	0	0	1	20	0	0	0	1	0	0	24
7:45 AM		0	3	0	4	0	0	0	3	65	0	0	0	4	1	0	80
8:00 AM	0	0	0	0	1	0	1	0	1	15	0	0	0	2	0	0	20
8:15 AM	0	0	0	0	0	0	0	0	0	6	0	0	0	2	0	0	8
8:30 AM	0	0	0	0	1	0	0	0	0	6	0	0	0	4	0	0	11
8:45 AM	0	0	0	0	0	0	0	0	0	3	0	0	0	1	1	0	5
TOTAL VOLUMES : APPROACH \% 's :	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
	0	0	3	0	8	0	1	0	5	118	0	0	0	20	2	0	157
	0.00\%	0.00\%	100.00\%	0.00\%	88.89\%	0.00\%	11.11\%	0.00\%	4.07\%	95.93\%	0.00\%	0.00\%	0.00\%	90.91\%	9.09\%	0.00\%	
PEAK HR :	07:30 AM - 08:30 AM				$\begin{gathered} 7 \\ 0.438 \end{gathered}$	$\begin{gathered} 0 \\ 0.000 \end{gathered}$	$\begin{gathered} \quad \begin{array}{c} 1 \\ 0.250 \\ 0 \end{array} \\ \hline \end{gathered}$	$\begin{gathered} 0 \\ 0.000 \end{gathered}$	$\begin{gathered} 5 \\ 0.417 \end{gathered}$	$\begin{aligned} & 106 \\ & 0.408 \\ & 0 \end{aligned}$	$8^{0} 0$	$\begin{gathered} 0 \\ 0.000 \end{gathered}$	$\begin{gathered} 0 \\ 0.000 \end{gathered}$	$\begin{array}{ccc} 9 & 1 & 0 \\ 0.563 & 0.250 & 0.000 \\ & 0.500 & \end{array}$			TOTAL
PEAK HR VOL :	0	0	3	0													132
PEAK HR FACTOR :	0.000	0.000	0.250	0.000													0.413
	0.250																0.413

Location: Barranca Dr/Bellville Way \& Homestead Rd City: Cupertino

Project ID: 18-08664-003
Date: 12/11/2018

Pedestrians (Crosswalks)

NS/ EW Streets:	Barranca Dr/Bellville Way		Barranca Dr/Bellville Way		Homestead Rd		Homestead Rd		
AM	NORTH LEG		SOUTH LEG		EAST LEG		WEST LEG		
	EB	WB	EB	WB	NB	SB	NB	SB	TOTAL
7:00 AM	0	0	0	0	0	0	0	0	0
7:15 AM	0	0	0	0	0	0	0	0	0
7:30 AM	2	1	4	0	1	3	2	0	13
7:45 AM	13	4	6	3	3	0	24	2	55
8:00 AM	7	2	1	3	1	5	0	13	32
8:15 AM	2	0	0	0	0	0	3	1	6
8:30 AM	0	0	1	0	0	0	0	1	2
8:45 AM	0	0	1	1	0	0	2	0	4
TOTAL VOLUMES : APPROACH \% 's :	EB	WB	EB	WB	NB	SB	NB	SB	TOTAL
	24	7	13	7	5	8	31	17	112
	77.42\%	22.58\%	65.00\%	35.00\%	38.46\%	61.54\%	64.58\%	35.42\%	
PEAK HR :	07:30 AM - 08:30 AM		$\begin{gathered} 11 \\ 0.458 \end{gathered}$						TOTAL
PEAK HR VOL :	24	7		6	5	8	29	16	106
PEAK HR FACTOR :	0.462	0.438		0.500	0.417	0.400	0.302	0.308	
	0.456			0.472	0.542		0.433		0.482

	rota																
NS/ EW Streets:	Barranca Dr/Belleville Way				Barranca Dr/Belleville Way				Homestead Rd				Homestead Rd				
AM	NORTHBOUND				SOUTHBOUND				EASTBOUND				WESTBOUND				
	0	1	0	0	0		0	0	1	1	0	0	1	2	0	0	
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
7:00 AM	1	0	0	0	4	0	8	0	8	35	0	0	0	62	6	0	124
7:15 AM	5	1	0	0	3	0	7	0	5	55	0	0	0	95	16	0	187
7:30 AM	5	1	1	0	15	0	16	0	12	63	1	0	1	149	48	0	312
7:45 AM	4	10	1	0	44	1	33	0	24	63	2	0	0	181	111	0	474
8:00 AM	6	1	1	0	53	6	31	0	7	127	2	0	2	217	9	0	462
8:15 AM	3	0	0	0	10	0	18	0	6	124	0	0	0	199	12	0	372
8:30 AM	5	1	2	0	21	0	11	0	7	158	1	0	0	203	8	0	417
8:45 AM	2	0	2	0	17	0	10	0	16	157	1	0	4	227	14	0	450
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
TOTAL VOLUMES :	31	14	7	0	167	7	134	0	85	782	7	0	7	1333	224	0	2798
APPROACH \% 's :	59.62\%	26.92\%	13.46\%	0.00\%	54.22\%	2.27\%	43.51\%	0.00\%	9.73\%	89.47\%	0.80\%	0.00\%	0.45\%	85.23\%	14.32\%	0.00\%	
PEAK HR :	07:45 AM - 08:45 AM				$\begin{aligned} & 128 \\ & 0.604 \end{aligned}$	7	$\begin{gathered} 93 \\ 0.705 \end{gathered}$	$\begin{gathered} 0 \\ 0.000 \end{gathered}$	$\begin{gathered} 44 \\ 0.458 \end{gathered}$	472	$\begin{gathered} 5 \\ 0.625 \end{gathered}$	$\begin{gathered} 0 \\ 0.000 \end{gathered}$	$\begin{gathered} 2 \\ 0.250 \end{gathered}$	800	$\begin{aligned} & 140 \\ & 0.315 \end{aligned}$	$\begin{gathered} 0 \\ 0.000 \end{gathered}$	TOTAL
PEAK HR VOL :	18	12	4	0													1725
PEAK HR FACTOR :	0.750	0.300	0.500	0.000		0.292				0.747				0.922			
	0.567					0.633				0.785				0.807			0.910

Pedestrians (Crosswalks)

NS/ EW Streets:	Barranca Dr/Belleville Way		Barranca Dr/Belleville Way		Homestead Rd		Homestead Rd		
AM	NORTH LEG		SOUTH LEG		EAST LEG		WEST LEG		
	EB	WB	EB	WB	NB	SB	NB	SB	TOTAL
7:00 AM	0	2	0	0	0	0	0	0	2
7:15 AM	0	1	0	1	0	0	0	0	2
7:30 AM	1	0	1	0	0	0	2	1	5
7:45 AM	0	6	0	7	5	0	31	0	49
8:00 AM	6	1	3	1	0	0	0	18	29
8:15 AM	3	2	3	1	0	1	0	0	10
8:30 AM	4	3	4	0	1	1	0	3	16
8:45 AM	17	1	6	0	0	0	0	1	25
TOTAL VOLUMES : APPROACH \% 's :	EB	WB	EB	WB	NB	SB	NB	SB	TOTAL
	31	16	17	10	6	2	33	23	138
	65.96\%	34.04\%	62.96\%	37.04\%	75.00\%	25.00\%	58.93\%	41.07\%	
PEAK HR :	07:45 AM - 08:45 AM		$\begin{gathered} 10 \\ 0.625 \end{gathered}$						TOTAL
PEAK HR VOL:	13	12		9	6	2	31	21	104
PEAK HR FACTOR :	0.542	0.500		0.321	0.300	0.500	0.250	0.292	
	0.893			0.679	0.400		0.419		0.531

PM	NORTH LEG		SOUTH LEG		EAST LEG		WEST LEG		TOTAL
	EB	WB	EB	WB	NB	SB	NB	SB	
2:00 PM	0	0	0	2	1	0	2	6	11
2:15 PM	0	0	0	0	0	0	0	9	9
2:30 PM	1	0	1	2	0	1	0	0	5
2:45 PM	4	0	3	1	0	1	0	6	15
3:00 PM	0	28	0	0	0	1	0	1	30
3:15 PM	0	2	0	1	0	0	0	0	3
3:30 PM	0	1	0	9	3	0	1	0	14
3:45 PM	0	0	2	3	0	0	2	4	11
4:00 PM	1	1	0	1	0	0	0	0	3
4:15 PM	1	0	0	3	0	2	3	0	9
4:30 PM	0	1	1	1	0	0	0	0	3
4:45 PM	0	1	0	2	0	0	0	0	3
5:00 PM	2	0	1	2	0	0	0	0	5
5:15 PM	0	1	0	0	0	0	0	0	1
5:30 PM	1	1	0	2	0	0	0	0	4
5:45 PM	0	2	2	0	0	0	0	2	6
	EB	WB	EB	WB	NB	SB	NB	SB	TOTAL
TOTAL VOLUMES :	10	38	10	29	4	5	8	28	132
APPROACH \% 's :	20.83\%	79.17\%	25.64\%	74.36\%	44.44\%	55.56\%	22.22\%	77.78\%	
PEAK HR :	03:15 P	4:15 PM							TOTAL
PEAK HR VOL :	1	4	2	14	3	0	3	4	31
PEAK HR FACTOR :	0.250	0.500	0.250	0.389	0.250		0.375	0.250	. 554
	0.625		0.444		0.250		0.292		0.554

Location: SR-85 Off-ramp/Maxine Ave \& Homestead Rd

Project ID: 18-08664-004
Date: 12/11/2018

Total

NS/ EW Streets:	SR-85 Off-ramp/Maxine Ave				SR-85 Off-ramp/Maxine Ave				Homestead Rd				Homestead Rd				
$A M$	NORTHBOUND				SOUTHBOUND				EASTBOUND				WESTBOUND				
	0	1	0	0	1	0.5	0.5	0	0	1	0	0	1	2	0	0	
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
7:00 AM	1	0	2	0	18	0	5	0	0	38	0	0	0	67	0	0	131
7:15 AM	1	0	3	0	9	0	18	0	0	66	0	0	1	93	0	0	191
7:30 AM	1	0	8	0	37	0	17	0	0	161	2	0	1	158	0	0	385
7:45 AM	2	0	12	0	55	0	36	0	0	179	0	0	5	301	0	0	590
8:00 AM	0	0	2	0	16	0	32	0	0	186	1	0	3	227	0	0	467
8:15 AM	1	0	6	0	28	2	48	0	0	142	0	0	0	164	0	0	391
8:30 AM	1	0	6	0	18	1	24	0	0	152	1	0	4	171	0	0	378
8:45 AM	3	0	9	0	14	3	21	0	0	135	1	0	4	186	0	0	376
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
TOTAL VOLUMES :	10	0	48	0	195	6	201	0	0	1059	5	0	18	1367	0	0	2909
APPROACH \% 's :	17.24\%	0.00\%	82.76\%	0.00\%	48.51\%	1.49\%	50.00\%	0.00\%	0.00\%	99.53\%	0.47\%	0.00\%	1.30\%	98.70\%	0.00\%	0.00\%	
PEAK HR :	07:30 AM - 08:30 AM				$\begin{aligned} & 136 \\ & 0.618 \end{aligned}$	$\begin{gathered} 2 \\ 0.250 \\ 0 \end{gathered}$	$\begin{gathered} 133 \\ 0.693 \end{gathered}$	$\begin{gathered} 0 \\ 0.000 \end{gathered}$	$\begin{gathered} 0 \\ 0.000 \end{gathered}$	$\begin{aligned} & 668 \\ & 0.898 \\ & 0 \end{aligned}$	$\begin{gathered} 3 \\ 0.375 \\ 7 \end{gathered}$	$\begin{gathered} 0 \\ 0.000 \end{gathered}$	$\begin{gathered} 9 \\ 0.450 \end{gathered}$	$\begin{aligned} & 850 \\ & 0.706 \\ & 0 . \end{aligned}$	$2^{0.000}$	$\begin{gathered} 0 \\ 0.000 \end{gathered}$	$\begin{gathered} \hline \text { TOTAL } \\ 1833 \\ 0.777 \end{gathered}$
PEAK HR VOL :	4	0	28	0													
PEAK HR FACTOR :	0.500	0.000	0.583	0.000													
	0.571																

Location: SR-85 Off-ramp/Maxine Ave \& Homestead Rd
City: Cupertino
Control: Signalize

Project ID: 18-08664-004
Date: 12/11/2018
Bikes

NS/ EW Streets:	SR-85 Off-ramp/Maxine Ave				SR-85 Off-ramp/Maxine Ave				Homestead Rd				Homestead Rd				
$A M$	NORTHBOUND				SOUTHBOUND				EASTBOUND				WESTBOUND				
	0	1	0	0	1	0.5	0.5	0	0	1	0	0	1	2	0	0	
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
7:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	2	0	0	2
7:15 AM	0	0	0	0	0	0	0	0	0	3	0	0	0	4	0	0	7
7:30 AM	0	0	0	0	0	0	0	0	0	25	0	0	0	2	0	0	27
7:45 AM	0	0	0	0	0	0	0	0	0	76	0	0	0	5	0	0	81
8:00 AM	0	0	1	0	0	0	0	0	0	20	0	0	0	1	0	0	22
8:15 AM	0	0	0	0	0	0	0	0	0	6	0	0	0	2	0	0	8
8:30 AM	0	0	0	0	0	0	0	0	0	6	0	0	0	4	0	0	10
8:45 AM	0	0	0	0	0	0	0	0	0	3	0	0	0	3	0	0	6
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
TOTAL VOLUMES :	0	0	1	0	0	0	0	0	0	139	0	0	0	23	0	0	163
APPROACH \% 's :	0.00\%	0.00\%	100.00\%	0.00\%					0.00\%	100.00\%	0.00\%	0.00\%	0.00\%	100.00\%	0.00\%	0.00\%	
PEAK HR :		$7: 30$ AM	08:30 AM														TOTAL
PEAK HR VOL :	0	0	1	0	0	0	0	0	0	127	0	0	0	10	0	0	138
PEAK HR FACTOR :	0.000	0.000	0.250	0.000	0.000	0.000	0.000	0.000	0.000	0.418	0.000	0.000	0.000	0.500	0.000	0.000	
														0.5			0.426

Location: SR-85 Off-ramp/Maxine Ave \& Homestead Rd City: Cupertino

Project ID: 18-08664-004
Date: 12/11/2018

Pedestrians (Crosswalks)

	rota																
NS/ EW Streets:	SR-85 Off-ramp/Maxine Ave				SR-85 Off-ramp/Maxine Ave				Homestead Rd				Homestead Rd				
AM	NORTHBOUND				SOUTHBOUND				EASTBOUND				WESTBOUND				
	0	1	0	0	1	0.5	0.5	0	0	1	0	0	1	2	0	0	
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
7:00 AM	0	0	3	0	8	0	11	0	0	37	0	0	0	56	0	0	115
7:15 AM	0	0	2	0	9	0	10	0	0	60	0	0	0	102	0	0	183
7:30 AM	0	0	2	0	20	0	35	0	0	82	0	0	0	171	0	0	310
7:45 AM	0	0	6	0	24	1	56	0	0	110	1	0	3	227	0	0	428
8:00 AM	0	0	3	0	20	1	60	0	0	185	1	0	1	170	0	0	441
8:15 AM	2	0	7	0	28	1	44	0	0	130	1	0	0	163	0	0	376
8:30 AM	1	0	12	0	33	3	19	0	0	178	1	0	1	193	0	0	441
8:45 AM	5	0	13	0	45	2	16	0	0	169	3	0	3	222	0	0	478
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
TOTAL VOLUMES :	8	0	48	0	187	8	251	0	0	951	7	0	8	1304	0	0	2772
APPROACH \% 's:	14.29\%	0.00\%	85.71\%	0.00\%	41.93\%	1.79\%	56.28\%	0.00\%	0.00\%	99.27\%	0.73\%	0.00\%	0.61\%	99.39\%	0.00\%	0.00\%	
PEAK HR :	08:00 AM - 09:00 AM				$\begin{aligned} & 126 \\ & 0.700 \end{aligned}$	7	139	$\begin{gathered} 0 \\ 0.000 \end{gathered}$	$\begin{gathered} 0 \\ 0.000 \end{gathered}$	662	$\begin{gathered} 6 \\ 0.500 \end{gathered}$	$\begin{gathered} 0 \\ 0.000 \end{gathered}$	$\begin{gathered} 5 \\ 0.417 \end{gathered}$	748	$7^{0.000}$	$\begin{gathered} 0 \\ 0.000 \end{gathered}$	TOTAL
PEAK HR VOL :	8	0	35	0													1736
PEAK HR FACTOR :	0.400	0.000	0.673	0.000		0.583	0.579			0.895				0.842			0.908
	0.597					0.840				0.898				0.837			

PM	NORTHBOUND				SOUTHBOUND				EASTBOUND				WESTBOUND				TOTAL
	0$N L$	1NT	$\begin{gathered} 0 \\ \text { NR } \end{gathered}$	$\begin{gathered} 0 \\ \mathrm{NU} \\ \hline \end{gathered}$	$\begin{array}{r} 1 \\ \mathrm{SL} \\ \hline \end{array}$	$\begin{aligned} & 0.5 \\ & \text { ST } \\ & \hline \end{aligned}$	$\begin{aligned} & 0.5 \\ & \text { SR } \end{aligned}$	$\begin{gathered} 0 \\ \text { SU } \end{gathered}$	$\begin{gathered} 0 \\ E L \end{gathered}$	$\begin{gathered} 1 \\ E T \\ \hline \end{gathered}$	$\begin{gathered} 0 \\ \text { ER } \end{gathered}$	$\begin{gathered} 0 \\ \text { EU } \end{gathered}$	$\begin{gathered} 1 \\ \mathrm{WL} \end{gathered}$	$\begin{gathered} 2 \\ W T \\ \hline \end{gathered}$	$\begin{gathered} 0 \\ \text { WR } \end{gathered}$	$\begin{gathered} 0 \\ \text { WU } \end{gathered}$	
2:00 PM	0	0	2	0	27	1	24	0	0	125	0	0	2	113	0	0	294
2:15 PM	1	0	2	0	31	1	14	0	0	95	0	0	2	87	0	0	233
2:30 PM	1	0	1	0	28	0	20	0	0	130	1	0	1	96	0	0	278
2:45 PM	1	0	4	0	18	3	9	0	0	142	0	0	3	79	0	0	259
3:00 PM	0	0	3	0	20	1	13	0	0	140	0	0	1	110	0	0	288
3:15 PM	0	0	6	0	20	0	19	0	0	190	2	0	1	91	0	0	329
3:30 PM	1	0	7	0	29	1	14	0	0	183	1	0	8	158	0	0	402
3:45 PM	0	0	2	0	18	1	13	0	0	203	1	0	2	102	0	0	342
4:00 PM	0	0	2	0	25	1	22	0	0	195	3	0	3	76	0	0	327
4:15 PM	0	0	5	0	31	1	18	0	0	210	2	0	6	80	0	0	353
4:30 PM	0	0	5	0	23	1	13	0	0	216	0	0	0	89	0	0	347
4:45 PM	1	0	2	0	33	0	24	0	0	201	3	0	6	91	0	0	361
5:00 PM	3	0	1	0	51	4	24	0	0	195	0	0	2	86	0	0	366
5:15 PM	1	0	3	0	46	2	19	0	0	201	3	0	8	95	0	0	378
5:30 PM	1	0	4	0	90	5	26	0	0	192	1	0	7	107	0	0	433
5:45 PM	0	0	9	0	85	1	20	0	0	185	3	0	8	101	0	0	412
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
TOTAL VOLUMES :	10	0	58	0	575	23	292	0	0	2803	20	0	60	1561	0	0	5402
APPROACH \% 's :	14.71\%	0.00\%	85.29\%	0.00\%	64.61\%	2.58\%	32.81\%	0.00\%	0.00\%	99.29\%	0.71\%	0.00\%	3.70\%	96.30\%	0.00\%	0.00\%	
PEAK HR :	05:00 PM - 06:00 PM				$\begin{aligned} & 272 \\ & 0.756 \end{aligned}$		$\begin{gathered} 89 \\ 0.856 \end{gathered}$	$\begin{gathered} 0 \\ 0.000 \end{gathered}$	$\begin{gathered} 0 \\ 0.000 \end{gathered}$	773		$\begin{gathered} 0 \\ 0.000 \end{gathered}$	$\begin{gathered} 25 \\ 0.781 \end{gathered}$	389		$\begin{gathered} 0 \\ 0.000 \end{gathered}$	TOTAL
PEAK HR VOL:	5	0	17	0											0		1589
PEAK HR FACTOR :	0.417	0.000	0.472	0.000		0.600				0.961	0.583			0.909	0.000		
	0.611					0.771				0.956				0.908			0.917

Pedestrians (Crosswalks)

NS/ EW Streets:	SR-85 Off-ramp/Maxine Ave		SR-85 Off-ramp/Maxine Ave		Homestead Rd		Homestead Rd		
AM	NORTH LEG		SOUTH LEG		EAST LEG		WEST LEG		
	EB	WB	EB	WB	NB	SB	NB	SB	TOTAL
7:00 AM	0	2	0	0	0	0	0	0	2
7:15 AM	1	1	0	1	0	0	0	0	3
7:30 AM	0	3	1	2	0	0	0	0	6
7:45 AM	1	6	1	8	0	0	0	0	16
8:00 AM	7	0	2	1	0	0	0	1	11
8:15 AM	0	2	4	0	0	0	0	0	6
8:30 AM	6	2	10	0	0	0	0	2	20
8:45 AM	17	0	4	0	0	0	3	0	24
TOTAL VOLUMES : APPROACH \% 's :	EB	WB	EB	WB	NB	SB	NB	SB	TOTAL
	32	16	22	12	0	0	3	3	88
	66.67\%	33.33\%	64.71\%	35.29\%			50.00\%	50.00\%	
PEAK HR :	08:00 AM - 09:00 AM		$\begin{gathered} 20 \\ 0.500 \end{gathered}$						TOTAL
PEAK HR VOL:	30	4		1	0	0	3	3	61
PEAK HR FACTOR :	0.441	0.500		0.250			0.250	0.375	
	0.500			0.525			0.500		0.635

PM	NORTH LEG		SOUTH LEG		EAST LEG		WEST LEG		TOTAL
	EB	WB	EB	WB	NB	SB	NB	SB	
2:00 PM	0	0	0	2	0	0	0	0	2
2:15 PM	0	1	0	0	0	0	0	0	1
2:30 PM	0	0	1	2	0	0	0	0	3
2:45 PM	3	3	3	0	0	0	0	0	9
3:00 PM	0	41	0	0	0	0	0	5	46
3:15 PM	0	2	0	1	0	0	0	0	3
3:30 PM	0	3	0	19	0	0	0	0	22
3:45 PM	0	1	2	5	0	0	0	0	8
4:00 PM	1	1	2	1	0	0	0	0	5
4:15 PM	1	2	0	1	0	0	0	0	4
4:30 PM	0	1	1	1	0	0	0	0	3
4:45 PM	0	1	0	2	0	0	0	0	3
5:00 PM	0	2	0	0	0	0	0	1	3
5:15 PM	0	1	2	0	0	0	0	0	3
5:30 PM	1	1	1	3	0	0	1	0	7
5:45 PM	0	2	0	0	0	0	0	0	2
	EB	WB	EB	WB	NB	SB	NB	SB	TOTAL
TOTAL VOLUMES :	6	62	12	37	0	0	,	6	124
APPROACH \% 's :	8.82\%	91.18\%	24.49\%	75.51\%			14.29\%	85.71\%	
PEAK HR :	05:00 P	6:00 PM							TOTAL
PEAK HR VOL :	1	6	3	3	0	0	1	1	15
PEAK HR FACTOR :	0.250	0.750	0.375	0.250			0.250	0.250	
	0.875		0.375				0.500		0.536

Location: SR-85 On-ramp/Bernardo Ave \& Homestead Rd

Project ID: 18-08664-005
Date: 12/11/2018
Total

NS/ EW Streets:	SR-85 On-ramp/Bernardo Ave				SR-85 On-ramp/Bernardo Ave				Homestead Rd				Homestead Rd				
$A M$	NORTHBOUND				SOUTHBOUND				EASTBOUND				WESTBOUND				
	0	0	0	0	1	1	1	0	1	1	1	0	0	1	1	0	
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
7:00 AM	0	0	0	0	1	0	1	0	3	39	19	0	19	65	4	0	151
7:15 AM	0	0	0	0	2	0	9	0	9	36	27	0	31	81	11	0	206
7:30 AM	0	0	0	0	21	2	17	0	16	143	28	0	28	151	43	0	449
7:45 AM	0	0	0	0	39	5	43	0	49	170	29	0	36	253	106	0	730
8:00 AM	0	0	0	0	34	4	23	0	27	137	39	0	44	208	83	0	599
8:15 AM	0	0	0	0	5	0	15	0	11	111	48	0	25	137	14	0	366
8:30 AM	0	0	0	0	0	0	7	0	19	116	46	0	31	169	17	0	405
8:45 AM	0	0	0	0	4	2	8	0	24	102	30	1	24	184	31	0	410
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
TOTAL VOLUMES :	0	0	0	0	106	13	123	0	158	854	266	1	238	1248	309	0	3316
APPROACH \% 's :					43.80\%	5.37\%	50.83\%	0.00\%	12.35\%	66.77\%	20.80\%	0.08\%	13.26\%	69.53\%	17.21\%	0.00\%	
PEAK HR :		7:30 A	8:30 A														TOTAL
PEAK HR VOL :	0	0	0	0	99	11	98	0	103	561	144	0	133	749	246	0	2144
PEAK HR FACTOR :	0.000	0.000	0.000	0.000	0.635	0.550	0.570	0.000	0.526	0.825	0.750	0.000	0.756	0.740	0.580	0.000	
						0.5											0.734

Location: SR-85 On-ramp/Bernardo Ave \& Homestead Rd City: Cupertino
Control: Signalize

Project ID: 18-08664-005
Date: 12/11/2018
Bikes

NS/ EW Streets:	SR-85 On-ramp/Bernardo Ave				SR-85 On-ramp/Bernardo Ave				Homestead Rd				Homestead Rd				
$A M$	NORTHBOUND				SOUTHBOUND				EASTBOUND				WESTBOUND				
	0	0	0	0	1	1	1	0	1	1	1	0	0	1	1	0	
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
7:00 AM	0	0	0	0	1	0	0	0	0	0	0	0	0	2	0	0	3
7:15 AM	0	0	0	0	0	0	0	0	0	2	0	0	0	4	0	0	6
7:30 AM	0	0	0	0	0	0	0	0	0	19	0	0	0	3	0	0	22
7:45 AM	0	0	0	0	0	0	0	0	5	33	0	0	0	4	3	0	45
8:00 AM	0	0	0	0	0	0	1	0	3	3	1	0	0	1	1	0	10
8:15 AM	0	0	0	0	0	0	0	0	0	6	0	0	0	2	0	0	8
8:30 AM	0	0	0	0	0	0	0	0	0	7	1	0	0	4	0	0	12
8:45 AM	0	0	0	0	1	0	0	0	0	3	0	0	0	3	0	0	7
TOTAL VOLUMES : APPROACH \% 's :	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
	0	0	0	0	2	0	1	0	8	73	2	0	0	23	4	0	113
					66.67\%	0.00\%	33.33\%	0.00\%	9.64\%	87.95\%	2.41\%	0.00\%	0.00\%	85.19\%	14.81\%	0.00\%	
PEAK HR :	07:30 AM - 08:30 AM				$\begin{gathered} 0 \\ 0.000 \end{gathered}$	$\begin{gathered} 0 \\ 0.000 \\ \quad 0.2 \end{gathered}$	$0_{0}^{\frac{1}{0.250}}$	$\begin{gathered} 0 \\ 0.000 \end{gathered}$	$\begin{gathered} 8 \\ 0.400 \end{gathered}$	$\begin{gathered} 61 \\ 0.462 \end{gathered}$	$\begin{gathered} 1 \\ 0.250 \\ 51 \end{gathered}$	$\begin{gathered} 0 \\ 0.000 \end{gathered}$	$\begin{gathered} 0 \\ 0.000 \end{gathered}$	$\begin{gathered} 10 \\ 0.625 \\ 0 \end{gathered}$	$0^{0.333}$	$\begin{gathered} 0 \\ 0.000 \end{gathered}$	$\begin{gathered} \hline \text { TOTAL } \\ 85 \\ 0.472 \end{gathered}$
PEAK HR VOL :	0	0	0	0													
PEAK HR FACTOR :	0.000	0.000	0.000	0.000													

Location: SR-85 On-ramp/Bernardo Ave \& Homestead Rd
City: Cupertino

Project ID: 18-08664-005
Date: 12/11/2018

Pedestrians (Crosswalks)

NS/ EW Streets:	SR-85 On-	o/Bernardo	$\begin{gathered} \text { SR-85 On-ramp/Bernardo } \\ \text { Ave } \end{gathered}$		Homestead Rd		Homestead Rd		
AM	NORTH LEG		SOUTH LEG		EAST LEG		WEST LEG		
	EB	WB	EB	WB	NB	SB	NB	SB	TOTAL
7:00 AM	0	0	0	0	0	0	0	0	0
7:15 AM	1	0	1	0	0	0	0	0	2
7:30 AM	0	5	7	5	0	0	0	0	17
7:45 AM	0	4	9	1	1	0	0	0	15
8:00 AM	2	2	3	0	0	0	0	0	7
8:15 AM	2	0	0	0	0	0	0	0	2
8:30 AM	0	0	0	0	0	0	0	0	0
8:45 AM	0	0	1	1	0	0	0	0	2
TOTAL VOLUMES: APPROACH \% 's :	EB	WB	EB	WB	NB	SB	NB	SB	TOTAL
	5	11	21	7	1	0	0	0	45
	31.25\%	68.75\%	75.00\%	25.00\%	100.00\%	0.00\%			
PEAK HR :	07:30 AM - 08:30 AM		$\begin{gathered} 19 \\ 0.528 \end{gathered}$						TOTAL
PEAK HR VOL :	4	11		6	1	0	0	0	41
PEAK HR FACTOR :	0.500	0.550		0.300	0.250				
	0.750								0.603

PM	NORTHBOUND				SOUTHBOUND				EASTBOUND				WESTBOUND				TOTAL
	0	0	$\begin{gathered} 0 \\ \text { NR } \end{gathered}$	$\begin{gathered} 0 \\ \mathrm{NU} \end{gathered}$	$\begin{gathered} 0 \\ \mathrm{SL} \\ \hline \end{gathered}$	$\begin{gathered} 2 \\ \mathrm{ST} \\ \hline \end{gathered}$	$\begin{gathered} 0 \\ \text { SR } \end{gathered}$	$\begin{gathered} 0 \\ \text { SU } \end{gathered}$	$\begin{gathered} 1 \\ E L \end{gathered}$	1ET	$\begin{gathered} 1 \\ \text { ER } \end{gathered}$	$\begin{gathered} 0 \\ \text { EU } \end{gathered}$	$\begin{gathered} 1 \\ \text { WL } \end{gathered}$	$\begin{gathered} 2 \\ W T \end{gathered}$	$\begin{gathered} 0 \\ \text { WR } \end{gathered}$	$\begin{gathered} 0 \\ \text { WU } \end{gathered}$	
	NL	NT															
2:00 PM	0	0	0	0	5	0	13	0	8	129	22	1	23	86	2	0	289
2:15 PM	0	0	0	0	4	1	5	0	13	101	15	1	18	88	5	0	251
2:30 PM	0	0	0	0	3	0	8	0	17	119	18	0	24	88	19	0	296
2:45 PM	0	0	0	0	21	3	10	0	14	118	24	0	12	74	46	0	322
3:00 PM	0	0	0	0	39	2	30	0	18	132	20	0	13	79	31	0	364
3:15 PM	0	0	0	0	19	1	10	0	14	171	31	1	18	77	10	0	352
3:30 PM	0	0	0	0	11	1	7	0	9	193	15	1	23	158	18	0	436
3:45 PM	0	0	0	0	9	0	9	0	7	186	23	0	20	94	9	0	357
4:00 PM	0	0	0	0	11	0	12	0	13	181	25	0	22	71	8	0	343
4:15 PM	0	0	0	0	12	1	6	0	10	218	19	0	11	84	6	0	367
4:30 PM	0	0	0	0	17	0	10	0	9	215	17	0	21	75	6	0	370
4:45 PM	0	0	0	0	15	0	14	0	5	214	15	1	13	81	6	0	364
5:00 PM	0	0	0	0	14	0	17	0	5	232	18	0	14	77	9	0	386
5:15 PM	0	0	0	0	16	4	10	0	9	222	13	0	19	89	6	0	388
5:30 PM	0	0	0	0	11	0	9	0	11	255	13	0	18	102	7	0	426
5:45 PM	0	0	0	0	14	1	11	0	15	248	14	1	13	95	21	0	433
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
TOTAL VOLUMES :	0	0	0	0	221	14	181	0	177	2934	302	6	282	1418	209	0	5744
APPROACH \% 's :					53.13\%	3.37\%	43.51\%	0.00\%	5.18\%	85.81\%	8.83\%	0.18\%	14.77\%	74.28\%	10.95\%	0.00\%	
PEAK HR :		5:00 PM	6:00 P														TOTAL
PEAK HR VOL:	0	0	0	0	55	5	47	0	40	957	58	1	64	363	43	0	1633
PEAK HR FACTOR :	0.000	0.000	0.000	0.000	0.859	0.313	0.691	0.000	0.667	0.938	0.806	0.250	0.842	0.890	0.512	0.000	
																	0.943

Pedestrians (Crosswalks)

NS/ EW Streets:	SR-85 On-	/Bernardo	SR-85 On-ramp/Bernardo Ave		Homestead Rd		Homestead Rd		
AM	NORTH LEG		SOUTH LEG		EAST LEG		WEST LEG		
	EB	WB	EB	WB	NB	SB	NB	SB	TOTAL
7:00 AM	1	1	0	1	0	0	0	0	3
7:15 AM	1	1	0	0	0	0	0	0	2
7:30 AM	0	6	1	4	0	0	1	0	12
7:45 AM	1	2	1	4	0	0	0	0	8
8:00 AM	6	2	2	1	0	0	0	0	11
8:15 AM	1	0	2	1	0	0	0	0	4
8:30 AM	1	1	12	0	0	0	0	0	14
8:45 AM	1	3	3	1	0	0	0	0	8
	EB	WB	EB	WB	NB	SB	NB	SB	TOTAL
TOTAL VOLUMES :	12	16	21	12	0	0	1 100%	0	62
APPROACH \% 's :	42.86\%	57.14\%	63.64\%	36.36\%			100.00\%	0.00\%	
PEAK HR :	08:00 AM - 09:00 AM		$\begin{gathered} 19 \\ 0.396 \end{gathered}$	$\begin{gathered} 3 \\ 0.750 \end{gathered}$	0	0	0	0	TOTAL
PEAK HR VOL:	9	6							37
PEAK HR FACTOR :	0.375	0.500							. 661
	0.469								0.661

PM	NORTH LEG		SOUTH LEG		EAST LEG		WEST LEG		TOTAL
	EB	WB	EB	WB	NB	SB	NB	SB	
2:00 PM	0	0	0	3	0	0	0	0	3
2:15 PM	0	1	0	0	0	0	0	0	1
2:30 PM	0	0	3	2	0	0	0	0	5
2:45 PM	2	0	3	0	0	0	0	2	7
3:00 PM	3	0	0	0	0	4	0	0	7
3:15 PM	0	0	0	1	0	1	0	0	2
3:30 PM	1	2	0	26	0	0	0	0	29
3:45 PM	0	1	2	3	0	0	0	0	6
4:00 PM	0	0	2	2	0	0	1	0	5
4:15 PM	0	3	1	2	0	0	0	0	6
4:30 PM	0	0	1	1	0	0	0	0	2
4:45 PM	0	1	0	2	0	0	0	0	3
5:00 PM	0	1	0	0	0	0	0	0	1
5:15 PM	2	1	2	2	2	0	0	0	9
5:30 PM	1	3	0	0	0	0	0	0	4
5:45 PM	0	0	1	0	0	0	0	0	1
	EB	WB	EB	WB	NB	SB	NB	SB	TOTAL
TOTAL VOLUMES :	9	13	15	44	2	5	1	2	91
APPROACH \% 's :	40.91\%	59.09\%	25.42\%	74.58\%	28.57\%	71.43\%	33.33\%	66.67\%	
PEAK HR :	05:00 P	6:00 PM							TOTAL
PEAK HR VOL :	3	5	3	2	2	0	0	0	15
PEAK HR FACTOR :	0.375	0.417	0.375	0.250	0.250				
	0.500		0.313		0.250				0.417

Location: Wright Ave \& Homestead Rd

Project ID: 18-08664-006
Date: 12/11/2018
Total

NS/ EW Streets:	Wright Ave				Wright Ave				Homestead Rd				Homestead Rd				
$A M$	NORTHBOUND				SOUTHBOUND				EASTBOUND				WESTBOUND				
	0	1	1	0	0	1	1	0	1	2	0	0	1	2	0	0	
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
7:00 AM	2	0	1	0	2	1	9	0	3	36	2	0	1	81	1	0	139
7:15 AM	2	1	2	0	3	0	11	0	1	37	1	0	2	116	7	0	183
7:30 AM	12	1	3	0	15	0	22	0	2	159	1	0	1	203	23	0	442
7:45 AM	27	0	10	0	72	3	54	0	5	204	5	0	0	311	59	0	750
8:00 AM	11	2	3	0	57	0	43	0	15	150	9	0	1	253	25	0	569
8:15 AM	9	1	2	0	11	0	6	0	4	108	2	0	0	163	10	0	316
8:30 AM	3	3	5	0	17	1	12	0	6	105	4	0	1	208	14	0	379
8:45 AM	7	1	6	0	9	1	19	0	5	102	0	0	1	221	12	0	384
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
TOTAL VOLUMES :	73	9	32	0	186	6	176	0	41	901	24	0	7	1556	151	0	3162
APPROACH \% 's :	64.04\%	7.89\%	28.07\%	0.00\%	50.54\%	1.63\%	47.83\%	0.00\%	4.24\%	93.27\%	2.48\%	0.00\%	0.41\%	90.78\%	8.81\%	0.00\%	
PEAK HR :	07:30 AM - 08:30 AM				$\begin{gathered} 155 \\ 0.538 \end{gathered}$	3	$\begin{gathered} 125 \\ 0.579 \\ \hline 8 \end{gathered}$	$\begin{gathered} 0 \\ 0.000 \end{gathered}$	$\begin{gathered} 26 \\ 0.433 \end{gathered}$	$\begin{array}{cc} 621 & 17 \\ 0.761 & 0.472 \\ & 0.776 \end{array}$		$\begin{gathered} 0 \\ 0.000 \end{gathered}$	$\begin{gathered} 2 \\ 0.500 \end{gathered}$	$\begin{aligned} & 930 \\ & 0.748 \\ & 0 \end{aligned}$	1170.496	$\begin{gathered} 0 \\ 0.000 \end{gathered}$	TOTAL
PEAK HR VOL :	59	4	18	0								2077					
PEAK HR FACTOR :	0.546	0.500	0.450	0.000		0.250											
	0.547					0.548						. 692					

Location: Wright Ave \& Homestead Rd
City: Cupertino
Control: Signalize

Project ID: 18-08664-006
Date: 12/11/2018
Bikes

NS/ EW Streets:	Wright Ave				Wright Ave				Homestead Rd				Homestead Rd				
$A M$	NORTHBOUND				SOUTHBOUND				EASTBOUND				WESTBOUND				
	0	1	1	0	0	1	1	0	1	2	0	0	1	2	0	0	
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
7:00 AM	0	0	0	0	0	0	0	0	0	1	0	0	0	2	0	0	3
7:15 AM	0	2	1	0	0	0	0	0	0	2	0	0	0	5	1	0	11
7:30 AM	0	1	0	0	1	0	0	0	0	19	0	0	0	7	0	0	28
7:45 AM	0	1	0	0	3	0	0	0	0	33	0	0	0	8	1	0	46
8:00 AM	0	0	0	0	0	0	0	0	0	4	0	0	0	0	0	0	4
8:15 AM	0	0	0	0	0	0	0	0	0	6	0	0	0	3	0	0	9
8:30 AM	0	0	0	0	0	0	0	0	0	7	0	0	0	3	1	0	11
8:45 AM	0	0	2	0	0	0	1	0	0	4	1	0	0	2	1	0	11
TOTAL VOLUMES : APPROACH \% 's :	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
	0	4	3	0	4	0	1	0	0	76	1	0	0	30	4	0	123
	0.00\%	57.14\%	42.86\%	0.00\%	80.00\%	0.00\%	20.00\%	0.00\%	0.00\%	98.70\%	1.30\%	0.00\%	0.00\%	88.24\%	11.76\%	0.00\%	
PEAK HR :	07:30 AM - 08:30 AM				$\begin{gathered} 4 \\ 0.333 \end{gathered}$	0	$\begin{gathered} 0 \\ 0.000 \\ 3 \end{gathered}$	$\begin{gathered} 0 \\ 0.000 \end{gathered}$	$\begin{gathered} 0 \\ 0.000 \end{gathered}$	$\begin{gathered} 62 \\ 0.470 \\ 0 \end{gathered}$	$\begin{aligned} & 0 \\ & 0.000 \\ & 0 \end{aligned}$	$\begin{gathered} 0 \\ 0.000 \end{gathered}$	$\begin{gathered} 0 \\ 0.000 \end{gathered}$	180.5630.	8^{1}	$\begin{gathered} 0 \\ 0.000 \end{gathered}$	$\begin{gathered} \hline \text { TOTAL } \\ 87 \\ 0.473 \end{gathered}$
PEAK HR VOL :	0	2	0	0													
PEAK HR FACTOR :	0.000	0.500	0.000	0.000		0.000											
		0.500				0.333											

Location: Wright Ave \& Homestead Rd City: Cupertino

Project ID: 18-08664-006
Date: 12/11/2018
Pedestrians (Crosswalks)

NS/ EW Streets:	Wright Ave		Wright Ave		Homestead Rd		Homestead Rd		
AM	NORTH LEG		SOUTH LEG		EAST LEG		WEST LEG		
	EB	WB	EB	WB	NB	SB	NB	SB	TOTAL
7:00 AM	0	0	2	0	0	0	0	0	2
7:15 AM	0	0	0	0	0	0	0	1	1
7:30 AM	2	3	5	0	0	3	1	1	15
7:45 AM	3	5	13	2	2	0	8	4	37
8:00 AM	4	5		0	1		2	1	17
8:15 AM	0	0	1	0	0	0	1	0	2
8:30 AM	,	0	0	0	1	0	0	0	2
8:45 AM	0	0	1	0	0	0	0	0	1
TOTAL VOLUMES : APPROACH \% 's:	EB	WB	EB	WB	NB	SB	NB	SB	TOTAL
	10	13	24	2	4	5	12	7	77
	43.48\%	56.52\%	92.31\%	7.69\%	44.44\%	55.56\%	63.16\%	36.84\%	
PEAK HR :	07:30 AM - 08:30 AM		$\begin{gathered} 21 \\ 0.404 \end{gathered}$						TOTAL
PEAK HR VOL :	9	13		2	3	5	12	6	71
PEAK HR FACTOR :	0.563	0.650		0.250	0.375	0.417	0.375	0.375	
	0.611			0.383	0.667		0.375		0.480

	rota																
NS/ EW Streets:	Wright Ave				Wright Ave				Homestead Rd				Homestead Rd				
AM	NORTHBOUND				SOUTHBOUND				EASTBOUND				WESTBOUND				
	0			0	0			0	1	2	0	0	1	2	0	0	
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
7:00 AM	2	0	0	0	2	0	6	0	0	29	0	0	0	81	1	0	121
7:15 AM	3	2	1	0	4	0	11	0	3	38	2	0	0	119	4	0	187
7:30 AM	8	2	0	0	2	0	18	0	4	55	0	0	1	167	5	0	262
7:45 AM	17	0	4	0	5	0	27	0	9	86	3	0	0	191	10	0	352
8:00 AM	8	3	1	0	3	0	20	0	13	117	12	0	0	189	11	0	377
8:15 AM	8	2	5	0	6	0	16	0	11	95	1	0	1	173	11	0	329
8:30 AM	9	1	6	0	26	2	14	0	2	178	4	0	0	220	15	0	477
8:45 AM	6	3	9	0	51	1	23	0	7	211	5	0	0	261	49	0	626
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
TOTAL VOLUMES :	61	13	26	0	99	3	135	0	49	809	27	0	2	1401	106	0	2731
APPROACH \% 's :	61.00\%	13.00\%	26.00\%	0.00\%	41.77\%	1.27\%	56.96\%	0.00\%	5.54\%	91.41\%	3.05\%	0.00\%	0.13\%	92.84\%	7.02\%	0.00\%	
PEAK HR :	08:00 AM - 09:00 AM				$\begin{gathered} 86 \\ 0.422 \end{gathered}$	$\begin{gathered} 3 \\ 0.375 \end{gathered}$	$\begin{gathered} 73 \\ 0.793 \\ 0 \end{gathered}$	$\begin{gathered} 0 \\ 0.000 \end{gathered}$	$\begin{gathered} 33 \\ 0.635 \end{gathered}$	601	$\begin{gathered} 22 \\ 0.458 \end{gathered}$	$\begin{gathered} 0 \\ 0.000 \end{gathered}$	$\begin{gathered} 1 \\ 0.250 \end{gathered}$	$\begin{aligned} & 843 \\ & 0.807 \end{aligned}$	860.439	$\begin{gathered} 0 \\ 0.000 \end{gathered}$	TOTAL
PEAK HR VOL :	31	9	21	0													1809
PEAK HR FACTOR :	0.861	0.750	0.583	0.000						0.712							
	0.847					0.540				0.735				0.750			0.722

PM	NORTHBOUND				SOUTHBOUND				EASTBOUND				WESTBOUND				TOTAL	
	0	1	$\begin{gathered} 1 \\ \text { NR } \end{gathered}$	$\begin{gathered} 0 \\ \mathrm{NU} \end{gathered}$	0SL	$\begin{gathered} 1 \\ \text { ST } \end{gathered}$	$\begin{gathered} 1 \\ \mathrm{SR} \end{gathered}$	$\begin{gathered} 0 \\ \text { SU } \end{gathered}$	$\begin{array}{r} 1 \\ \text { EL } \end{array}$	2ET	$\begin{gathered} 0 \\ \text { ER } \\ \hline \end{gathered}$	$\begin{gathered} 0 \\ \text { EU } \end{gathered}$	$\begin{gathered} 1 \\ \text { WL } \end{gathered}$	$\begin{gathered} 2 \\ W T \end{gathered}$	$\begin{gathered} 0 \\ W R \end{gathered}$	$\begin{gathered} 0 \\ \text { WU } \end{gathered}$		
	NL	NT																
2:00 PM	4	0	0	0	2	0	9	0	9	111	5	0	2	114	8	0	264	
2:15 PM	5	0	2	0	4	1	11	0	4	96	4	0	4	90	13	0	234	
2:30 PM	8	1	3	0	6	0	10	0	9	111	6	0	2	117	9	0	282	
2:45 PM	1	3	2	0	5	1	11	0	8	109	11	0	0	122	20	0	293	
3:00 PM	2	1	2	0	57	1	11	0	14	152	5	0	1	105	14	0	365	
3:15 PM	2	2	3	0	26	1	12	0	9	174	4	0	0	90	12	0	335	
3:30 PM	14	5	5	0	13	2	13	0	10	191	4	0	1	178	21	0	457	
3:45 PM	1	1	1	0	11	2	8	0	10	178	5	0	1	112	10	0	340	
4:00 PM	3	1	7	0	5	1	7	0	9	191	3	0	2	90	2	0	321	
4:15 PM	3	1	2	0	16	1	5	0	7	202	9	0	0	92	2	0	340	
4:30 PM	0	0	4	0	3	2	7	0	4	222	7	0	2	96	9	0	356	
4:45 PM	1	0	2	0	5	1	7	0	3	219	6	0	2	96	9	0	351	
5:00 PM	2	0	4	0	10	1	5	0	5	237	4	0	2	95	9	0	374	
5:15 PM	1	1	1	0	9	3	8	0	13	210	7	0	5	104	11	0	373	
5:30 PM	1	1	4	0	9	3	12	0	5	255	5	0	0	111	10	0	416	
5:45 PM	2	1	3	0	13	4	13	0	7	251	7	0	5	115	8	0	429	
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL	
TOTAL VOLUMES :	50	18	45	0	194	24	149	0	126	2909	92	0	29	1727	167	0	5530	
APPROACH \% 's :	44.25\%	15.93\%	39.82\%	0.00\%	52.86\%	6.54\%	40.60\%	0.00\%	4.03\%	93.03\%	2.94\%	0.00\%	1.51\%	89.81\%	8.68\%	0.00\%		
PEAK HR :	05:00 PM - 06:00 PM				$\begin{gathered} 41 \\ 0.788 \end{gathered}$	11	38	$\begin{gathered} 0 \\ 0.000 \end{gathered}$	$\begin{gathered} 30 \\ 0.577 \end{gathered}$	$$		$\begin{gathered} 0 \\ 0.000 \end{gathered}$	$\begin{gathered} 12 \\ 0.600 \end{gathered}$	$$		$\begin{gathered} 0 \\ 0.000 \end{gathered}$	TOTAL	
PEAK HR VOL :	6	3	12	0								1592						
PEAK HR FACTOR :	0.750	0.750	0.750	0.000		0.688	0.731											
	0.875					0.750						0.928						

Location: Wright Ave \& Homestead Rd City: Cupertino

Project ID: 18-08549-006 Date: 10/24/2018
Pedestrians (Crosswalks)

NS/ EW Streets:	Wright Ave		Wright Ave		Homestead Rd		Homestead Rd		
AM	NORTH LEG		SOUTH LEG		EAST LEG		WEST LEG		TOTAL
	EB	WB	EB	WB	NB	SB	NB	SB	
7:00 AM	0	1	1	1	0	0	0	1	4
7:15 AM	1	0	0	0	0	0	0	0	1
7:30 AM	0	4	1	0	0	0	0	0	5
7:45 AM	1	1	0	0	0	1	0	0	3
8:00 AM	4	2	0	0	0	1	0	0	7
8:15 AM	2	0	2	2	0	1	1	0	8
8:30 AM	3	0	12	0	1	3	0	0	19
8:45 AM	6	10	13	0	0	1	0	3	33
TOTAL VOLUMES : APPROACH \% 's :	EB	WB	EB	WB	NB	SB	NB	SB	TOTAL
	17	18	29	3	1	7	1	4	80
	48.57\%	51.43\%	90.63\%	9.38\%	12.50\%	87.50\%	20.00\%	80.00\%	
PEAK HR :	08:00 AM - 09:00 AM		$\begin{gathered} 27 \\ 0.519 \end{gathered}$						TOTAL
PEAK HR VOL:	15	12		2	1	6	1	3	67
PEAK HR FACTOR :	0.625	0.300		0.250	0.250	0.500	0.250	0.250	
	0.422			0.558	0.438		0.333		0.508

PM	NORTH LEG		SOUTH LEG		EAST LEG		WEST LEG		TOTAL
	EB	WB	EB	WB	NB	SB	NB	SB	
2:00 PM	0	0	0	2	0	0	0	0	2
2:15 PM	0	1	0	0	0	0	0	1	2
2:30 PM	1	0	1	0	0	0	0	0	2
2:45 PM	0	0	0	0	0	1	1	0	2
3:00 PM	24	0	19	1	0	5	0	25	74
3:15 PM	1	1	3	0	0	0	0	4	9
3:30 PM	2	6	0	33	9	0	4	0	54
3:45 PM	1	1	1	2	3	1	1	2	12
4:00 PM	1	1	1	6	0	1	4	0	14
4:15 PM	0	0	2	2	0	0	0	0	4
4:30 PM	0	0	0	1	0	0	0	0	1
4:45 PM	1	1	0	2	1	0	0	0	5
5:00 PM	0	1	0	0	0	0	0	0	1
5:15 PM	0	2	0	2	0	0	1	0	5
5:30 PM	1	3	0	1	0	0	0	0	5
5:45 PM	0	0	3	0	0	0	0	0	3
	EB	WB	EB	WB	NB	SB	NB	SB	TOTAL
TOTAL VOLUMES :	32	17	30	52	13	8	11	32	195
APPROACH \% 's :	65.31\%	34.69\%	36.59\%	63.41\%	61.90\%	38.10\%	25.58\%	74.42\%	
PEAK HR :	05:00 P	6:00 PM							TOTAL
PEAK HR VOL :	1	6	3	3	0	0	1	0	14
PEAK HR FACTOR :	0.250	0.500	0.250	0.375			0.250		
	0.438		0.500				0.250		0.700

Location: Mary Ave \& Homestead Rd
Project ID: 18-08664-007
Control: Signalized
Date: $12 / 11 / 2018$

Total

Location: Mary Ave \& Homestead Rd
City: Cupertino
Control: Signalize

Project ID: 18-08664-007
Date: 12/11/2018
Bikes

NS/ EW Streets:	Mary Ave				Mary Ave				Homestead Rd				Homestead Rd				
$A M$	NORTHBOUND				SOUTHBOUND				EASTBOUND				WESTBOUND				
	1	0.5	0.5	0	1.5	0.5	1	0	1	2	0	0	1	2	0	0	
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
7:00 AM	1	0	0	0	0	0	0	0	0	0	1	0	0	1	0	0	3
7:15 AM	1	0	0	0	0	1	0	0	0	3	0	0	0	3	1	0	9
7:30 AM	0	0	0	0	0	28	0	0	0	1	7	0	0	9	0	0	45
7:45 AM	0	2	0	0	0	76	0	0	0	3	0	0	0	8	0	0	89
8:00 AM	1 0 4 2	1	0	0	1	5	0	0	0	1	5	0	0	1	0	0	15
8:15 AM		1	2	0	0	0	1	0	0	4	2	0	0	2	3	0	15
8:30 AM		1	0	0	0	0	0	0	0	6	2	0	0	1	0	0	14
8:45 AM		1	0	0	0	0	0	0	0	4	2	0	0	1	1	0	11
TOTAL VOLUMES : APPROACH \% 's :	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
	9	6	2	0	1	110	1	0	0	22	19	0	0	26	5	0	201
	52.94\%	35.29\%	11.76\%	0.00\%	0.89\%	98.21\%	0.89\%	0.00\%	0.00\%	53.66\%	46.34\%	0.00\%	0.00\%	83.87\%	16.13\%	0.00\%	
PEAK HR :	07:30 AM - 08:30 AM				$\begin{gathered} 1 \\ 0.250 \end{gathered}$	1090.3590.	$5_{0}^{\stackrel{1}{0.250}}$	$\begin{gathered} 0 \\ 0.000 \end{gathered}$	$\begin{gathered} 0 \\ 0.000 \end{gathered}$	$\begin{gathered} 9 \\ 0.563 \end{gathered}$	$\begin{gathered} 14 \\ 0.500 \\ 9 \end{gathered}$	$\begin{gathered} 0 \\ 0.000 \end{gathered}$	$\begin{gathered} 0 \\ 0.000 \end{gathered}$	$\begin{aligned} & 20 \\ & 0.556 \\ & 0 \end{aligned}$	$9^{0.250}$	$\begin{gathered} 0 \\ 0.000 \end{gathered}$	TOTAL
PEAK HR VOL :	1	4	2	0													164
PEAK HR FACTOR :	0.250	0.500	0.250	0.000													0.461
		0.5															0.461

Location: Mary Ave \& Homestead Rd City: Cupertino

Project ID: 18-08664-007
Date: 12/11/2018
Pedestrians (Crosswalks)

NS/ EW Streets:	Mary Ave		Mary Ave		Homestead Rd		Homestead Rd		
AM	NORTH LEG		SOUTH LEG		EAST LEG		WEST LEG		TOTAL
	EB	WB	EB	WB	NB	SB	NB	SB	
7:00 AM	0	0	2	0	0	0	0	1	3
7:15 AM	0	0	3	0	1	0	0	3	7
7:30 AM	27	3	17	0	0	33	0	3	83
7:45 AM	72	7	142	3	3	130	2	91	450
8:00 AM	1	0	3	0	0	8	0	1	13
8:15 AM	0	0	2	0	1	0	0	0	3
8:30 AM	2	0	2	0	1	2	0	0	7
8:45 AM	6	1	1	0	1	7	0	0	16
TOTAL VOLUMES : APPROACH \% 's :	EB	WB	EB	WB	NB	SB	NB	SB	TOTAL
	108	11	172	3	7	180	2	99	582
	90.76\%	9.24\%	98.29\%	1.71\%	3.74\%	96.26\%	1.98\%	98.02\%	
PEAK HR :	07:30 AM - 08:30 AM		1640.289						TOTAL
PEAK HR VOL :	100	10		3	4	171	2	95	549
PEAK HR FACTOR :	0.347	0.357		0.250	0.333	0.329	0.250	0.261	
	0.348				0.329		0.261		0.305

	Tota																
NS/ EW Streets:	Mary Ave				Mary Ave				Homestead Rd				Homestead Rd				
AM	NORTHBOUND				SOUTHBOUND				EASTBOUND				WESTBOUND				
	1	0.5	0.5	0	1.5	0.5	1	0	1	2	0	0	1	2	0	0	
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
7:00 AM	0	0	0	0	10	0	0	0	3	29	5	0	7	75	13	0	142
7:15 AM	0	1	1	0	9	0	4	0	5	31	8	0	15	123	12	0	209
7:30 AM	2	1	1	0	10	5	19	0	6	46	11	0	23	160	24	0	308
7:45 AM	0	5	1	0	20	4	25	0	15	74	10	0	16	161	33	0	364
8:00 AM	3	3	1	0	27	3	17	0	20	91	6	0	3	167	29	0	370
8:15 AM	3	13	2	0	37	10	23	0	20	86	7	0	6	155	42	0	404
8:30 AM	20	28	8	0	62	35	21	0	24	123	36	0	11	192	66	0	626
8:45 AM	61	59	29	0	108	49	15	0	15	160	64	0	17	186	56	0	819
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
TOTAL VOLUMES :	89	110	43	0	283	106	124	0	108	640	147	0	98	1219	275	0	3242
APPROACH \% 's :	36.78\%	45.45\%	17.77\%	0.00\%	55.17\%	20.66\%	24.17\%	0.00\%	12.07\%	71.51\%	16.42\%	0.00\%	6.16\%	76.57\%	17.27\%	0.00\%	
PEAK HR :	08:00 AM - 09:00 AM				$\begin{aligned} & 234 \\ & 0.542 \end{aligned}$	970.495	$\begin{gathered} 76 \\ 0.826 \end{gathered}$	$\begin{gathered} 0 \\ 0.000 \end{gathered}$	$\begin{gathered} 79 \\ 0.823 \end{gathered}$	$\begin{aligned} & 460 \\ & 0.719 \\ & 0 . \end{aligned}$	$\begin{aligned} & 113 \\ & 0.441 \end{aligned}$	$\begin{gathered} 0 \\ 0.000 \end{gathered}$	$\begin{gathered} 37 \\ 0.544 \end{gathered}$	$\begin{gathered} 700 \\ 0.911 \\ 0 . \end{gathered}$	1930.7314	$\begin{gathered} 0 \\ 0.000 \end{gathered}$	$\begin{aligned} & \hline \text { TOTAL } \\ & 2219 \\ & 0.677 \end{aligned}$
PEAK HR VOL :	87	103	40	0													
PEAK HR FACTOR :	0.357	0.436	0.345	0.000													
	0.386					0.592											

PM	NORTHBOUND				SOUTHBOUND				EASTBOUND				WESTBOUND				TOTAL
	1	0.5	0.5	NU	$\begin{aligned} & 1.5 \\ & \mathrm{SL} \\ & \hline \end{aligned}$	$\begin{aligned} & 0.5 \\ & \text { ST } \end{aligned}$	$\begin{gathered} 1 \\ \mathrm{SR} \\ \hline \end{gathered}$	0SU	$\begin{array}{r} 1 \\ \text { EL } \end{array}$	$\begin{gathered} 2 \\ \text { ET } \\ \hline \end{gathered}$	$\begin{gathered} 0 \\ E R \\ \hline \end{gathered}$	$\begin{gathered} 0 \\ \text { EU } \end{gathered}$	$\begin{gathered} 1 \\ \text { WL } \end{gathered}$	$\begin{gathered} 2 \\ W T \end{gathered}$	$\begin{gathered} 0 \\ \text { WR } \end{gathered}$	$\begin{gathered} 0 \\ \text { WU } \end{gathered}$	
	NL	NT	NR														
2:00 PM	2	0	3	0	35	0	13	0	10	102	1	0	1	109	31	0	307
2:15 PM	1	2	3	0	32	2	11	0	4	105	2	0	1	105	29	0	297
2:30 PM	0	2	4	0	38	0	10	0	9	106	2	0	2	122	18	0	313
2:45 PM	3	0	4	0	34	12	10	0	8	101	7	0	4	125	31	0	339
3:00 PM	0	1	3	0	48	14	9	0	13	168	12	0	8	101	25	0	402
3:15 PM	15	10	11	0	64	4	18	0	12	166	8	0	4	87	31	0	430
3:30 PM	39	31	36	0	84	22	19	0	17	171	23	0	7	125	41	0	615
3:45 PM	11	11	16	0	49	5	16	0	19	163	7	0	2	95	36	0	430
4:00 PM	8	7	13	0	57	2	12	0	2	192	5	0	4	85	31	0	418
4:15 PM	6	3	8	0	65	5	13	0	11	205	5	0	4	86	34	0	445
4:30 PM	9	7	10	0	60	4	19	0	10	215	7	0	3	85	39	0	468
4:45 PM	1	3	7	0	83	2	19	0	17	215	0	0	2	87	32	0	468
5:00 PM	1	4	7	0	94	2	24	0	18	230	0	0	3	101	34	0	518
5:15 PM	2	1	3	0	126	0	23	0	16	203	1	0	2	103	36	0	516
5:30 PM	0	1	1	0	111	3	25	0	14	264	0	0	3	106	49	0	577
5:45 PM	1	2	0	0	94	6	21	0	6	249	4	0	6	114	46	0	549
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
TOTAL VOLUMES :	99	85	129	0	1074	83	262	0	186	2855	84	0	56	1636	543	0	7092
APPROACH \% 's :	31.63\%	27.16\%	41.21\%	0.00\%	75.69\%	5.85\%	18.46\%	0.00\%	5.95\%	91.36\%	2.69\%	0.00\%	2.51\%	73.20\%	24.30\%	0.00\%	
PEAK HR :		5:00 PM	6:00 PM														TOTAL
PEAK HR VOL:	4	8	11	0	425	11	93	0	54	946	5	0	14	424	165	0	2160
PEAK HR FACTOR :	0.500	0.500	0.393	0.000	0.843	0.458	0.930	0.000	0.750	0.896	0.313	0.000	0.583	0.930	0.842	0.000	
																	0.936

Pedestrians (Crosswalks)

NS/ EW Streets:	Mary Ave		Mary Ave		Homestead Rd		Homestead Rd		
$A M$	NORTH LEG		SOUTH LEG		EAST LEG		WEST LEG		TOTAL
	EB	WB	EB	WB	NB	SB	NB	SB	
7:00 AM	0	0	0	0	0	1	0	0	1
7:15 AM	1	0	0	1	0	2	1	1	6
7:30 AM	0	1	2	1	0	0	0	1	5
7:45 AM	2	0	6	0	0	1	0	3	12
8:00 AM	1	0	6	1	0	1	0	5	14
8:15 AM	1	0	6	3	1	3	0	1	15
8:30 AM	13	0	23	0	0	24	0	13	73
8:45 AM	94	14	103	0	0	160	1	50	422
TOTAL VOLUMES : APPROACH \% 's :	EB	WB	EB	WB	NB	SB	NB	SB	TOTAL
	112	15	146	6	1	192	2	74	548
	88.19\%	11.81\%	96.05\%	3.95\%	0.52\%	99.48\%	2.63\%	97.37\%	
PEAK HR :	08:00 AM - 09:00 AM		$\begin{gathered} 138 \\ 0.335 \end{gathered}$						TOTAL
PEAK HR VOL:	109	14		4	1	188	1	69	524
PEAK HR FACTOR :	0.290	0.250		0.333	0.250	0.294	0.250	0.345	
	0.285				0.295		0.343		0.310

PM	NORTH LEG		SOUTH LEG		EAST LEG		WEST LEG		TOTAL
	EB	WB	EB	WB	NB	SB	NB	SB	
2:00 PM	0	0	0	3	0	0	1	0	4
2:15 PM	0	0	0	0	1	0	0	0	1
2:30 PM	0	0	0	2	0	1	1	0	4
2:45 PM	0	1	2	1	2	0	0	0	6
3:00 PM	9	0	10	1	1	1	0	1	23
3:15 PM	13	56	10	51	258	4	27	0	419
3:30 PM	2	20	5	49	44	3	22	1	146
3:45 PM	0	5	2	9	2	2	2	0	22
4:00 PM	0	2	1	3	5	0	2	0	13
4:15 PM	1	1	1	5	7	3	1	0	19
4:30 PM	0	2	1	10	16	2	5	0	36
4:45 PM	0	2	1	1	4	0	0	0	8
5:00 PM	0	1	0	2	2	0	0	0	5
5:15 PM	1	5	0	4	3	1	0	0	14
5:30 PM	0	2	0	2	1	0	0	0	5
5:45 PM	0	2	1	3	0	0	1	2	9
	EB	WB	EB	WB	NB	SB	NB	SB	TOTAL
TOTAL VOLUMES :	26	99	34	146	346	17	62	4	734
APPROACH \% 's :	20.80\%	79.20\%	18.89\%	81.11\%	95.32\%	4.68\%	93.94\%	6.06\%	
PEAK HR :	05:00 P	6:00 PM							TOTAL
PEAK HR VOL :	1	10	1	11	6	1	1	2	33
PEAK HR FACTOR :	0.250	0.500	0.250	0.688	0.500	0.250	0.250	0.250	0.589
	0.458		0.750		0.438		0.250		0.589

Location: Kennewick Dr \& Homestead Rd
Project ID: 18-08664-008
Control: Signalized
Date: 12/11/2018

Total

NS/ EW Streets:	Kennewick Dr				Kennewick Dr				Homestead Rd				Homestead Rd				
$A M$	NORTHBOUND				SOUTHBOUND				EASTBOUND				WESTBOUND				
	0	0	0	0	0	1	0	0	1	2	0	0	1	2	0	0	
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
7:00 AM	0	0	0	0	2	0	3	0	0	32	3	0	5	87	5	0	137
7:15 AM	0	0	0	0	4	0	8	0	2	46	6	0	7	155	6	0	234
7:30 AM	0	0	0	0	9	18	15	0	20	86	26	0	13	285	15	0	487
7:45 AM	0	0	0	0	13	37	15	0	39	210	58	0	24	307	31	0	734
8:00 AM	0	0	0	0	15	1	10	0	34	234	5	0	10	248	26	0	583
8:15 AM	0	0	0	0	7	0	7	0	11	149	0	0	2	211	15	0	402
8:30 AM	0	0	0	0	12	1	11	0	8	119	2	0	2	247	11	0	413
8:45 AM	0	0	0	0	8	2	8	0	0	118	1	0	6	279	7	0	429
TOTAL VOLUMES : APPROACH \% 's :	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
	0	0	0	0	70	59	77	0	114	994	101	0	69	1819	116	0	3419
					33.98\%	28.64\%	37.38\%	0.00\%	9.43\%	82.22\%	8.35\%	0.00\%	3.44\%	90.77\%	5.79\%	0.00\%	
PEAK HR :	07:30 AM - 08:30 AM				$\begin{gathered} 44 \\ 0.733 \end{gathered}$	$\begin{gathered} 56 \\ 0.378 \end{gathered}$	$\begin{gathered} 47 \\ 0.783 \end{gathered}$	$\begin{gathered} 0 \\ 0.000 \end{gathered}$	$\begin{aligned} & 104 \\ & 0.667 \end{aligned}$	$\begin{array}{lc} 679 & 89 \\ 0.725 & 0.384 \\ 0.710 \end{array}$		$\begin{gathered} 0 \\ 0.000 \end{gathered}$	$\begin{gathered} 49 \\ 0.510 \end{gathered}$	$\begin{aligned} & 1051 \\ & 0.856 \end{aligned}$	${ }^{87} 0.702$	$\begin{gathered} 0 \\ 0.000 \end{gathered}$	TOTAL
PEAK HR VOL :	0	0	0	0								2206					
PEAK HR FACTOR :	0.000	0.000	0.000	0.000													
												0.751					

Location: Kennewick Dr \& Homestead Rd
City: Cupertino
Control: Signalize

Project ID: 18-08664-008
Date: $12 / 11 / 2018$
Bikes

Location: Kennewick Dr \& Homestead Rd City: Cupertino

Project ID: 18-08664-008
Date: 12/11/2018
Pedestrians (Crosswalks)

NS/ EW Streets:	Kennewick Dr		Kennewick Dr		Homestead Rd		Homestead Rd		
AM	NORTH LEG		SOUTH LEG		EAST LEG		WEST LEG		
	EB	WB	EB	WB	NB	SB	NB	SB	TOTAL
7:00 AM	0	0	1	1	0	0	0	0	2
7:15 AM	0	1	0	1	0	3	0	2	7
7:30 AM	0	6	3	9	0	24	2	14	58
7:45 AM	0	3	2	43	0	83	0	68	199
8:00 AM	0	0	0	4	0	9	0	10	23
8:15 AM	0	0	0	7	0	3	1	0	11
8:30 AM	2	0	2	1	1	0	0	2	8
8:45 AM	0	0	1	0	0	0	0	2	3
TOTAL VOLUMES: APPROACH \% 's :	EB	WB	EB	WB	NB	SB	NB	SB	TOTAL
	2	10	9	66	1	122	3	98	311
	16.67\%	83.33\%	12.00\%	88.00\%	0.81\%	99.19\%	2.97\%	97.03\%	
PEAK HR :	07:30 A	8:30 AM							TOTAL
PEAK HR VOL: PEAK HR FACTOR :	0	9	5	63	0	119	3	92	291
		0.375	0.417	0.366		0.358	0.375	0.338	
	0.375		0.378		0.358		0.349		0.366

NS/ EW Streets:	a																
	Kennewick Dr				Kennewick Dr				Homestead Rd				Homestead Rd				
AM	NORTHBOUND				SOUTHBOUND				EASTBOUND				WESTBOUND				
	NL		$\begin{gathered} 0 \\ \text { NR } \end{gathered}$	$\begin{gathered} 0 \\ \mathrm{NU} \end{gathered}$	$\begin{gathered} 0 \\ \text { SL } \end{gathered}$	$\begin{gathered} 1 \\ \text { ST } \end{gathered}$	$\begin{gathered} 0 \\ S R \\ \hline \end{gathered}$	$\begin{gathered} 0 \\ \text { SU } \end{gathered}$	$\begin{gathered} 1 \\ \text { EL } \end{gathered}$	$\begin{gathered} 2 \\ \text { ET } \end{gathered}$	$\begin{gathered} 0 \\ \text { ER } \end{gathered}$	$\begin{gathered} 0 \\ \text { EU } \end{gathered}$	$\begin{gathered} 1 \\ \text { WL } \end{gathered}$	$\begin{gathered} 2 \\ \text { WT } \end{gathered}$	0		TOTAL
															WR	WU	
7:00 AM	0	0	0	0	2	0	5	0	3	36	3	0	2	95	5	0	151
7:15 AM	0	0	0	0	5	0	8	0	1	43	0	0	5	143	6	0	211
7:30 AM	0	0	0	0	5	0	10	0	1	51	0	0	2	197	5	0	271
7:45 AM	0	0	0	0	12	0	13	0	12	75	1	0	6	194	12	0	325
8:00 AM	0	0	0	0	13	0	8	0	11	106	1	0	5	189	8	0	341
8:15 AM	0	0	0	0	14	3	4	0	11	113	5	0	7	204	18	0	379
8:30 AM	0	0	0	0	12	18	8	0	27	150	35	0	17	298	19	0	584
8:45 AM	0	0	0	0	14	29	5	0	43	234	40	0	23	282	30	0	700
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
TOTAL VOLUMES :	0	0	0	0	77	50	61	0	109	808	85	0	67	1602	103	0	2962
APPROACH \% 's :					40.96\%	26.60\%	32.45\%	0.00\%	10.88\%	80.64\%	8.48\%	0.00\%	3.78\%	90.41\%	5.81\%	0.00\%	
PEAK HR :		8:00 AM	9:00 A														TOTAL
PEAK HR VOL :	0	0	0	0	53	50	25	0	92	603	81	0	52	973	75	0	2004
PEAK HR FACTOR :	0.000	0.000	0.000	0.000	0.946	0.431	0.781	0.000	0.535	0.644	0.506	0.000	0.565	0.816	0.625	0.000	
														0.8			0.716

PM	NORTHBOUND				SOUTHBOUND				EASTBOUND				WESTBOUND				TOTAL
	0	0	0	0	0	1	0	0	1	2	0	0	1	2	0	0	
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	
2:00 PM	0	0		0	4	1	7	0	2	141	1	0	3	128	14	0	301
2:15 PM	0	0	0	0	5	0	5	0	9	135	3	0	4	122	9	0	292
2:30 PM	0	0	0	0	8	0	4	0	3	137	1	0	6	137	7	0	303
2:45 PM	0	0	0	0	9	0	3	0	9	127	1	0	1	156	13	0	319
3:00 PM	0	0	0	0	13	1	4	0	6	222	2	0	1	141	20	0	410
3:15 PM	0	0	0	0	12	3	5	0	13	207	5	0	9	120	17	0	391
3:30 PM	0	0	0	0	16	2	15	0	44	321	11	0	7	128	19	0	563
3:45 PM	0	0	0	0	11	1	4	0	17	225	7	0	2	111	7	0	385
4:00 PM	0	0	0	0	7	0	3	0	6	238	3	0	2	116	11	0	386
4:15 PM	0	0	0	0	11	1	4	0	11	277	4	0	1	120	14	0	443
4:30 PM	0	0	0	0	11	0	6	0	3	299	2	0	3	118	11	1	454
4:45 PM	0	0	0	0	12	3	4	0	6	290	14	0	5	105	15	0	454
5:00 PM	0	0	0	0	7	2	7	0	4	325	5	0	1	120	14	0	485
5:15 PM	0	0	0	0	11	0	5	0	2	319	13	0	2	126	13	0	491
5:30 PM	0	0	0	0	13	0	3	0	10	368	10	0	7	141	18	0	570
5:45 PM	0	0	0	0	13	1	8	0	6	313	8	0	10	156	13	0	528
TOTAL VOLUMES : APPROACH \% 's :	NL	NT	$\begin{gathered} \hline \text { NR } \\ 0 \end{gathered}$	$\begin{gathered} \hline \mathrm{NU} \\ 0 \end{gathered}$	$\begin{gathered} \hline \text { SL } \\ 163 \\ 61.51 \% \\ \hline \end{gathered}$	$\begin{aligned} & \hline \text { ST } \\ & 15 \\ & 5.66 \% \\ & \hline \end{aligned}$	$\begin{gathered} \hline \text { SR } \\ 87 \\ 32.83 \% \end{gathered}$	$\begin{aligned} & \hline \text { SU } \\ & 0 \\ & 0.00 \% \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { EL } \\ & 151 \\ & 3.61 \% \end{aligned}$	$\begin{gathered} \text { ET } \\ 3944 \\ 94.24 \% \end{gathered}$	$\begin{aligned} & \hline \text { ER } \\ & 90 \\ & 2.15 \% \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { EU } \\ & 0 \\ & 0.00 \% \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { WL } \\ & 64 \\ & 2.75 \% \end{aligned}$	$\begin{gathered} \hline \text { WT } \\ 2045 \\ 87.96 \% \\ \hline \end{gathered}$	$\begin{aligned} & \hline \text { WR } \\ & 215 \\ & 9.25 \% \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { WU } \\ & 1 \\ & 0.04 \% \\ & \hline \end{aligned}$	$\begin{gathered} \hline \text { TOTAL } \\ 6775 \end{gathered}$
	0	0															
PEAK HR :	05:00 PM - 06:00 PM				$\begin{gathered} 44 \\ 0.846 \end{gathered}$	30.375	${ }_{0.795}{ }^{0.719}$	$\begin{gathered} 0 \\ 0.000 \end{gathered}$	$\begin{gathered} 22 \\ 0.550 \end{gathered}$	$\begin{aligned} & 1325 \\ & 0.900 \\ & 0 . \end{aligned}$	$\begin{gathered} 36 \\ 0.692 \end{gathered}$	$\begin{gathered} 0 \\ 0.000 \end{gathered}$	$\begin{gathered} 20 \\ 0.500 \end{gathered}$	$\begin{aligned} & 543 \\ & 0.870 \\ & 0 . \end{aligned}$	580.806	$\begin{gathered} 0 \\ 0.000 \end{gathered}$	TOTAL 2074 0.910
PEAK HR VOL:	0	0	0	0													
PEAK HR FACTOR :	0.000	0.000	0.000	0.000													

Location: Kennewick Dr \& Homestead Rd City: Cupertino

Project ID: 18-08549-008 Date: 10/24/2018
Pedestrians (Crosswalks)

NS/ EW Streets:	Kennewick Dr		Kennewick Dr		Homestead Rd		Homestead Rd		
$A M$	NORTH LEG		SOUTH LEG		EAST LEG		WEST LEG		TOTAL
	EB	WB	EB	WB	NB	SB	NB	SB	
7:00 AM	0	0	1	0	0	0	0	0	1
7:15 AM	0	1	1	1	0	0	0	0	3
7:30 AM	0	2	2	0	0	0	0	1	5
7:45 AM	0	0	1	6	0	5	0	1	13
8:00 AM	0	0	4	3	0	5	0	0	12
8:15 AM	0	0	2	7	0	3	0	2	14
8:30 AM	1	7	1	5	3	22	0	27	66
8:45 AM	2	8	1	61	2	84	6	85	249
TOTAL VOLUMES : APPROACH \% 's :	EB	WB	EB	WB	NB	SB	NB	SB	TOTAL
	3	18	13	83	5	119	6	116	363
	14.29\%	85.71\%	13.54\%	86.46\%	4.03\%	95.97\%	4.92\%	95.08\%	
PEAK HR :	08:00 AM - 09:00 AM		$\begin{gathered} 8 \\ 0.500 \end{gathered}$						TOTAL
PEAK HR VOL:	3	15		76	5	114	6	114	341
PEAK HR FACTOR :	0.375	0.469		0.311	0.417	0.339	0.250	0.335	
	0.450			0.339	0.346		0.330		0.342

PM	NORTH LEG		SOUTH LEG		EAST LEG		WEST LEG		TOTAL
	EB	WB	EB	WB	NB	SB	NB	SB	
2:00 PM	0	0	7	1	8	2	1	0	19
2:15 PM	0	0	1	0	1	0	2	0	4
2:30 PM	0	0	0	2	0	1	1	0	4
2:45 PM	1	0	2	1	1	2	0	0	7
3:00 PM	2	0	7	1	1	0	0	0	11
3:15 PM	5	2	47	2	6	0	18	13	93
3:30 PM	6	1	110	7	106	1	82	1	314
3:45 PM	0	2	6	4	6	2	0	0	20
4:00 PM	1	0	4	1	4	2	3	0	15
4:15 PM	0	0	7	1	2	0	2	0	12
4:30 PM	0	2	10	4	11	0	6	1	34
4:45 PM	3	1	3	0	2	0	0	0	9
5:00 PM	2	2	0	0	2	1	3	0	10
5:15 PM	0	2	0	1	0	0	2	0	5
5:30 PM	0	0	1	4	2	0	2	1	10
5:45 PM	1	2	1	1	0	0	0	0	5
	EB	WB	EB	WB	NB	SB	NB	SB	TOTAL
TOTAL VOLUMES :	21	14	206	30	152	11	122	16	572
APPROACH \% 's :	60.00\%	40.00\%	87.29\%	12.71\%	93.25\%	6.75\%	88.41\%	11.59\%	
PEAK HR :	05:00 P	6:00 PM							TOTAL
PEAK HR VOL :	3	6	2	6	4	1	7	1	30
PEAK HR FACTOR :	0.375	0.750	0.500	0.375	0.500	0.250	0.583	0.250	0.750
	0.563		0.400		0.417		0.667		

Location: Stelling Rd \& Homestead Rd

Project ID: 18-08664-009
Date: 12/13/2018
Total

Location: Stelling Rd \& Homestead Rd
City: Cupertino
Control: Signalize

Project ID: 18-08664-009
Date: 12/13/2018
Bikes

NS/ EW Streets:	Stelling Rd				Stelling Rd				Homestead Rd				Homestead Rd				
$A M$	NORTHBOUND				SOUTHBOUND				EASTBOUND				WESTBOUND				
	2	2	0	0	1	2	0	0	1	2	0	0	1	2	0	0	
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
7:00 AM	0	0	0	0	0	0	0	0	0	1	1	0	1	2	0	0	5
7:15 AM	0	2	1	0	1	1	0	0	1	5	0	0	2	1	0	0	14
7:30 AM	1	1	1	0	0	0	0	0	0	5	1	0	0	2	0	0	11
7:45 AM	0	0	0	0	1	1	0	0	0	2	0	0	1	0	0	0	5
8:00 AM	0	1	1	0	1	0	0	0	0	1	0	0	1	2	0	0	7
8:15 AM	0	2	1	0	0	1	0	0	0	4	1	0	2	2	0	0	13
8:30 AM	1	1	0	0	0	4	0	0	0	4	0	0	0	1	0	0	11
8:45 AM	1	1	0	0	0	2	0	0	0	4	0	0	1	3	0	0	12
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
TOTAL VOLUMES :	3	8	4	0	3	9	0	0	1	26	3	0	8	13	0	0	78
APPROACH \% 's :	20.00\%	53.33\%	26.67\%	0.00\%	25.00\%	75.00\%	0.00\%	0.00\%	3.33\%	86.67\%	10.00\%	0.00\%	38.10\%	61.90\%	0.00\%	0.00\%	
PEAK HR :	07:45 AM - 08:45 AM				$\begin{gathered} 2 \\ 0.500 \end{gathered}$	60.3750											TOTAL
PEAK HR VOL : PEAK HR FACTOR :	1	4	2	0			0	0	0	11	1	0	4	5	0	0	36
	0.250	0.500	0.500	0.000			0.000	0.000	0.000	0.688	0.250	0.000	0.500	0.625	0.000	0.000	
	0.583						0.500		0.600								0.692

Location: Stelling Rd \& Homestead Rd City: Cupertino

Project ID: 18-08664-009
Date: 12/13/2018
Pedestrians (Crosswalks)

NS/ EW Streets:	Stelling Rd		Stelling Rd		Homestead Rd		Homestead Rd		
AM	NORTH LEG		SOUTH LEG		EAST LEG		WEST LEG		
	EB	WB	EB	WB	NB	SB	NB	SB	TOTAL
7:00 AM	2	1	0	0	2	0	1	0	6
7:15 AM	3	0	7	0	1	0	3	0	14
7:30 AM	14	1	13	0	10	0	20	6	64
7:45 AM	0	11	1	33	1	15	1	7	69
8:00 AM	0	4	4	4	1	4	2	2	21
8:15 AM	0	4	1	4		3	0	3	15
8:30 AM	2	3	2	1	3	5	1	1	18
8:45 AM	0	0	2	2	1	2	1	0	8
TOTAL VOLUMES: APPROACH \% 's :	EB	WB	EB	WB	NB	SB	NB	SB	TOTAL
	21	24	30	44	19	29	29	19	215
	46.67\%	53.33\%	40.54\%	59.46\%	39.58\%	60.42\%	60.42\%	39.58\%	
PEAK HR :	07:45 AM - 08:45 AM		$\begin{gathered} 8 \\ 0.500 \end{gathered}$	$\begin{gathered} 42 \\ 0.318 \end{gathered}$	$\begin{gathered} 5 \\ 0.417 \end{gathered}$	$\begin{array}{lc} \\ .7 & \begin{array}{c} 27 \\ 0.450 \end{array} \end{array}$	40.500	${ } \quad{ }_{0.531} \begin{gathered} 13 \\ 0.464 \end{gathered}$	TOTAL
PEAK HR VOL :	2	22							123
PEAK HR FACTOR :	0.250	0.500							
	0.545			0.368					0.446

PM	NORTHBOUND				SOUTHBOUND				EASTBOUND				WESTBOUND				TOTAL
	1	2	0	0	1	2	0	0	1	2	0	0	1	2	0	0	
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	
2:00 PM	47	50	49	0	42	65	23	0	11	110	34	0	36	91	41	0	599
2:15 PM	36	50	44	0	45	46	14	0	17	87	43	0	42	96	46	0	566
2:30 PM	44	54	48	0	55	46	12	0	9	89	41	0	30	98	34	0	560
2:45 PM	44	48	55	0	40	70	16	0	9	88	47	0	42	128	51	0	638
3:00 PM	44	52	63	0	50	58	20	0	14	150	63	0	43	111	43	0	711
3:15 PM	47	64	49	0	51	84	21	0	10	135	62	0	54	96	38	0	711
3:30 PM	53	60	53	0	46	76	17	0	40	204	71	0	42	115	34	0	811
3:45 PM	43	62	57	0	29	108	13	0	25	175	58	0	55	76	38	0	739
4:00 PM	28	79	62	0	53	93	15	0	25	161	63	0	40	87	35	0	741
4:15 PM	50	57	53	0	54	88	12	0	19	212	65	0	40	107	32	0	789
4:30 PM	35	56	59	0	60	80	13	0	13	224	72	0	43	98	39	0	792
4:45 PM	40	53	70	0	53	85	14	0	23	208	92	0	48	99	41	0	826
5:00 PM	53	75	66	0	45	127	18	0	16	210	94	0	52	87	41	0	884
5:15 PM	52	68	71	0	62	146	14	0	20	205	87	0	53	111	48	0	937
5:30 PM	61	96	64	0	59	134	14	0	21	230	99	0	55	115	46	0	994
5:45 PM	51	75	58	0	46	128	12	0	17	200	127	0	59	110	41	0	924
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
TOTAL VOLUMES :	728	999	921	0	790	1434	248	0	289	2688	1118	0	734	1625	648	0	12222
APPROACH \% 's :	27.49\%	37.73\%	34.78\%	0.00\%	31.96\%	58.01\%	10.03\%	0.00\%	7.06\%	65.64\%	27.30\%	0.00\%	24.41\%	54.04\%	21.55\%	0.00\%	
PEAK HR :	05:00 PM - 06:00 PM				$\begin{aligned} & 212 \\ & 0.855 \end{aligned}$	5350.9160	$\begin{gathered} 58 \\ 0.806 \\ \hline 7 \end{gathered}$	$\begin{gathered} 0 \\ 0.000 \end{gathered}$	$\begin{gathered} 74 \\ 0.881 \end{gathered}$	$\begin{array}{ll} 845 & 407 \\ 0.918 & 0.801 \\ 0.947 \end{array}$		$\begin{gathered} 0 \\ 0.000 \end{gathered}$	$\begin{aligned} & 219 \\ & 0.928 \end{aligned}$	$\begin{aligned} & 423 \\ & 0.920 \\ & \quad 0.94 \end{aligned}$	$\begin{gathered} 176 \\ 0.917 \\ 7 \\ \hline \end{gathered}$	$\begin{gathered} 0 \\ 0.000 \end{gathered}$	$\begin{gathered} \hline \text { TOTAL } \\ 3739 \\ 0.940 \\ \hline \end{gathered}$
PEAK HR VOL:	217	314	259	0													
PEAK HR FACTOR :	0.889	0.818	0.912	0.000													
	0.894																

Location: Stelling Rd \& Homestead Rd City: Cupertino

Project ID: 18-08549-009
Date: 10/24/2018
Pedestrians (Crosswalks)

NS/ EW Streets:	Stelling Rd		Stelling Rd		Homestead Rd		Homestead Rd		
$A M$	NORTH LEG		SOUTH LEG		EAST LEG		WEST LEG		TOTAL
	EB	WB	EB	WB	NB	SB	NB	SB	
7:00 AM	0	1	1	0	1	1	0	1	5
7:15 AM	0	0	0	1	0	3	1	2	7
7:30 AM	0	4	2	4	3	2	1	1	17
7:45 AM	2	6	1	2	0	3	0	2	16
8:00 AM	0	8	2	1	0	0	0	6	17
8:15 AM	1	0	3	8	2	4	1	2	21
8:30 AM	0	26	0	41	0	27	0	5	99
8:45 AM	2	19	4	56	0	32	0	7	120
	EB	WB	EB	WB	NB	SB	NB	SB	TOTAL
TOTAL VOLUMES :	5	64	13	113	6	72	3	26	302
APPROACH \% 's :	7.25\%	92.75\%	10.32\%	89.68\%	7.69\%	92.31\%	10.34\%	89.66\%	
PEAK HR :	08:00 AM - 09:00 AM		90.563						TOTAL
PEAK HR VOL:	3	53		106	2	63	1	20	257
PEAK HR FACTOR :	0.375	0.510		0.473	0.250	0.492	0.250	0.714	
	0.538			0.479	0.508		0.750		0.535

PM	NORTH LEG		SOUTH LEG		EAST LEG		WEST LEG		TOTAL
	EB	WB	EB	WB	NB	SB	NB	SB	
2:00 PM	3	1	2	1	4	1	3	1	16
2:15 PM	2	0	8	0	0	2	3	1	16
2:30 PM	3	3	2	0	5	3	0	1	17
2:45 PM	3	2	4	12	4	4	2	1	32
3:00 PM	0	6	0	6	10	0	1	3	26
3:15 PM	13	5	3	0	3	2	3	0	29
3:30 PM	52	0	75	1	22	1	38	2	191
3:45 PM	10	1	19	2	12	4	5	3	56
4:00 PM	8	0	7	1	8	8	3	1	36
4:15 PM	8	2	9	2	5	7	8	1	42
4:30 PM	10	3	4	0	2	3	3	1	26
4:45 PM	0	3	4	1	6	3	2	2	21
5:00 PM	4	4	3	3	4	4	2	1	25
5:15 PM	3	2	1	6	3	9	5	1	30
5:30 PM	2	5	5	2	4	4	2	6	30
5:45 PM	3	0	7	4	5	4	1	11	35
	EB	WB	EB	WB	NB	SB	NB	SB	TOTAL
TOTAL VOLUMES :	124	37	153	41	97	59	81	36	628
APPROACH \% 's :	77.02\%	22.98\%	78.87\%	21.13\%	62.18\%	37.82\%	69.23\%	30.77\%	
PEAK HR :	05:00 P	6:00 PM							TOTAL
PEAK HR VOL :	12	11	16	15	16	21	10	19	120
PEAK HR FACTOR :	0.750	0.550	0.571	0.625	0.800	0.583	0.500	0.432	0.857
	0.719		0.705		0.771		0.604		

Safe Routes To School

F. Synchro Worksheets

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\uparrow	「	\％	\uparrow	「	\％	个4	F＇	\％	个个	F
Traffic Volume（vph）	15	48	32	425	20	454	14	1140	234	198	545	18
Future Volume（vph）	15	48	32	425	20	454	14	1140	234	198	545	18
Ideal Flow（vphpl）	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time（s）		5.2	5.2	5.1	5.1	5.1	4.7	5.8	5.8	4.9	5.8	5.8
Lane Util．Factor		1.00	1.00	0.95	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00
Frpb，ped／bikes		1.00	0.93	1.00	1.00	0.98	1.00	1.00	0.97	1.00	1.00	0.98
Flpb，ped／bikes		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Fit		1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85
Flt Protected		0.99	1.00	0.95	0.96	1.00	0.95	1.00	1.00	0.95	1.00	1.00
Satd．Flow（prot）		1840	1466	1681	1693	1558	1770	3539	1536	1770	3539	1550
FIt Permitted		0.99	1.00	0.95	0.96	1.00	0.95	1.00	1.00	0.95	1.00	1.00
Satd．Flow（perm）		1840	1466	1681	1693	1558	1770	3539	1536	1770	3539	1550
Peak－hour factor，PHF	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96
Adj．Flow（vph）	16	50	33	443	21	473	15	1188	244	206	568	19
RTOR Reduction（vph）	0	0	30	0	0	375	0	0	117	0	0	9
Lane Group Flow（vph）	0	66	3	230	234	98	15	1188	127	206	568	10
Confl．Peds．（\＃／hr）	2		3	3		2						
Confl．Bikes（\＃／hr）			23			1			11			2
Turn Type	Split	NA	Perm	Split	NA	Perm	Prot	NA	Perm	Prot	NA	Perm
Protected Phases	4	4		3	3		5	2		1	6	
Permitted Phases			4			3			2			6
Actuated Green，G（s）		13.2	13.2	31.0	31.0	31.0	3.3	62.8	62.8	22.0	81.7	81.7
Effective Green，g（s）		13.2	13.2	31.0	31.0	31.0	3.3	62.8	62.8	22.0	81.7	81.7
Actuated g／C Ratio		0.09	0.09	0.21	0.21	0.21	0.02	0.42	0.42	0.15	0.54	0.54
Clearance Time（s）		5.2	5.2	5.1	5.1	5.1	4.7	5.8	5.8	4.9	5.8	5.8
Vehicle Extension（s）		4.0	4.0	4.0	4.0	4.0	3.0	4.0	4.0	3.0	4.0	4.0
Lane Grp Cap（vph）		161	129	347	349	321	38	1481	643	259	1927	844
v／s Ratio Prot		c0．04		0.14	c0．14		0.01	c0．34		c0．12	0.16	
v／s Ratio Perm			0.00			0.06			0.08			0.01
v／c Ratio		0.41	0.02	0.66	0.67	0.30	0.39	0.80	0.20	0.80	0.29	0.01
Uniform Delay，d1		64.7	62.5	54.7	54.8	50.4	72.4	38.2	27.6	61.8	18.5	15.7
Progression Factor		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Incremental Delay，d2		2.3	0.1	5.2	5.4	0.7	6.6	4.7	0.7	15.4	0.1	0.0
Delay（s）		67.0	62.6	59.9	60.2	51.1	79.0	42.8	28.3	77.2	18.6	15.7
Level of Service		E	E	E	E	D	E	D	C	E	B	B
Approach Delay（s）		65.6			55.5			40.8			33.8	
Approach LOS		E			E			D			C	

Intersection Summary			
HCM 2000 Control Delay	44.1	HCM 2000 Level of Service	D
HCM 2000 Volume to Capacity ratio	0.73		
Actuated Cycle Length（s）	150.0	Sum of lost time（s）	E
Intersection Capacity Utilization	82.5%	ICU Level of Service	
Analysis Period（min）	15		

c Critical Lane Group

	ψ			\%		4	4	\dagger	\%		$\frac{1}{1}$	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{7}$	\uparrow		${ }^{1}$	中 ${ }^{\text {a }}$			\$			\uparrow	「
Traffic Volume (vph)	65	551	3	2	793	194	22	11	10	114	9	82
Future Volume (vph)	65	551	3	2	793	194	22	11	10	114	9	82
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	5.0	5.5		5.0	5.5			5.6			5.6	5.6
Lane Util. Factor	1.00	1.00		1.00	0.95			1.00			1.00	1.00
Frpb, ped/bikes	1.00	1.00		1.00	0.98			0.99			1.00	0.92
Flpb, ped/bikes	1.00	1.00		1.00	1.00			0.97			0.97	1.00
Frt	1.00	1.00		1.00	0.97			0.97			1.00	0.85
Flt Protected	0.95	1.00		0.95	1.00			0.97			0.96	1.00
Satd. Flow (prot)	1770	1860		1770	3354			1694			1733	1463
Flt Permitted	0.95	1.00		0.95	1.00			0.81			0.74	1.00
Satd. Flow (perm)	1770	1860		1770	3354			1402			1349	1463
Peak-hour factor, PHF	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83
Adj. Flow (vph)	78	664	4	2	955	234	27	13	12	137	11	99
RTOR Reduction (vph)	0	0	0	0	13	0	0	9	0	0	0	60
Lane Group Flow (vph)	78	668	0	2	1176	0	0	43	0	0	148	39
Confl. Peds. (\#/hr)	31		17	17		31	45		13	13		45
Confl. Bikes (\#/hr)			106			9						
Turn Type	Prot	NA		Prot	NA		Perm	NA		Perm	NA	Perm
Protected Phases	5	2		1	6			8			4	
Permitted Phases							8			4		4
Actuated Green, G (s)	8.3	88.0		1.4	81.1			23.9			23.9	23.9
Effective Green, g (s)	8.3	88.6		1.4	81.7			23.9			23.9	23.9
Actuated g/C Ratio	0.06	0.68		0.01	0.63			0.18			0.18	0.18
Clearance Time (s)	5.0	6.1		5.0	6.1			5.6			5.6	5.6
Vehicle Extension (s)	1.0	2.5		1.0	2.5			2.5			2.5	2.5
Lane Grp Cap (vph)	113	1267		19	2107			257			248	268
v/s Ratio Prot	c0.04	0.36		0.00	c0.35							
v/s Ratio Perm								0.03			c0.11	0.03
v/c Ratio	0.69	0.53		0.11	0.56			0.17			0.60	0.15
Uniform Delay, d1	59.6	10.3		63.7	13.8			44.7			48.6	44.5
Progression Factor	1.00	1.00		1.41	0.23			1.00			1.00	1.00
Incremental Delay, d2	13.6	1.6		0.8	1.0			0.2			3.2	0.2
Delay (s)	73.2	11.9		90.9	4.1			44.9			51.8	44.7
Level of Service	E	B		F	A			D			D	D
Approach Delay (s)		18.3			4.3			44.9			49.0	
Approach LOS		B			A			D			D	
Intersection Summary												
HCM 2000 Control Delay			14.8		HCM 2000	Level of	ervice		B			
HCM 2000 Volume to Capacity ratio			0.58									
Actuated Cycle Length (s)			130.0		Sum of los	time (s)			16.1			
Intersection Capacity Utilization			73.7\%		CU Level	Service			D			
Analysis Period (min)		15		ICULeval of Service								

Analysis Period (min) 15
C Critical Lane Group

C Critical Lane Group

C Critical Lane Group

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\％	性		\％	性			\uparrow	「		\uparrow	F
Traffic Volume（vph）	26	621	17	2	930	117	59	4	18	155	3	125
Future Volume（vph）	26	621	17	2	930	117	59	4	18	155	3	125
Ideal Flow（vphpl）	1900	1900	1900	1900	1900	1900	1900	2100	2100	1900	2100	2100
Total Lost time（s）	5.0	5.5		5.0	5.5			5.7	5.7		5.7	5.7
Lane Util．Factor	1.00	0.95		1.00	0.95			1.00	1.00		1.00	1.00
Frpb，ped／bikes	1.00	1.00		1.00	0.99			1.00	0.97		1.00	0.96
Flpb，ped／bikes	1.00	1.00		1.00	1.00			0.99	1.00		0.99	1.00
Fit	1.00	0.80		1.00	0.98			1.00	0.85		1.00	0.85
Flt Protected	0.95	1.00		0.95	1.00			0.96	1.00		0.95	1.00
Satd．Flow（prot）	1770	2811		1770	3439			1938	1705		1942	1684
Flt Permitted	0.95	1.00		0.95	1.00			0.39	1.00		0.66	1.00
Satd．Flow（perm）	1770	2811		1770	3439			500	1705		1351	1684
Peak－hour factor，PHF	0.69	0.69	0.69	0.69	0.69	0.69	0.69	0.69	0.69	0.69	0.69	0.69
Adj．Flow（vph）	38	900	25	3	1348	170	86	6	26	225	4	181
RTOR Reduction（vph）	0	1	0	0	7	0	0	0	21	0	0	114
Lane Group Flow（vph）	38	924	0	3	1511	0	0	92	5	0	229	67
Confl．Peds．（\＃／hr）	22		23	23		22	18		8	8		18
Confl．Bikes（\＃／hr）			62			18			2			
Bus Blockages（\＃／hr）	0	2	2	0	0	0	0	0	0	0	0	0
Turn Type	Prot	NA		Prot	NA		Perm	NA	Perm	Perm	NA	Perm
Protected Phases	1	6		5	2			8			4	

Permitted Phases				8	8	4	4			
Actuated Green，G（s）	6.7	84.4	1.6	79.3		27.2	27.2		27.2	27.2

Effective Green，g（s）	6.7	85.0	1.6	79.9	27.2	27.2	27.2	27.2
Actuated g／C Ratio	0.05	0.65	0.01	0.61	0.21	0.21	0.21	0.21
Clearance Time（s）	5.0	6.1	5.0	6.1	5.7	5.7	5.7	5.7
Vehicle Extension（s）	1.0	2.5	1.0	2.5	2.5	2.5	2.5	2.5
Lane Grp Cap（vph）	91	1837	21	2113	104	356	282	352
v／s Ratio Prot	c0．02	c0．33	0.00	c0．44				
v／s Ratio Perm					c0．18	0.00	0.17	0.04
v／c Ratio	0.42	0.50	0.14	0.72	0.88	0.02	0.81	0.19
Uniform Delay，d1	59.8	11.6	63.5	17.2	49.9	40.8	49.0	42.3
Progression Factor	1.05	0.90	0.95	1.18	1.00	1.00	1.00	1.00
Incremental Delay，d2	0.9	0.8	0.4	0.8	52.9	0.0	15.8	0.2
Delay（s）	64.0	11.2	60.6	21.0	102.7	40.8	64.7	42.5
Level of Service	E	B	E	C	F	D	E	D
Approach Delay（s）		13.3		21.1	89.1		54.9	

| Approach LOS B C | B |
| :---: | :---: | :---: | :---: | :---: |

Intersection Summary			
HCM 2000 Control Delay	25.9	HCM 2000 Level of Service	C
HCM 2000 Volume to Capacity ratio	0.74		16.2
Actuated Cycle Length（s）	130.0	Sum of lost time（s）	C
Intersection Capacity Utilization	68.3%	ICU Level of Service	
Analysis Period（min）	15		
C Critical Lane Group			

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\％	个的		\％	个t		${ }^{7}$	$\hat{}$		${ }^{7}$	\uparrow	F
Traffic Volume（vph）	59	539	160	63	798	182	107	105	32	212	85	71
Future Volume（vph）	59	539	160	63	798	182	107	105	32	212	85	71
Ideal Flow（vphpl）	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time（s）	5.5	5.5		5.5	5.5		5.6	5.6		5.5	5.5	5.5
Lane Utill．Factor	1.00	0.95		1.00	0.95		1.00	1.00		0.95	0.95	1.00
Frpb，ped／bikes	1.00	0.92		1.00	0.95		1.00	0.94		1.00	1.00	0.76
Flpb，ped／bikes	1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00	1.00
Frt	1.00	0.97		1.00	0.97		1.00	0.97		1.00	1.00	0.85
Flt Protected	0.95	1.00		0.95	1.00		0.95	1.00		0.95	0.98	1.00
Satd．Flow（prot）	1770	3147		1770	3259		1770	1685		1681	1728	1203
Flt Permitted	0.95	1.00		0.95	1.00		0.95	1.00		0.95	0.98	1.00
Satd．Flow（perm）	1770	3147		1770	3259		1770	1685		1681	1728	1203
Peak－hour factor，PHF	0.72	0.72	0.72	0.72	0.72	0.72	0.72	0.72	0.72	0.72	0.72	0.72
Adj．Flow（vph）	82	749	222	88	1108	253	149	146	44	294	118	99
RTOR Reduction（vph）	0	0	0	0	0	0	0	0	0	0	0	0
Lane Group Flow（vph）	82	971	0	88	1361	0	149	190	0	185	227	99
Confl．Peds．（\＃／hr）	110		167	167		110	97		175	175		97

109												
Confl．Bikes（\＃／hr）			9									
Bus Blockages（\＃／hr）	0	2	0	0	4	4	0	0	0	0	0	0
Turn Type	Prot	NA	Prot	NA		Split	NA		Split	NA	Perm	
Protected Phases	1	6		5	2		3	3		4	4	

| 4 | | | | | | | | | |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Permitted Phases | | | | | | | | | |
| Actuated Green，G（s） | 11.6 | 44.0 | 12.5 | 44.9 | 25.4 | 25.4 | 24.8 | 24.8 | 24.8 |
| Effective Green，(s) | 11.6 | 44.6 | 12.5 | 45.5 | 25.4 | 25.4 | 25.4 | 25.4 | 25.4 |
| Actuated g／C Ratio | 0.09 | 0.34 | 0.10 | 0.35 | 0.20 | 0.20 | 0.20 | 0.20 | 0.20 |
| Clearance Time（s） | 5.5 | 6.1 | 5.5 | 6.1 | 5.6 | 5.6 | 6.1 | 6.1 | 6.1 |
| Vehicle Extension（s） | 1.0 | 2.5 | 1.0 | 2.5 | 1.0 | 1.0 | 2.5 | 2.5 | 2.5 |
| Lane Grp Cap（vph） | 157 | 1079 | 170 | 1140 | 345 | 329 | 328 | 337 | 235 |
| v／s Ratio Prot | 0.05 | 0.31 | $c 0.05$ | $c 0.42$ | 0.08 | $c 0.11$ | 0.11 | $c 0.13$ | |

v／s Ratio Perm							0.08		
V／c Ratio	0.52	0.90	0.52	1.19	0.43	0.58	0.56	0.67	0.42
Uniform Delay，d1	56.6	40.6	55.9	42.2	46.0	47.4	47.3	48.5	45.9
Progression Factor	1.25	0.73	1.40	0.75	1.00	1.00	1.00	1.00	1.00
Incremental Delay，d2	1.3	10.6	0.7	93.1	0.3	1.5	1.8	4.8	0.9
Delay（s）	72.1	40.2	78.7	124.9	46.3	49.0	49.1	53.2	46.7
Level of Service	E	D	E	F	D	D	D	D	D
Approach Delay（s）		42.7		122.1		47.8		50.5	

$\begin{array}{ccccc}\text { Approach LOS D } & \text { D D }\end{array}$

Intersection Summary			
HCM 2000 Control Delay	78.7	HCM 2000 Level of Service	E
HCM 2000 Volume to Capacity ratio	0.86		22.1
Actuated Cycle Length（s）	130.0	Sum of lost time（s）	G
Intersection Capacity Utilization	102.0%	ICU Level of Service	
Analysis Period（min）	15		
C Critical Lane Group			

Analysis Period (min)
15
c Critical Lane Group

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\uparrow	F	${ }^{7}$	\uparrow	「	${ }^{7}$	44	「	${ }^{1}$	44	「
Traffic Volume（vph）	6	21	13	308	22	174	17	484	250	340	1047	16
Future Volume（vph）	6	21	13	308	22	174	17	484	250	340	1047	16
Ideal Flow（vphpl）	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time（s）		5.2	5.2	5.1	5.1	5.1	4.7	5.8	5.8	4.9	5.8	5.8
Lane Util．Factor		1.00	1.00	0.95	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00
Frpb，ped／bikes		1.00	0.98	1.00	1.00	0.97	1.00	1.00	0.98	1.00	1.00	0.98
Flpb，ped／bikes		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt		1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85
Flt Protected		0.99	1.00	0.95	0.96	1.00	0.95	1.00	1.00	0.95	1.00	1.00
Satd．Flow（prot）		1843	1551	1681	1696	1535	1770	3539	1548	1770	3539	1546
Flt Permitted		0.99	1.00	0.95	0.96	1.00	0.95	1.00	1.00	0.95	1.00	1.00
Satd．Flow（perm）		1843	1551	1681	1696	1535	1770	3539	1548	1770	3539	1546
Peak－hour factor，PHF	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Adj．Flow（vph）	6	22	14	328	23	185	18	515	266	362	1114	17
RTOR Reduction（vph）	0	0	13	0	0	154	0	0	173	0	0	7
Lane Group Flow（vph）	0	28	1	174	177	31	18	515	93	362	1114	10
Confl．Peds．（\＃／hr）	2		2	2		2						
Confl．Bikes（\＃／hr）			2			12			2			5
Turn Type	Split	NA	Perm	Split	NA	Perm	Prot	NA	Perm	Prot	NA	Perm
Protected Phases	4	4		3	3		5	2		1	6	
Permitted Phases			4			3			2			6
Actuated Green，G（s）		8.4	8.4	19.9	19.9	19.9	3.3	42.1	42.1	28.6	67.6	67.6
Effective Green，g（s）		8.4	8.4	19.9	19.9	19.9	3.3	42.1	42.1	28.6	67.6	67.6
Actuated g／C Ratio		0.07	0.07	0.17	0.17	0.17	0.03	0.35	0.35	0.24	0.56	0.56
Clearance Time（s）		5.2	5.2	5.1	5.1	5.1	4.7	5.8	5.8	4.9	5.8	5.8
Vehicle Extension（s）		4.0	4.0	4.0	4.0	4.0	3.0	4.0	4.0	3.0	4.0	4.0
Lane Grp Cap（vph）		129	108	278	281	254	48	1241	543	421	1993	870
v／s Ratio Prot		c0．02		0.10	c0．10		0.01	0.15		c0．20	c0．31	
v／s Ratio Perm			0.00			0.02			0.06			0.01
v／c Ratio		0.22	0.01	0.63	0.63	0.12	0.38	0.41	0.17	0.86	0.56	0.01
Uniform Delay，d1		52.7	51.9	46.6	46.6	42.6	57.3	29.6	26.9	43.8	16.7	11.5
Progression Factor		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Incremental Delay，d2		1.2	0.0	4.9	5.0	0.3	4.9	1.0	0.7	15.9	0.4	0.0
Delay（s）		53.9	52.0	51.5	51.6	42.9	62.2	30.6	27.6	59.7	17.1	11.5
Level of Service		D	D	D	D	D	E	C	C	E	B	B
Approach Delay（s）		53.2			48.6			30.3			27.4	
Approach LOS		D			D			C			C	

Intersection Summary			
HCM 2000 Control Delay	32.5	HCM 2000 Level of Service	C
HCM 2000 Volume to Capacity ratio	0.64		21.0
Actuated Cycle Length（s）	120.0	Sum of lost time（s）	C
Intersection Capacity Utilization	65.0%	ICU Level of Service	
Analysis Period（min）	15		

C Critical Lane Group

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\%	\uparrow		7	个t			¢			\uparrow	F
Traffic Volume (vph)	51	646	15	2	462	55	8	1	5	71	1	52
Future Volume (vph)	51	646	15	2	462	55	8	1	5	71	1	52
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	5.0	5.5		5.0	5.5			5.6			5.6	5.6
Lane Util. Factor	1.00	1.00		1.00	0.95			1.00			1.00	1.00
Frpb, ped/bikes	1.00	1.00		1.00	0.98			0.99			1.00	0.98
Flpb, ped/bikes	1.00	1.00		1.00	1.00			0.99			0.99	1.00
Frt	1.00	1.00		1.00	0.98			0.95			1.00	0.85
Flt Protected	0.95	1.00		0.95	1.00			0.97			0.95	1.00
Satd. Flow (prot)	1770	1853		1770	3419			1691			1759	1546
Flt Permitted	0.95	1.00		0.95	1.00			0.87			0.72	1.00
Satd. Flow (perm)	1770	1853		1770	3419			1515			1324	1546
Peak-hour factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	57	718	17	2	513	61	9	1	6	79	1	58
RTOR Reduction (vph)		-	0	0	6	0	0	5	0	0	0	48
Lane Group Flow (vph)	57	735	0	2	568	0	0	11	0	0	80	10
Confl. Peds. (\#/hr)	31		15	15		31	8		4	4		8
Confl. Bikes (\#/hr)			7			112						

Confl. Bikes (\#/hr) 7112

Turn Type	Prot	NA	Prot	NA	Perm	NA	Perm	NA	Perm
Protected Phases	5	2	1	6		8		4	
Permitted Phases					8		4		4
Actuated Green, G (s)	7.3	88.9	1.4	83.0		23.0		23.0	23.0
Effective Green, $\mathrm{g}(\mathrm{s})$	7.3	89.5	1.4	83.6		23.0		23.0	23.0
Actuated g/C Ratio	0.06	0.69	0.01	0.64		0.18		0.18	0.18
Clearance Time (s)	5.0	6.1	5.0	6.1		5.6		5.6	5.6
Vehicle Extension (s)	1.0	2.5	1.0	2.5		2.5		2.5	2.5
Lane Grp Cap (vph)	99	1275	19	2198		268		234	273
v/s Ratio Prot	c0.03	c0.40	0.00	0.17					
v/s Ratio Perm						0.01		c0.06	0.01
v/c Ratio	0.58	0.58	0.11	0.26		0.04		0.34	0.04
Uniform Delay, d1	59.8	10.5	63.7	9.9		44.4		46.9	44.3
Progression Factor	1.00	1.00	1.33	0.49		1.00		1.00	1.00
Incremental Delay, d2	5.0	1.9	0.9	0.3		0.0		0.6	0.0
Delay (s)	64.8	12.4	85.3	5.1		44.4		47.5	44.4
Level of Service	E	B	F	A		D		D	D
Approach Delay (s)		16.1		5.4		44.4		46.2	
Approach LOS		B		A		D		D	

Intersection Summary			
HCM 2000 Control Delay	15.1	HCM 2000 Level of Service	B
HCM 2000 Volume to Capacity ratio	0.54		16.1
Actuated Cycle Length (s)	130.0	Sum of lost time (s)	B
Intersection Capacity Utilization	61.6%	ICU Level of Service	
Analysis Period (min)	15		

C Critical Lane Group

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\dagger		${ }^{7}$	44			*		${ }^{7}$	F	
Traffic Volume (vph)	0	716	4	12	461	0	1	0	18	87	3	59
Future Volume (vph)	0	716	4	12	461	0	1	0	18	87	3	59
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		6.0		6.0	6.0			6.0		6.0	6.0	
Lane Util. Factor		1.00		1.00	0.95			1.00		1.00	1.00	
Frpb, ped/bikes		1.00		1.00	1.00			1.00		1.00	0.98	
Flpb, ped/bikes		1.00		1.00	1.00			1.00		1.00	1.00	
Frt		1.00		1.00	1.00			0.87		1.00	0.86	
Flt Protected		1.00		0.95	1.00			1.00		0.95	1.00	
Satd. Flow (prot)		1860		1770	3539			1619		1770	1569	
Flt Permitted		1.00		0.95	1.00			1.00		0.95	1.00	
Satd. Flow (perm)		1860		1770	3539			1619		1770	1569	
Peak-hour factor, PHF	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85
Adj. Flow (vph)	0	842	5	14	542	0	1	0	21	102	4	69
RTOR Reduction (vph)	0	0	0	0	0	0	0	22	0	0	63	0
Lane Group Flow (vph)	0	847	0	14	542	0	0	0	0	102	10	0
Confl. Peds. (\#/hr)	47		27	27		47	5					5
Confl. Bikes (\#/hr)			11			125						

Turn Type	NA	Prot	NA	Split	NA	Split	NA
Protected Phases	2	1	6	3	3	4	4
Permitted Phases							
Actuated Green, G (s)	89.8	3.1	97.9		3.3	12.8	12.8
Effective Green, g (s)	89.8	2.1	97.9		2.3	11.8	11.8
Actuated g/C Ratio	0.69	0.02	0.75		0.02	0.09	0.09
Clearance Time (s)	6.0	5.0	6.0		5.0	5.0	5.0
Vehicle Extension (s)	5.0	3.0	5.0		3.0	3.0	3.0
Lane Grp Cap (vph)	1284	28	2665		28	160	142
v/s Ratio Prot	c0.46	0.01	c0.15		c0.00	c0.06	0.01
v/s Ratio Perm							
v/c Ratio	0.66	0.50	0.20		0.01	0.64	0.07
Uniform Delay, d1	11.4	63.4	4.7		62.7	57.0	54.1
Progression Factor	0.85	1.19	0.59		1.00	1.00	1.00
Incremental Delay, d2	2.4	13.3	0.2		0.2	8.1	0.2
Delay (s)	12.1	88.8	2.9		62.9	65.1	54.3
Level of Service	B	F	A		E	E	D
Approach Delay (s)	12.1		5.1		62.9		60.6
Approach LOS	B		A		E		E

Intersection Summary			
HCM 2000 Control Delay	15.6	HCM 2000 Level of Service	B
HCM 2000 Volume to Capacity ratio	0.64		24.0
Actuated Cycle Length (s)	130.0	Sum of lost time (s)	B
Intersection Capacity Utilization	61.0%	ICU Level of Service	
Analysis Period (min)	15		

C Critical Lane Group

C Critical Lane Group

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{7}$	性		\％	蚛			\uparrow	「		\uparrow	F
Traffic Volume（vph）	43	695	18	3	485	57	19	9	11	107	6	44
Future Volume（vph）	43	695	18	3	485	57	19	9	11	107	6	44
Ideal Flow（vphpl）	1900	1900	1900	1900	1900	1900	1900	2100	2100	1900	2100	2100
Total Lost time（s）	5.0	5.5		5.0	5.5			5.7	5.7		5.7	5.7
Lane Util．Factor	1.00	0.95		1.00	0.95			1.00	1.00		1.00	1.00
Frpb，ped／bikes	1.00	0.99		1.00	0.98			1.00	0.96		1.00	0.94
Flpb，ped／bikes	1.00	1.00		1.00	1.00			0.97	1.00		0.98	1.00
Fit	1.00	0.80		1.00	0.98			1.00	0.85		1.00	0.85
Flt Protected	0.95	1.00		0.95	1.00			0.97	1.00		0.95	1.00
Satd．Flow（prot）	1770	2806		1770	3421			1937	1683		1918	1640
Flt Permitted	0.95	1.00		0.95	1.00			0.72	1.00		0.71	1.00
Satd．Flow（perm）	1770	2806		1770	3421			500	1683		1430	1640
Peak－hour factor，PHF	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82
Adj．Flow（vph）	52	848	22	4	591	70	23	11	13	130	7	54
RTOR Reduction（vph）	0	1	0	0	5	0	0	0	11	0	0	47
Lane Group Flow（vph）	52	869	0	4	656	0	0	34	2	0	137	7
Confl．Peds．（\＃／hr）	36		59	59		36	36		18	18		36

Confl．Bikes（\＃／hr）	0	2	24	0	0	0	0	0	0	0	0	0
Bus Blockages（\＃／hr）	0	2	0	0	0							
Turn Type	Prot	NA	Prot	NA		Perm	NA	Perm	Perm	NA	Perm	
Protected Phases	1	6	5	2			8			4		

Permitted Phases						8	4	4
Actuated Green，G（s）	7.1	93.8	1.6	88.3	17.8	17.8	17.8	17.8
Effective Green， g （s）	7.1	94.4	1.6	88.9	17.8	17.8	17.8	17.8
Actuated g／C Ratio	0.05	0.73	0.01	0.68	0.14	0.14	0.14	0.14
Clearance Time（s）	5.0	6.1	5.0	6.1	5.7	5.7	5.7	5.7
Vehicle Extension（s）	1.0	2.5	1.0	2.5	2.5	2.5	2.5	2.5
Lane Grp Cap（vph）	96	2037	21	2339	68	230	195	224
v／s Ratio Prot	c0．03	c0．31	0.00	0.19				
v／s Ratio Perm					0.07	0.00	c0．10	0.00
v／c Ratio	0.54	0.43	0.19	0.28	0.50	0.01	0.70	0.03
Uniform Delay，d1	59.9	7.1	63.6	8.0	52.0	48.5	53.6	48.6
Progression Factor	0.90	1.15	1.61	0.43	1.00	1.00	1.00	1.00
Incremental Delay，d2	2.9	0.6	1.4	0.3	4.2	0.0	10.1	0.0
Delay（s）	56.7	8.7	104.0	3.7	56.1	48.5	63.7	48.7
Level of Service	E	A	F	A	E	D	E	D
Approach Delay（s）		11.4		4.3	54.0		59.5	

Intersection Summary			B
HCM 2000 Control Delay	15.0	HCM 2000 Level of Service	
HCM 2000 Volume to Capacity ratio	0.49		16.2
Actuated Cycle Length（s）	130.0	Sum of lost time（s）	C
Intersection Capacity Utilization	64.7%	ICU Level of Service	
Analysis Period（min）	15		
C Critical Lane Group			

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\%	性		${ }^{7}$	性		7	F		7	\uparrow	F
Traffic Volume (vph)	61	668	50	21	408	133	65	53	66	245	45	62
Future Volume (vph)	61	668	50	21	408	133	65	53	66	245	45	62
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	5.5	5.5		5.5	5.5		5.6	5.6		5.5	5.5	5.5
Lane Util. Factor	1.00	0.95		1.00	0.95		1.00	1.00		0.95	0.95	1.00
Frpb, ped/bikes	1.00	0.98		1.00	0.94		1.00	0.80		1.00	1.00	0.91
Flpb, ped/bikes	1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00	1.00
Frt	1.00	0.99		1.00	0.96		1.00	0.92		1.00	1.00	0.85
Flt Protected	0.95	1.00		0.95	1.00		0.95	1.00		0.95	0.97	1.00
Satd. Flow (prot)	1770	3414		1770	3193		1770	1363		1681	1712	1445
Flt Permitted	0.95	1.00		0.95	1.00		0.95	1.00		0.95	0.97	1.00
Satd. Flow (perm)	1770	3414		1770	3193		1770	1363		1681	1712	1445
Peak-hour factor, PHF	0.76	0.76	0.76	0.76	0.76	0.76	0.76	0.76	0.76	0.76	0.76	0.76
Adj. Flow (vph)	80	879	66	28	537	175	86	70	87	322	59	82
RTOR Reduction (vph)	0	0	0	0	0	0	0	0	0	0	0	0
Lane Group Flow (vph)	80	945	0	28	712	0	86	157	0	203	178	82
Confl. Peds. (\#/hr)	105		137	137		105	53		315	315		53
Confl. Bikes (\#/hr)			50			12			49			3
Bus Blockages (\#/hr)	0	2	0	0	4	4	0	0	0	0	0	0

Turn Type	Prot	NA	Prot	NA	Split	NA	Split	NA	Perm
Protected Phases	1	6	5	2	3	3	4	4	4
Permitted Phases									
Actuated Green, G (s)	9.3	49.5	7.2	47.4	25.4	25.4	24.6	24.6	24.6
Effective Green, g (s)	9.3	50.1	7.2	48.0	25.4	25.4	25.2	25.2	25.2
Actuated g/C Ratio	0.07	0.39	0.06	0.37	0.20	0.20	0.19	0.19	0.19
Clearance Time (s)	5.5	6.1	5.5	6.1	5.6	5.6	6.1	6.1	6.1
Vehicle Extension (s)	1.0	2.5	1.0	2.5	1.0	1.0	2.5	2.5	2.5
Lane Grp Cap (vph)	126	1315	998	1178	345	266	325	331	280
v/s Ratio Prot	c0.05	c0.28	0.02	0.22	0.05	c0.12	c0.12	0.10	

v/s Ratio Perm									
V/c Ratio	0.63	0.72	0.29	0.60	0.25	0.59	0.62	0.54	0.29
Uniform Delay, d1	58.7	34.0	58.9	33.3	44.2	47.6	48.1	47.2	44.8
Progression Factor	0.97	1.04	1.37	0.95	1.00	1.00	1.00	1.00	1.00
Incremental Delay, d2	7.0	3.2	0.6	2.2	0.1	2.3	3.2	1.3	0.4
Delay (s)	63.7	38.4	81.4	33.7	44.4	49.9	51.3	48.5	45.2
Level of Service	E	D	F	C	D	D	D	D	D
Approach Delay (s)		40.4		35.5		47.9		49.1	

Approach LOS D
Intersection Summary
HCM 2000 Control Delay
HCM 2000 Volume to Capacity ratio 0.6
Actuated Cycle Length (s) 130.
$\begin{array}{llll}\text { Intersection Capacity Utilization } & 84.7 \% & \text { ICU Level of Service } & E\end{array}$
Analysis Period (min)
15
C Critical Lane Group

Analysis Period (min)
15
c Critical Lane Group

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\uparrow	「	\％	\uparrow	「	${ }_{1}$	个 \uparrow	「	＊	个个	F
Traffic Volume（vph）	5	26	20	232	21	121	17	502	271	463	1238	12
Future Volume（vph）	5	26	20	232	21	121	17	502	271	463	1238	12
Ideal Flow（vphpl）	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time（s）		5.2	5.2	5.1	5.1	5.1	4.7	5.8	5.8	4.9	5.8	5.8
Lane Utill．Factor		1.00	1.00	0.95	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00
Frpb，ped／bikes		1.00	0.96	1.00	1.00	0.98	1.00	1.00	0.97	1.00	1.00	0.97
Flpb，ped／bikes		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Fit		1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85
Flt Protected		0.99	1.00	0.95	0.96	1.00	0.95	1.00	1.00	0.95	1.00	1.00
Satd．Flow（prot）		1848	1527	1681	1699	1559	1770	3539	1535	1770	3539	1535
Flt Permitted		0.99	1.00	0.95	0.96	1.00	0.95	1.00	1.00	0.95	1.00	1.00
Satd．Flow（perm）		1848	1527	1681	1699	1559	1770	3539	1535	1770	3539	1535
Peak－hour factor，PHF	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96
Adj．Flow（vph）	5	27	21	242	22	126	18	523	282	482	1290	12
RTOR Reduction（vph）	0	0	19	0	0	109	0	0	192	0	0	5
Lane Group Flow（vph）	0	32	2	131	133	17	18	523	90	482	1290	8
Confl．Peds．（\＃／hr）			8	8								1
Confl．Bikes（\＃／hr）			5			2			9			12
Turn Type	Split	NA	Perm	Split	NA	Perm	Prot	NA	Perm	Prot	NA	Perm
Protected Phases	4	4		3	3		5	2		1	6	
Permitted Phases			4			3			2			6
Actuated Green，G（s）		10.3	10.3	17.1	17.1	17.1	3.4	41.6	41.6	40.0	78.4	78.4
Effective Green， $\mathrm{g}(\mathrm{s})$		10.3	10.3	17.1	17.1	17.1	3.4	41.6	41.6	40.0	78.4	78.4
Actuated g／C Ratio		0.08	0.08	0.13	0.13	0.13	0.03	0.32	0.32	0.31	0.60	0.60
Clearance Time（s）		5.2	5.2	5.1	5.1	5.1	4.7	5.8	5.8	4.9	5.8	5.8
Vehicle Extension（s）		4.0	4.0	4.0	4.0	4.0	3.0	4.0	4.0	3.0	4.0	4.0
Lane Grp Cap（vph）		146	120	221	223	205	46	1132	491	544	2134	925
v／s Ratio Prot		c0．02		0.08	c0．08		0.01	0.15		c0．27	c0．36	
v／s Ratio Perm			0.00			0.01			0.06			0.01
v／c Ratio		0.22	0.01	0.59	0.60	0.08	0.39	0.46	0.18	0.89	0.60	0.01
Uniform Delay，d1		56.1	55.2	53.2	53.2	49.6	62.3	35.3	31.9	42.8	16.1	10.3
Progression Factor		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Incremental Delay，d2		1.0	0.1	4.9	4.9	0.2	5.4	0.4	0.2	15.9	1.3	0.0
Delay（s）		57.1	55.2	58.1	58.1	49.8	67.7	35.7	32.2	58.7	17.4	10.3
Level of Service		E	E	E	E	D	E	D	C	E	B	B
Approach Delay（s）		56.4			55.4			35.2			28.5	
Approach LOS		E			E			D			c	

Intersection Summary			
HCM 2000 Control Delay	34.2	HCM 2000 Level of Service	C
HCM 2000 Volume to Capacity ratio	0.68		
Actuated Cycle Length（s）	130.0	Sum of lost time（s）	C
Intersection Capacity Utilization	67.5%	ICU Level of Service	
Analysis Period（min）	15		

C Critical Lane Group

Analysis Period (min)
15
c Critical Lane Group

Movement EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	F		7	44			\$		${ }^{7}$	\dagger	
Traffic Volume (vph) 0	773	7	25	389	0	5	0	17	272	12	89
Future Volume (vph) 0	773	7	25	389	0	5	0	17	272	12	89
Ideal Flow (vphpl) 1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	6.0		6.0	6.0			6.0		6.0	6.0	
Lane Util. Factor	1.00		1.00	0.95			1.00		1.00	1.00	
Frpb, ped/bikes	1.00		1.00	1.00			1.00		1.00	0.99	
Flpb, ped/bikes	1.00		1.00	1.00			1.00		1.00	1.00	
Frt	1.00		1.00	1.00			0.89		1.00	0.87	
Flt Protected	1.00		0.95	1.00			0.99		0.95	1.00	
Satd. Flow (prot)	1859		1770	3539			1648		1770	1594	
Flt Permitted	1.00		0.95	1.00			0.99		0.95	1.00	
Satd. Flow (perm)	1859		1770	3539			1648		1770	1594	
Peak-hour factor, PHF 0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph) 0	840	8	27	423	0	5	0	18	296	13	97
RTOR Reduction (vph) 0	0	0	0	0	0	0	23	0	0	78	0
Lane Group Flow (vph) 0	848	0	27	423	0	0	0	0	296	32	0
Confl. Peds. (\#/hr) 7		6	6		7	2					2
Confl. Bikes (\#/hr)		17			27						
Turn Type	NA		Prot	NA		Split	NA		Split	NA	
Protected Phases	2		1	6		3	3		4	4	
Permitted Phases											
Actuated Green, G (s)	90.9		5.1	101.0			3.3		29.7	29.7	
Effective Green, g (s)	90.9		4.1	101.0			2.3		28.7	28.7	
Actuated g/C Ratio	0.61		0.03	0.67			0.02		0.19	0.19	
Clearance Time (s)	6.0		5.0	6.0			5.0		5.0	5.0	
Vehicle Extension (s)	5.0		3.0	5.0			3.0		3.0	3.0	
Lane Grp Cap (vph)	1126		48	2382			25		338	304	
v/s Ratio Prot	c0.46		c0.02	0.12			c0.00		c0.17	0.02	
v/s Ratio Perm											
v/c Ratio	0.75		0.56	0.18			0.01		0.88	0.10	
Uniform Delay, d1	21.4		72.1	9.1			72.7		58.9	50.0	
Progression Factor	0.74		1.00	0.75			1.00		1.00	1.00	
Incremental Delay, d2	4.2		14.2	0.2			0.2		21.5	0.2	
Delay (s)	20.1		86.1	7.0			73.0		80.4	50.2	
Level of Service	C		F	A			E		F	D	
Approach Delay (s)	20.1			11.7			73.0			72.2	
Approach LOS	C			B			E			E	
Intersection Summary											
HCM 2000 Control Delay		30.9		HCM 2000	Level of	ervice		C			
HCM 2000 Volume to Capacity ratio		0.76									
Actuated Cycle Length (s)		150.0		Sum of los	time (s)			24.0			
Intersection Capacity Utilization		72.8\%		CU Level	Service			C			
Analysis Period (min)		15									

C Critical Lane Group

C Critical Lane Group

Movement	SBR
Lanałłonfigurations	$\mathbf{7}$
Traffic Volume (vph)	47
Future Volume (vph)	47
Ideal Flow (vphpl)	1900
Total Lost time (s)	5.5
Lane Util. Factor	1.00
Frpb, ped/bikes	1.00
Flpb, ped/bikes	1.00
Frt	0.85
Flt Protected	1.00
Satd. Flow (prot)	1583
Flt Permitted	1.00
Satd. Flow (perm)	1583
Peak-hour factor, PHF	0.94
Adj. Flow (vph)	50
RTOR Reduction (vph)	47
Lane Group Flow (vph)	3
Confl. Peds. \#\#hr)	
Confl. Bikes (\#/hr)	
Turn Type	Perm
Protected Phases	
Permitted Phases	4
Actuated Green, G (s)	9.5
Effective Green, g (s)	9.7
Actuated g/C Ratio	0.06
Clearance Time (s)	5.7
Vehicle Extension (s)	2.5
Lane Grp Cap (vph)	102
v/s Ratio Prot	
v/s Ratio Perm	0.00
v/c Ratio	0.03
Uniform Delay, d1	65.7
Progression Factor	1.00
Incremental Delay, d2	0.1
Delay (s)	65.8
Level of Service	E
Approach Delay (s)	
Approach LOS	
Intersection Summary	

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{7}$	个t		${ }^{7}$	中 ${ }^{2}$			\uparrow	「		\uparrow	「
Traffic Volume（vph）	30	953	23	12	425	38	6	3	12	41	11	38
Future Volume（vph）	30	953	23	12	425	38	6	3	12	41	11	38
Ideal Flow（vphpl）	1900	1900	1900	1900	1900	1900	1900	2100	2100	1900	2100	2100
Total Lost time（s）	5.0	5.5		5.0	5.5			5.7	5.7		5.7	5.7
Lane Util．Factor	1.00	0.95		1.00	0.95			1.00	1.00		1.00	1.00
Frpb，ped／bikes	1.00	1.00		1.00	1.00			1.00	1.00		1.00	0.98
Flpb，ped／bikes	1.00	1.00		1.00	1.00			1.00	1.00		1.00	1.00
Frt	1.00	0.80		1.00	0.99			1.00	0.85		1.00	0.85
Flt Protected	0.95	1.00		0.95	1.00			0.97	1.00		0.96	1.00
Satd．Flow（prot）	1770	2817		1770	3479			1990	1750		1981	1716
Flt Permitted	0.95	1.00		0.95	1.00			0.81	1.00		0.77	1.00
Satd．Flow（perm）	1770	2817		1770	3479			500	1750		1577	1716
Peak－hour factor，PHF	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
Adj．Flow（vph）	32	1025	25	13	457	41	6	3	13	44	12	41
RTOR Reduction（vph）	0	1	0	0	3	0	0	0	12	0	0	38
Lane Group Flow（vph）	32	1049	0	13	495	0	0	9	1	0	56	3
Confl．Peds．（\＃／hr）	7		6	6		7	1					1
Confl．Bikes（\＃／hr）			22			22						2
Bus Blockages（\＃／hr）	0	2	2	0	0	0	0	0	0	0	0	0
Turn Type	Prot	NA		Prot	NA		Perm	NA	Perm	Perm	NA	Perm
Protected Phases	1	6		5	2			8			4	

Permitted Phases					8	8	4	4
Actuated Green，G（s）	5.0	118.6	3.2	116.8	11.4	11.4	11.4	11.4
Effective Green， g （s）	5.0	119.2	3.2	117.4	11.4	11.4	11.4	11.4
Actuated g／C Ratio	0.03	0.79	0.02	0.78	0.08	0.08	0.08	0.08
Clearance Time（s）	5.0	6.1	5.0	6.1	5.7	5.7	5.7	5.7
Vehicle Extension（s）	1.0	2.5	1.0	2.5	2.5	2.5	2.5	2.5
Lane Grp Cap（vph）	59	2238	37	2722	38	133	119	130
v／s Ratio Prot	c0．02	c0．37	0.01	0.14				
v／s Ratio Perm					0.02	0.00	c0．04	0.00
v／c Ratio	0.54	0.47	0.35	0.18	0.24	0.01	0.47	0.02
Uniform Delay，d1	71.4	5.0	72.4	4.1	65.2	64.1	66.4	64.2
Progression Factor	1.09	1.72	0.85	1.10	1.00	1.00	1.00	1.00
Incremental Delay，d2	4.0	0.5	1.9	0.1	2.3	0.0	2.1	0.1
Delay（s）	81.5	9.2	63.4	4.7	67.5	64.1	68.5	64.2
Level of Service	F	A	E	A	E	E	E	E
Approach Delay（s）		11.3		6.2	65.5		66.7	
Approach LOS		B		A	E		E	

Intersection Summary			
HCM 2000 Control Delay	13.6	HCM 2000 Level of Service	B
HCM 2000 Volume to Capacity ratio	0.48		16.2
Actuated Cycle Length（s）	150.0	Sum of lost time（s）	A
Intersection Capacity Utilization	54.2%	ICU Level of Service	
Analysis Period（min）	15		
C Critical Lane Group			

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\％	个的		7	性		\％	$\hat{\beta}$		\％	\uparrow	F
Traffic Volume（vph）	54	946	5	14	424	165	4	8	11	425	11	93
Future Volume（vph）	54	946	5	14	424	165	4	8	11	425	11	93
Ideal Flow（vphpl）	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time（s）	5.5	5.5		5.5	5.5		5.6	5.6		5.5	5.5	5.5
Lane Utill．Factor	1.00	0.95		1.00	0.95		1.00	1.00		0.95	0.95	1.00
Frpb，ped／bikes	1.00	1.00		1.00	0.98		1.00	0.98		1.00	1.00	0.98
Flpb，ped／bikes	1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00	1.00
Frt	1.00	1.00		1.00	0.96		1.00	0.91		1.00	1.00	0.85
Flt Protected	0.95	1.00		0.95	1.00		0.95	1.00		0.95	0.96	1.00
Satd．Flow（prot）	1770	3521		1770	3310		1770	1677		1681	1691	1552
Flt Permitted	0.95	1.00		0.95	1.00		0.95	1.00		0.95	0.96	1.00
Satd．Flow（perm）	1770	3521		1770	3310		1770	1677		1681	1691	1552
Peak－hour factor，PHF	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Adj．Flow（vph）	57	1006	5	15	451	176	4	9	12	452	12	99
RTOR Reduction（vph）		0	0	0	0	0	0	0	0	0	0	0
Lane Group Flow（vph）	57	1011	0	15	627	0	4	21	0	285	179	99
Confl．Peds．（\＃／hr）	11		12	12		11	3		7	7		3
Confl．Bikes（\＃／hr）			15			14			2			3
Bus Blockages（\＃／hr）	0	2	0	0	4	4	0	0	0	0	0	0
Turn Type	Prot	NA		Prot	NA		Split	NA		Split	NA	Perm
Protected Phases	1	6		5	，		3	3		，	4	
Permitted Phases												4
Actuated Green，G（s）	9.0	64.8		4.8	60.6		26.0	26.0		31.1	31.1	31.1
Effective Green，g（s）	9.0	65.4		4.8	61.2		26.0	26.0		31.7	31.7	31.7
Actuated g／C Ratio	0.06	0.44		0.03	0.41		0.17	0.17		0.21	0.21	0.21
Clearance Time（s）	5.5	6.1		5.5	6.1		5.6	5.6		6.1	6.1	6.1
Vehicle Extension（s）	1.0	2.5		1.0	2.5		1.0	1.0		2.5	2.5	2.5
Lane Grp Cap（vph）	106	1535		56	1350		306	290		355	357	327
v／s Ratio Prot	c0．03	c0．29		0.01	0.19		0.00	c0．01		c0．17	0.11	
v／s Ratio Perm												0.06
v／c Ratio	0.54	0.66		0.27	0.46		0.01	0.07		0.80	0.50	0.30
Uniform Delay，d1	68.5	33.5		70.9	32.4		51.4	51.9		56.2	52.2	49.8
Progression Factor	1.13	0.64		1.69	0.34		1.00	1.00		1.00	1.00	1.00
Incremental Delay，d2	2.4	2.0		0.9	1.1		0.0	0.0		12.0	0.8	0.4
Delay（s）	79.8	23.3		120.8	12.1		51.4	51.9		68.2	53.0	50.2
Level of Service	E	C		F	B		D	D		E	D	D
Approach Delay（s）		26.3			14.7			51.9			60.2	
Approach LOS		C			B			D			E	

Intersection Summary			
HCM 2000 Control Delay	31.7	HCM 2000 Level of Service	C
HCM 2000 Volume to Capacity ratio	0.58		22.1
Actuated Cycle Length（s）	150.0	Sum of lost time（s）	C
Intersection Capacity Utilization	72.1%	ICU Level of Service	
Analysis Period（min）	15		
C Critical Lane Group			

Analysis Period (min) 15
c Critical Lane Group

c Critical Lane Group

C Critical Lane Group

C Critical Lane Group

C Critical Lane Group

C Critical Lane Group

c Critical Lane Group

C Critical Lane Group

	4		\checkmark	4		4	4	\dagger	\%		1	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		个		${ }_{1}$	44			\$		${ }^{*}$	F	
Traffic Volume (vph)	0	771	4	13	497	0	1	0	19	94	3	64
Future Volume (vph)	0	771	4	13	497	0	1	0	19	94	3	64
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		6.0		6.0	6.0			6.0		6.0	6.0	
Lane Util. Factor		1.00		1.00	0.95			1.00		1.00	1.00	
Frpb, ped/bikes		1.00		1.00	1.00			1.00		1.00	0.98	
Flpb, ped/bikes		1.00		1.00	1.00			1.00		1.00	1.00	
Frt		1.00		1.00	1.00			0.87		1.00	0.86	
Flt Protected		1.00		0.95	1.00			1.00		0.95	1.00	
Satd. Flow (prot)		1860		1770	3539			1619		1770	1568	
Flt Permitted		1.00		0.95	1.00			1.00		0.95	1.00	
Satd. Flow (perm)		1860		1770	3539			1619		1770	1568	
Peak-hour factor, PHF	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85
Adj. Flow (vph)	0	907	5	15	585	0	1	0	22	111	4	75
RTOR Reduction (vph)	0	0	0	0	0	0	0	23	0	0	68	0
Lane Group Flow (vph)	0	912	0	15	585	0	0	0	0	111	11	0
Confl. Peds. (\#/hr)	51		29	29		51	5					5
Confl. Bikes (\#/hr)			12			135						
Turn Type		NA		Prot	NA		Split	NA		Split	NA	
Protected Phases		2		1	6		3	3		4	4	
Permitted Phases												
Actuated Green, G (s)		89.1		3.1	97.2			3.3		13.5	13.5	
Effective Green, g (s)		89.1		2.1	97.2			2.3		12.5	12.5	
Actuated g/C Ratio		0.69		0.02	0.75			0.02		0.10	0.10	
Clearance Time (s)		6.0		5.0	6.0			5.0		5.0	5.0	
Vehicle Extension (s)		5.0		3.0	5.0			3.0		3.0	3.0	
		1274		28	2646			28		170	150	
v/s Ratio Prot		c0.49		0.01	c0.17			c0.00		c0.06	0.01	
v/s Ratio Perm												
v/c Ratio		0.72		0.54	0.22			0.01		0.65	0.07	
Uniform Delay, d1		12.6		63.5	5.0			62.7		56.7	53.5	
Progression Factor		0.84		1.25	0.55			1.00		1.00	1.00	
Incremental Delay, d2		3.0		18.2	0.2			0.2		8.7	0.2	
Delay (s)		13.7		97.3	2.9			62.9		65.3	53.7	
Level of Service		B		F	A			E		E	D	
Approach Delay (s)		13.7			5.3			62.9			60.5	
Approach LOS		B			A			E			E	
Intersection Summary												
HCM 2000 Control Delay			16.6		HCM 2000	evel of	ervice		B			
HCM 2000 Volume to Capacity ratio			0.69									
Actuated Cycle Length (s)			130.0		Sum of los	ime (s)			24.0			
Intersection Capacity Utilization			64.2\%		CU Level	Service			C			
Analysis Period (min)			15									

[^2]

C Critical Lane Group

C Critical Lane Group

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\uparrow	F	\%	\uparrow	F	${ }^{7}$	性	F	${ }^{7}$	个 \uparrow	7
Traffic Volume (vph)	5	28	22	250	23	130	18	541	292	499	1334	13
Future Volume (vph)	5	28	22	250	23	130	18	541	292	499	1334	13
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		5.2	5.2	5.1	5.1	5.1	4.7	5.8	5.8	4.9	5.8	5.8
Lane Util. Factor		1.00	1.00	0.95	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00
Frpb, ped/bikes		1.00	0.96	1.00	1.00	0.98	1.00	1.00	0.97	1.00	1.00	0.97
Flpb, ped/bikes		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt		1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85
Flt Protected		0.99	1.00	0.95	0.96	1.00	0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (prot)		1849	1525	1681	1699	1559	1770	3539	1530	1770	3539	1534
Flt Permitted		0.99	1.00	0.95	0.96	1.00	0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (perm)		1849	1525	1681	1699	1559	1770	3539	1530	1770	3539	1534
Peak-hour factor, PHF	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96
Adj. Flow (vph)	5	29	23	260	24	135	19	564	304	520	1390	14
RTOR Reduction (vph)	0	0	21	0	0	116	0	0	220	0	0	6
Lane Group Flow (vph)	0	34	2	140	144	19	19	564	84	520	1390	8
Confl. Peds. (\#/hr)			9	9								1
Confl. Bikes (\#/hr)			5			2			10			13
Turn Type	Split	NA	Perm	Split	NA	Perm	Prot	NA	Perm	Prot	NA	Perm

Permitted Phases	4				3	2					6
Actuated Green, G (s)	10.3	10.3	17.9	17.9	17.9	3.4	35.9	35.9	44.9	77.6	77.6
Effective Green, g (s)	10.3	10.3	17.9	17.9	17.9	3.4	35.9	35.9	44.9	77.6	77.6
Actuated g/C Ratio	0.08	0.08	0.14	0.14	0.14	0.03	0.28	0.28	0.35	0.60	0.60
Clearance Time (s)	5.2	5.2	5.1	5.1	5.1	4.7	5.8	5.8	4.9	5.8	5.8
Vehicle Extension (s)	4.0	4.0	4.0	4.0	4.0	3.0	4.0	4.0	3.0	4.0	4.0
Lane Grp Cap (vph)	146	120	231	233	214	46	977	422	611	2112	915
v/s Ratio Prot	c0.02		0.08	c0.08		0.01	0.16		c0.29	c0.39	
v/s Ratio Perm		0.00			0.01			0.05			0.01
v/c Ratio	0.23	0.02	0.61	0.62	0.09	0.41	0.58	0.20	0.85	0.66	0.01
Uniform Delay, d1	56.1	55.2	52.7	52.8	48.9	62.3	40.5	36.0	39.4	17.4	10.6
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Incremental Delay, d2	1.1	0.1	5.1	5.5	0.2	5.9	1.0	0.3	11.0	1.6	0.0
Delay (s)	57.3	55.2	57.9	58.3	49.2	68.2	41.5	36.4	50.4	19.0	10.6
Level of Service	E	E	E	E	D	E	D	D	D	B	B

Level of Service	E	E	E	E	D	E	D
Approach Delay (s)	56.4	E	E	40.3	D	B	
Approach LOS	E			E		D	C

Intersection Summary			
HCM 2000 Control Delay	35.0	HCM 2000 Level of Service	C
HCM 2000 Volume to Capacity ratio	0.71		
Actuated Cycle Length (s)	130.0	Sum of lost time (s)	21.0
Intersection Capacity Utilization	71.2%	ICU Level of Service	C
Analysis Period (min)	15		

C Critical Lane Group

	4	\rightarrow		\dagger			4	4			\downarrow	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{7}$	\uparrow		\%	\uparrow			\$			\$	
Traffic Volume (veh/h)	26	855	43	15	427	37	10	1	14	23	0	30
Future Volume (Veh/h)	26	855	43	15	427	37	10	1	14	23	0	30
Sign Control		Free			Free			Stop			Stop	
Grade		0\%			0\%			0\%			0\%	
Peak Hour Factor	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98
Hourly flow rate (vph)	27	872	44	15	436	38	10	1	14	23	0	31
Pedestrians					4			24			6	
Lane Width (ft)					12.0			12.0			12.0	
Walking Speed (tt/s)					4.0			4.0			4.0	
Percent Blockage					0			2			1	
Right turn flare (veh)												
Median type		None			None							
Median storage veh)												
Upstream signal (tt)		1198			1012							
pX, platoon unblocked	0.92						0.92	0.92		0.92	0.92	0.92
VC , conflicting volume	480			940			1469	1482	922	1436	1485	461
$\mathrm{vC1}$, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	394			940			1466	1480	922	1430	1484	374
tC , single (s)	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
$\mathrm{tC}, 2$ stage (s)												
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free \%	97			98			88	99	96	75	100	95
cM capacity (veh/h)	1069			715			86	108	320	92	107	617
Direction, Lane \#	EB 1	EB 2	WB 1	WB 2	NB 1	SB 1						
Volume Total	27	916	15	474	25	54						
Volume Left	27	0	15	0	10	23						
Volume Right	0	44	0	38	14	31						
CSH	1069	1700	715	1700	148	180						
Volume to Capacity	0.03	0.54	0.02	0.28	0.17	0.30						
Queue Length 95th (t)	2	0	2	0	15	30						
Control Delay (s)	8.5	0.0	10.1	0.0	34.3	33.2						
Lane LOS	A		B		D	D						
Approach Delay (s)	0.2		0.3		34.3	33.2						
Approach LOS					D	D						
Intersection Summary												
Average Delay			2.0									
Intersection Capacity Utilization			59.0\%	ICU Level of Service					B			
Analysis Period (min)			15									

C Critical Lane Group

C Critical Lane Group

C Critical Lane Group

C Critical Lane Group

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\uparrow	F	\％	\uparrow	F	${ }^{7}$	个4	「	${ }^{7}$	个 \uparrow	「
Traffic Volume（vph）	16	52	34	458	22	489	15	1228	252	213	587	19
Future Volume（vph）	16	52	34	458	22	489	15	1228	252	213	587	19
Ideal Flow（vphpl）	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time（s）		5.2	5.2	5.1	5.1	5.1	4.7	5.8	5.8	4.9	5.8	5.8
Lane Util．Factor		1.00	1.00	0.95	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00
Frpb，ped／bikes		1.00	0.93	1.00	1.00	0.98	1.00	1.00	0.97	1.00	1.00	0.98
Flpb，ped／bikes		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt		1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85
Flt Protected		0.99	1.00	0.95	0.96	1.00	0.95	1.00	1.00	0.95	1.00	1.00
Satd．Flow（prot）		1841	1472	1681	1693	1558	1770	3539	1533	1770	3539	1549
FIt Permitted		0.99	1.00	0.95	0.96	1.00	0.95	1.00	1.00	0.95	1.00	1.00
Satd．Flow（perm）		1841	1472	1681	1693	1558	1770	3539	1533	1770	3539	1549
Peak－hour factor，PHF	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96
Adj．Flow（vph）	17	54	35	477	23	509	16	1279	262	222	611	20
RTOR Reduction（vph）	0	0	31	0	0	398	0	0	125	0	0	10
Lane Group Flow（vph）	0	71	4	248	252	111	16	1279	138	222	611	10
Confl．Peds．（\＃／hr）	2		3	3		2						
Confl．Bikes（\＃hr）			25			1			12			2
Turn Type	Split	NA	Perm	Split	NA	Perm	Prot	NA	Perm	Prot	NA	Perm

Protected Phases	4	4		3	3		5	2		1	6	6
Permitted Phases		15.3	15.3	32.8	32.8	32.8	3.4	56.9	56.9	24.0	77.7	77.7

Effective Green， g （s）	15.3	15.3	32.8	32.8	32.8	3.4	56.9	56.9	24.0	77.7	77.7
Actuated g／C Ratio	0.10	0.10	0.22	0.22	0.22	0.02	0.38	0.38	0.16	0.52	0.52
Clearance Time（s）	5.2	5.2	5.1	5.1	5.1	4.7	5.8	5.8	4.9	5.8	5.8
Vehicle Extension（s）	4.0	4.0	4.0	4.0	4.0	3.0	4.0	4.0	3.0	4.0	4.0
Lane Grp Cap（vph）	187	150	367	370	340	40	1342	581	283	1833	802
v／s Ratio Prot	c0．04		0.15	c0．15		0.01	c0．36		c0．13	0.17	
v / s Ratio Perm		0.00			0.07			0.09			0.01
v／c Ratio	0.38	0.02	0.68	0.68	0.33	0.40	0.95	0.24	0.78	0.33	0.01
Uniform Delay，d1	62.9	60.6	53.7	53.8	49.3	72.3	45.3	31.7	60.5	21.1	17.5
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Incremental Delay，d2	1.8	0.1	5.3	5.5	0.8	6.4	15.6	1.0	13.3	0.1	0.0
Delay（s）	64.7	60.7	59.0	59.3	50.1	78.7	60.9	32.7	73.8	21.2	17.6
Level of Service	E	E	E	E	D	E	E	C	E	C	B

Level of Service	E	E	E	E	D	E	E	C	E
Approach Delay（s）	63.4		54.6		56.3		34.8		
Approach LOS	E		D		E		C		

Intersection Summary			
HCM 2000 Control Delay	50.8	HCM 2000 Level of Service	D
HCM 2000 Volume to Capacity ratio	0.78		
Actuated Cycle Length（s）	150.0	Sum of lost time（s）	21.0
Intersection Capacity Utilization	87.1%	ICU Level of Service	E
Analysis Period（min）	15		

c Critical Lane Group

	4	\rightarrow		4	1	\downarrow	
Movement	EBL	EBT	WBT	WBR	SBL	SBR	
Lane Configurations		4	4	「	${ }^{1 /}$	「	
Traffic Volume (veh/h)	0	517	934	133	87	31	
Future Volume (Veh/h)	0	517	934	133	87	31	
Sign Control		Free	Free		Stop		
Grade		0\%	0\%		0\%		
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	
Hourly flow rate (vph)	0	562	1015	145	95	34	
Pedestrians		1			4		
Lane Width (ft)		12.0			12.0		
Walking Speed (ft/s)		4.0			4.0		
Percent Blockage		0			0		
Right turn flare (veh)						7	
Median type		Raised	None				
Median storage veh)		2					
Upstream signal (ft)		171	1027				
pX, platoon unblocked	0.56				0.57	0.56	
vC, conflicting volume	1164				1581	1020	
$\mathrm{vC1}$, stage 1 conf vol					1019		
vC 2 , stage 2 conf vol					562		
vCu , unblocked vol	900				1538	642	
tC , single (s)	4.1				6.4	6.2	
tC, 2 stage (s)					5.4		
tF (s)	2.2				3.5	3.3	
p0 queue free \%	100				63	87	
cM capacity (veh/h)	421				260	264	
Direction, Lane \#	EB 1	WB 1	WB 2	SB 1			
Volume Total	562	1015	145	129			
Volume Left	0	0	0	95			
Volume Right	0	0	145	34			
cSH	1700	1700	1700	353			
Volume to Capacity	0.33	0.60	0.09	0.37			
Queue Length 95th (ft)	0	0	0	41			
Control Delay (s)	0.0	0.0	0.0	25.0			
Lane LOS				D			
Approach Delay (s)	0.0	0.0		25.0			
Approach LOS				D			
Intersection Summary							
Average Delay			1.7				
Intersection Capacity Utilization			60.9\%		ICU Level	Service	B
Analysis Period (min)			15				

c Critical Lane Group

c Critical Lane Group

c Critical Lane Group

c Critical Lane Group

c Critical Lane Group

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\uparrow	「	${ }^{7}$	\uparrow	「	${ }^{7}$	44	「	${ }^{1}$	性	F
Traffic Volume（vph）	6	23	14	332	24	187	18	521	269	366	1128	17
Future Volume（vph）	6	23	14	332	24	187	18	521	269	366	1128	17
Ideal Flow（vphpl）	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time（s）		5.2	5.2	5.1	5.1	5.1	4.7	5.8	5.8	4.9	5.8	5.8
Lane Util．Factor		1.00	1.00	0.95	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00
Frpb，ped／bikes		1.00	0.98	1.00	1.00	0.97	1.00	1.00	0.98	1.00	1.00	0.98
Flpb，ped／bikes		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt		1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85
Flt Protected		0.99	1.00	0.95	0.96	1.00	0.95	1.00	1.00	0.95	1.00	1.00
Satd．Flow（prot）		1844	1551	1681	1697	1534	1770	3539	1548	1770	3539	1546
Flt Permitted		0.99	1.00	0.95	0.96	1.00	0.95	1.00	1.00	0.95	1.00	1.00
Satd．Flow（perm）		1844	1551	1681	1697	1534	1770	3539	1548	1770	3539	1546
Peak－hour factor，PHF	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Adj．Flow（vph）	6	24	15	353	26	199	19	554	286	389	1200	18
RTOR Reduction（vph）	0	0	14	0	0	165	0	0	192	0	0	8
Lane Group Flow（vph）	0	30	1	191	188	34	19	554	94	389	1200	10
Confl．Peds．（\＃／hr）	2		2	2		2						
Confl．Bikes（\＃／hr）			2			13			2			5
Turn Type	Split	NA	Perm	Split	NA	Perm	Prot	NA	Perm	Prot	NA	Perm
Protected Phases	4	4		3	3		5	2		1	6	
Permitted Phases			4			3			2			6
Actuated Green，G（s）		8.4	8.4	20.7	20.7	20.7	3.4	39.6	39.6	30.3	66.7	66.7
Effective Green，g（s）		8.4	8.4	20.7	20.7	20.7	3.4	39.6	39.6	30.3	66.7	66.7
Actuated g／C Ratio		0.07	0.07	0.17	0.17	0.17	0.03	0.33	0.33	0.25	0.56	0.56
Clearance Time（s）		5.2	5.2	5.1	5.1	5.1	4.7	5.8	5.8	4.9	5.8	5.8
Vehicle Extension（s）		4.0	4.0	4.0	4.0	4.0	3.0	4.0	4.0	3.0	4.0	4.0
Lane Grp Cap（vph）		129	108	289	292	264	50	1167	510	446	1967	859
v／s Ratio Prot		c0．02		c0．11	0.11		0.01	0.16		c0．22	c0．34	
v／s Ratio Perm			0.00			0.02			0.06			0.01
v／c Ratio		0.23	0.01	0.66	0.64	0.13	0.38	0.47	0.19	0.87	0.61	0.01
Uniform Delay，d1		52.8	51.9	46.4	46.2	42.0	57.3	31.9	28.7	43.0	17.9	11.9
Progression Factor		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Incremental Delay，d2		1.3	0.0	6.1	5.3	0.3	4.8	1.4	0.8	16.9	0.6	0.0
Delay（s）		54.0	52.0	52.5	51.6	42.3	62.0	33.3	29.5	59.9	18.6	11.9
Level of Service		D	D	D	D	D	E	C	C	E	B	B

Level of Service	D	D	D	D	D	E	C	C
Approach Delay（s）	53.3		48.7		32.7	B	B	
Approach LOS	D		D		C	28.5		

Intersection Summary			
HCM 2000 Control Delay	33.8	HCM 2000 Level of Service	C
HCM 2000 Volume to Capacity ratio	0.68		
Actuated Cycle Length（s）	120.0	Sum of lost time（s）	C
Intersection Capacity Utilization	67.9%	ICU Level of Service	
Analysis Period（min）	15		

c Critical Lane Group

	4	\rightarrow		4	1	4	
Movement	EBL	EBT	WBT	WBR	SBL	SBR	
Lane Configurations		4	4	「	${ }^{1 /}$	「	
Traffic Volume (veh/h)	0	664	511	128	144	31	
Future Volume (Veh/h)	0	664	511	128	144	31	
Sign Control		Free	Free		Stop		
Grade		0\%	0\%		0\%		
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94	
Hourly flow rate (vph)	0	706	544	136	153	33	
Pedestrians		1			4		
Lane Width (ft)		12.0			12.0		
Walking Speed (ft/s)		4.0			4.0		
Percent Blockage		0			0		
Right turn flare (veh)						7	
Median type		Raised	None				
Median storage veh)		2					
Upstream signal (ft)		171	1027				
pX, platoon unblocked	0.93				0.93	0.93	
vC , conflicting volume	684				1254	549	
$\mathrm{vC1}$, stage 1 conf vol					548		
vC 2 , stage 2 conf vol					706		
vCu , unblocked vol	622				1233	477	
tC , single (s)	4.1				6.4	6.2	
tC, 2 stage (s)					5.4		
tF (s)	2.2				3.5	3.3	
p0 queue free \%	100				62	94	
cM capacity (veh/h)	888				402	545	
Direction, Lane \#	EB 1	WB 1	WB 2	SB 1			
Volume Total	706	544	136	186			
Volume Left	0	0	0	153			
Volume Right	0	0	136	33			
cSH	1700	1700	1700	488			
Volume to Capacity	0.42	0.32	0.08	0.38			
Queue Length 95th (ft)	0	0	0	44			
Control Delay (s)	0.0	0.0	0.0	18.1			
Lane LOS				C			
Approach Delay (s)	0.0	0.0		18.1			
Approach LOS				C			
Intersection Summary							
Average Delay			2.1				
Intersection Capacity Utilization			49.8\%		ICU Level	Service	A
Analysis Period (min)			15				

C Critical Lane Group

c Critical Lane Group

c Critical Lane Group

c Critical Lane Group

c Critical Lane Group

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		$\hat{*}$	F＇	${ }^{1}$	\uparrow	「＇	${ }^{7}$	44	「	${ }^{7}$	44	「
Traffic Volume（vph）	5	28	22	250	23	130	18	541	292	499	1334	13
Future Volume（vph）	5	28	22	250	23	130	18	541	292	499	1334	13
Ideal Flow（vphpl）	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time（s）		5.2	5.2	5.1	5.1	5.1	4.7	5.8	5.8	4.9	5.8	5.8
Lane Util．Factor		1.00	1.00	0.95	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00
Frpb，ped／bikes		1.00	0.96	1.00	1.00	0.98	1.00	1.00	0.97	1.00	1.00	0.97
Flpb，ped／bikes		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt		1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85
Flt Protected		0.99	1.00	0.95	0.96	1.00	0.95	1.00	1.00	0.95	1.00	1.00
Satd．Flow（prot）		1849	1525	1681	1699	1559	1770	3539	1530	1770	3539	1534
Flt Permitted		0.99	1.00	0.95	0.96	1.00	0.95	1.00	1.00	0.95	1.00	1.00
Satd．Flow（perm）		1849	1525	1681	1699	1559	1770	3539	1530	1770	3539	1534
Peak－hour factor，PHF	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96
Adj．Flow（vph）	5	29	23	260	24	135	19	564	304	520	1390	14
RTOR Reduction（vph）	0	0	21	0	0	116	0	0	220	0	0	6
Lane Group Flow（vph）	0	34	2	140	144	19	19	564	84	520	1390	8
Confl．Peds．（\＃／hr）			9	9								1
Confl．Bikes（\＃／hr）			5			2			10			13
Turn Type	Split	NA	Perm	Split	NA	Perm	Prot	NA	Perm	Prot	NA	Perm
Protected Phases	4	4		3	3		5	2		1	6	
Permitted Phases			4			3			2			6
Actuated Green，G（s）		10.3	10.3	17.9	17.9	17.9	3.4	35.9	35.9	44.9	77.6	77.6
Effective Green，g（s）		10.3	10.3	17.9	17.9	17.9	3.4	35.9	35.9	44.9	77.6	77.6
Actuated g／C Ratio		0.08	0.08	0.14	0.14	0.14	0.03	0.28	0.28	0.35	0.60	0.60
Clearance Time（s）		5.2	5.2	5.1	5.1	5.1	4.7	5.8	5.8	4.9	5.8	5.8
Vehicle Extension（s）		4.0	4.0	4.0	4.0	4.0	3.0	4.0	4.0	3.0	4.0	4.0
Lane Grp Cap（vph）		146	120	231	233	214	46	977	422	611	2112	915
v／s Ratio Prot		c0．02		0.08	c0．08		0.01	0.16		c0．29	c0．39	
v／s Ratio Perm			0.00			0.01			0.05			0.01
v／c Ratio		0.23	0.02	0.61	0.62	0.09	0.41	0.58	0.20	0.85	0.66	0.01
Uniform Delay，d1		56.1	55.2	52.7	52.8	48.9	62.3	40.5	36.0	39.4	17.4	10.6
Progression Factor		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Incremental Delay，d2		1.1	0.1	5.1	5.5	0.2	5.9	1.0	0.3	11.0	1.6	0.0
Delay（s）		57.3	55.2	57.9	58.3	49.2	68.2	41.5	36.4	50.4	19.0	10.6
Level of Service		E	E	E	E	D	E	D	D	D	B	B

Approach Delay（s）	56.4	55.2	40.3	27.4
Approach LOS	E	E	D	C

Intersection Summary			
HCM 2000 Control Delay	35.0	HCM 2000 Level of Service	C
HCM 2000 Volume to Capacity ratio	0.71		
Actuated Cycle Length（s）	130.0	Sum of lost time（s）	C
Intersection Capacity Utilization	71.2%	ICU Level of Service	
Analysis Period（min）	15		

c Critical Lane Group

c Critical Lane Group

C Critical Lane Group

c Critical Lane Group

c Critical Lane Group

| | | | | | | | | | | | |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |

C Critical Lane Group

[^0]: ${ }^{1}$ Transportation Impact Analysis Guidelines, Santa Clara Valley Transportation Authority Guidelines, October 2014.

[^1]: ${ }^{1}$ Intersection Control: Signal or Side-street Stop-control (SSSC)

[^2]: c Critical Lane Group

